Lipophilicity-dependent ruthenium N-heterocyclic carbene complexes as potential anticancer agents[†]

Gaochao Lv, Liubin Guo, Ling Qiu*, Hui Yang, Tengfei Wang, Hong Liu and

Jianguo Lin*

Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China

* E-mail address: linjianguo@jsinm.org (J. Lin), qiuling@jsinm.org (L. Qiu)

Complex 1							
Empirical formula	$C_{27}H_{30}N_2Cl_2Ru$	$V(Å^3)$	2452.8(10)				
Formula weight	554.50	Ζ	4				
Crystal system	Monoclinic	$Dc (g \cdot cm^{-3})$	1.502				
Space group	$P2_{1}/c$	$\mu ({\rm mm}^{-1})$	0.875				
<i>a</i> (Å)	12.180(3)	<i>F</i> (000)	1136				
<i>b</i> (Å)	16.920(4)	$R_{ m int}$	0.0857				
<i>c</i> (Å)	12.171(3)	Goodness-of-fit	1.080				
α (°)	90.00	$R_1 [I > 2\sigma (I)]$	0.0792				
β (°)	102.072(3)	$wR_2 [I \ge 2\sigma (I)]$	0.2029				
γ (°)	90.00	R_I (all data) ^a	0.1105				
<i>T</i> (K)	296	wR_2 (all data) ^b	0.2462				

 Table S1. Crystallographic data for complex 1.

 ${}^{a}R_{1} = \Sigma ||\overline{F_{o}}| - |F_{c}|| / \Sigma |F_{o}|. {}^{b}wR_{2} = |\Sigma w(|F_{o}|^{2} - |F_{c}|^{2})| / \Sigma |w(F_{o})^{2}|^{1/2}, \text{ where } w = 1 / [\sigma^{2}(F_{o}^{2}) + (aP)^{2} + bP]. P = (F_{o}^{2} + 2F_{c}^{2}) / 3.$

Complex 1						
Ru(1)-Cl(1)	2.4270(18)	Ru(1)-C(1)	2.096			
Ru(1)-Cl(2)	2.4257(17)	N(2)-C(1)	1.361(7)			
N(1)-C(1)	1.351(7)					
Cl(1)-Ru(1)-Cl(2)	83.61(5)	Cl(1)-Ru(1)-C(1)	89.08(14)			
Cl(2)-Ru(1)-C(1)	90.75(14)	Ru(1)-C(1)-N(1)	128.6(4)			
Ru(1)-C(1)-N(2)	127.7(4)	N(1)-C(1)-N(2)	103.6(4)			

Table S3 Hydrogen bond lengths (Å) and Angles (°) of 1.

D–H…A	d(D–H)	d(H···A)	d(D····A)	∠DHA
C4-H4BCl1	0.9700	2.5500	3.303(6)	135.00
C10-H10 ··· Cl1	0.9300	2.7900	3.563(7)	142.00
C11-H11B Cl2	0.9700	2.5600	3.374(7)	141.00
C20-H20 Cl1 i	0.9300	2.5900	3.437(5)	151.00
C23-H23 Cl2 ⁱⁱ	0.9300	2.5900	3.498(6)	165.00
C26-H26 ··· Cl2	0.9600	2.8000	3.513(7)	132.00

Symmetry codes: i: 2-*x*, -*y*, 1-*z*; ii: *x*, 1/2-*y*, 1/2+*z*.

Fig. S1 The stability of complexes 1-5 in PBS indicated by UV-Vis spectra.

Fig.S2-1 ¹H/NMR (up) and ¹³C/NMR (down) of complex 1.

Fig.S2-2 ¹H/NMR (up) and ¹³C/NMR (down) of complex 2.

Fig.S2-3 ¹H/NMR (up) and ¹³C/NMR (down) of complex 3.

Fig.S2-4 ¹H/NMR (up) and ¹³C/NMR (down) of complex 4.

Fig.S2-5 1 H/NMR (up) and 13 C/NMR (down) complex 5.

Fig. S3 The hydrogen bonds (dotted line) between adjacent molecules of complex 1.

Fig. S4 The standard curves of complexes 1-5 in water (left, red line) and octanol (right, blue line).

Fig. S5 The least-squares fit of $\Delta \varepsilon_{af} / \Delta \varepsilon_{bf}$ vs [DNA] for complexes 1-4.