Supplementary Information

Blocking and bridging ligands direct the structure and magnetic properties

of dimers of pentacoordinate nickel(II)

Luisa López-Banet,^a M. Dolores Santana, ^a * Gabriel García, ^a José Pérez, ^b Luís García, ^b Luis Lezama^c and Ivan da Silva^d

^a Departamento de Química Inorgánica and Regional Campus of International Excellence (Campus Mare Nostrum), Universidad de Murcia, E-30071 Murcia, Spain.
^b Departamento de Ingeniería Minera, Geológica y Cartográfica. Área de Química Inorgánica, Universidad Politécnica de Cartagena, E-30203 Cartagena, Spain.
^c Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, P.O. Box 644, 48080 Bilbao, Spain. BCMaterials, Parque Científico y Tecnológico de Bizkaia, Edificio 500–1, 48160 Derio, Spain.
^d ISIS Facility, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX UK

Complex	1	2	3	$4.CH_2Cl_2$	5
Formula				C45 H54 B2 Cl4 N14 Ni2 O2	C26 H50 F12 N6 Ni2 O4 P2
M				1103.86	918.08
Crystal system	orthorhombic	orthorhombic	orthorhombic	monoclinic	monoclinic
Space group	Pnmn	Pnmn	Pnmn	C2/c	P21/n
Ξ				4	2
<i>a /</i> Å	17.1572(2)	17.24479(18)	17.3543(2)	17.9483(17)	8.1736(4)
b/Å	13.65435(14)	13.66574(12)	13.69393(14)	19.1658(18)	15.1274(8)
c /Å	7.88214(7)	7.88513(6)	7.89244(8)	15.6504(15)	14.9948(8)
α / °	90	90	90	90	90
β / °	90	90	90	103.780(2)	90.6130(10)
γ/°	90	90	90	90	90
$V/Å^3$	1846.55(3)	1858.23(3)	1875.63(4)	5228.7(9)	1853.93(17)
T/K				100(2)	100(2)
λ/Å	0.82449	0.82449	0.82449	0.71073	0.71073
μ / mm ⁻¹				1.402	1.203
Reflections				6409	4329
collected				5(22(22()	4026 (225)
Independent				5622 (326)	4026 (235)
Goodness-of-				1.085	1.243
fit on F^2					
Final R indices				0.0865	0.0588
$[I > 2\sigma(I)]^{[a,b]}$				0.0946	0.0646
R indices (all				0.2423	0.1243
data) ^[a,b]				0.2506	0.1274
Max /min				5.220	0.641
$\Delta \rho [e \cdot Å^{-3}]$				-1.185	-0.506

Table S1. Crystallographic data for complexes 1-5.

 $\frac{\Delta\rho[e^{c} A^{c_{j}}]}{[a] R_{1} = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}| \text{ for reflections with } I > 2\sigma I. \quad [b] wR_{2} = \{\Sigma[w(F_{o}^{2} - F_{c}^{2})^{2}]/\Sigma[w(F_{o}^{2})^{2}]\}^{1/2} \text{ for all reflections;} w^{-1} = \sigma^{2}(F^{2}) + (aP)^{2} + bP, \text{ in which } P = (2F_{c}^{2} + F_{o}^{2})/3 \text{ and a and b are constants set by the program.}$

Figure S1. ¹H NMR spectrum of 4 in $CDCl_3$ solution at r.t.

Figure S2. ¹H NMR spectrum of **5** in $(CD_3)_2CO$ solution at r.t.

Figure S3. Drawing of complex 2 with the atomic numbering around Ni(II) ions.

Figure S4. Drawing of complex **3** with the atomic numbering around Ni(II) ions.

Figure S5. Selected low angle diffractograms of complexes 1 - 3.

Figure S6. Molecular packing of complex 4 showing $CH \cdots \pi$ interactions.

Figure S7. Molecular packing of $\{[Ni(N_3-mc)]_2(\mu-oa)\}(PF_6)_2$ showing supramolecular interactions.

Figure S8. Molecular packing of $\{[Ni(N_3-mc)]_2[\mu-CO(4-Cl-C_6H_4-N)]_2\}(PF_6)_2$ showing supramolecular interactions.

Figure S9. Thermal variation of χ_m and $\chi_m T$ for complex 1. The solid lines correspond to the best fits obtained with Eq. 1.

Figure S10. Thermal variation of χ_m and $\chi_m T$ for complex **2**. The solid lines correspond to the best fits obtained with Eq. 1.

Figure S11. Thermal variation of χ_m and $\chi_m T$ for complex 4. The solid lines correspond to the best fits obtained with Eq. 1.

Figure S12. Thermal variation of χ_m and $\chi_m T$ for complex **5**. The solid lines correspond to the best fits obtained with Eq. 1.

Figure S13. Thermal variation of χ_m and $\chi_m T$ for complex **6**. The solid lines correspond to the best fits obtained with Eq. 1.

Figure S14: Plot for the Rietveld refinement of 1

Figure S15: Plot for the Rietveld refinement of 2

Complex3

Figure S16: Plot for the Rietveld refinement of **3**