Intramolecular \mathbf{N}-coordination in ketiminoboranes

Cite this: DOI: 10.1039/xoxxoo000x

Catherine E. Bacon, ${ }^{a}$ Liz Mansour, ${ }^{b}$ John J. Hayward, ${ }^{\text {b }}$ and Jeremy M. Rawson*b

Electronic Supplementary Information:

Experimental

General considerations

All experiments were performed under a nitrogen atmosphere unless stated otherwise. Dry solvents were distilled off sodium (THF, tolvene, diethyl ether, hexane) or CaH_{2} (acetonitrile, dichloromethane) for the preparation of $4 \mathrm{a} \cdot \mathrm{HCl}$ and $4 \mathrm{c} \cdot \mathrm{HCl}$ or from a solvent purification system ($\mathbf{4} \mathbf{b} \cdot \mathrm{BF}_{3}$). All chemicals were commercially available and used as received. NMR spectra were recorded on a Bruker Avance III 400 MHz spectrometer or a Bruker Avance III 500 MHz spectrometer. ${ }^{11} \mathrm{~B}$ NMR spectra were referenced to $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ and ${ }^{19} \mathrm{~F}$ NMR spectra referenced to CFCl_{3}. Electron impact (EI) mass spectra were obtained using a KRATOS MS89o double focussing magnetic sector instrument; electrospray (ESI) spectra were recorded on a KRATOS Concept or Quattro LC mass spectrometer. Elemental analyses were carried out on an Exeter CE-440 Elemental Analyser.

Syntheses

Preparation of $4 \mathrm{a} \cdot \mathrm{HCl}$.THF

A solution of $\mathrm{Li}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right](0.452 \mathrm{~g}, 2.73 \mathrm{mmol})$ and 2-benzoylpyridine ($0.500 \mathrm{~g}, 2.73 \mathrm{mmol}$) in PhMe (20 mL) was heated to $90^{\circ} \mathrm{C}$ for 18 h . The solvent was removed in vacuo and the red residue redissolved in THF (25 mL). $\mathrm{Me}_{3} \mathrm{SiCl}$ ($0.35 \mathrm{~mL}, 2.75 \mathrm{mmol}$) was added and the reaction mixture heated to $45{ }^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was cooled to $-78^{\circ} \mathrm{C}, \mathrm{Et}_{2} \mathrm{BOMe}$ (2.73 mL , 1.0 M in THF, 2.73 mmol) was added dropwise and the reaction allowed to slowly warm to room temperature. Colourless blocks grew from the solution over 3 d, isolated by filtration, washed with THF ($2 \times 10 \mathrm{~mL}$) and dried in vacuo to give $4 \mathrm{a} \cdot \mathrm{HCl} \cdot \mathrm{THF}$ as white hygroscopic crystals. Yield: $0.350 \mathrm{~g}, 37 \%$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta_{\mathrm{H}}=16.3(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 9.77(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.5.5 \mathrm{~Hz}, H^{1}\right), 8.70\left(1 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, H^{2}\right), 8.58\left(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, H^{4}\right), 8.28$ $\left(1 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}, H^{3}\right), 8.16\left(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, 2 \times H^{5}\right), 7.68(1 \mathrm{H}, \mathrm{tt}, J=7.4$,
$\left.1.5 \mathrm{~Hz}, H^{7}\right), 7.61\left(2 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \times H^{6}\right), 1.07(2 \mathrm{H}, \mathrm{dq}, J=15.3,7.7 \mathrm{~Hz}$, $\left.2 \times \mathrm{BCH}^{a} \mathrm{H}^{\mathrm{b}} \mathrm{CH}_{3}\right), 0.79\left(2 \mathrm{H}, \mathrm{dq}, J=15.3,7.7 \mathrm{~Hz}, 2 \times \mathrm{BCH}^{\mathrm{a}} \boldsymbol{H}^{b} \mathrm{CH}_{3}\right), 0.49(6 \mathrm{H}$, $\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \times \mathrm{BCH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{31}, \mathrm{ppm}$) $\delta_{\mathrm{C}}=165.40$, 146.24, 143.28, 142.88, 134.21, 130.08, 129.72, 128.90, 126.49, 126.35, 14.45, 8.54. ${ }^{11} \mathrm{~B}\{\mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta_{\mathrm{B}}=8$ (s). Elemental analysis found $\mathrm{C} 62.4, \mathrm{H} 7.1, \mathrm{~N} 9.0 \%$. Calc. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{~B} \cdot \mathrm{HCl} \cdot 1.15 \mathrm{H}_{2} \mathrm{O}$ C 62.5, H 7.3, N 9.1\%. MS (ESI+) $m / z=250.17$ (23\%), 251.17 (100\%), 252.17 (18\%) $[\mathrm{M}+\mathrm{H}]^{+}$

Preparation of $4 \mathrm{~b} \cdot \mathrm{BF}_{3}$

A solution of $\mathrm{Li}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]$ ($0.837 \mathrm{~g}, 5.00 \mathrm{mmol}$) and 2-benzoyl pyridine ($0.916 \mathrm{~g}, 5.00 \mathrm{mmol}$) were heated in $\mathrm{PhMe}(40 \mathrm{~mL})$ at $90^{\circ} \mathrm{C}$ for 18 h to afford a dark red solution. The solvent was removed in vacuo and the red residue redissolved in THF (50 mL). $\mathrm{Me}_{3} \mathrm{SiCl}$ (0.543 $\mathrm{g}, 5.00 \mathrm{mmol}$) was added and the reaction mixture heated to $45^{\circ} \mathrm{C}$ for 2 h to afford a yellow-orange solution. The reaction mixture was cooled to $-78^{\circ} \mathrm{C}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.23 \mathrm{~mL}, 10 \mathrm{mmol})$ was added dropwise and the reaction allowed to slowly warm to room temperature. Colourless blocks formed on standing for 3 d which were isolated by filtration and dried in vacuo to give $\mathbf{4} \mathbf{b} \cdot \mathrm{BF}_{3}$ as white crystals. Yield: $0.910 \mathrm{~g}, 3.06 \mathrm{mmol}, 61 \%$.
${ }^{11} \mathrm{~B}$ and ${ }^{19} \mathrm{~F}$ NMR data are consistent with the presence of an equilibrium between $\mathbf{4} \mathbf{b} \cdot \mathrm{BF}_{3}$ and $\mathbf{4} \mathbf{b}$ and $\mathrm{BF}_{3} \cdot \mathrm{MeCN}$ in solution. NMR are shown below for this system (Fig. ESI-1). Both the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are significantly complicated by the presence of a mixture of these two different components in solution, resulting in multiple overlapping signals which were not assigned.
${ }^{11} \mathrm{~B}\{\mathrm{H}\} \mathrm{NMR}\left(160 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, \mathrm{ppm}\right) \delta_{\mathrm{B}}=8\left(\mathrm{t}, \mathrm{BF}_{2,}{ }^{1} \mathrm{~J}_{\mathrm{BF}}=25.4 \mathrm{~Hz}\right), 6(\mathrm{t}$, $\mathrm{BF}_{21}{ }^{1} \mathrm{~J}_{\mathrm{BF}}=22.8 \mathrm{~Hz}$), $1\left(\mathrm{q}, \mathrm{BF}_{31} \mathrm{I}_{\mathrm{BF}}=14.5 \mathrm{~Hz}\right)$, o ($\left.\mathrm{s}, \mathrm{BF}_{3} \cdot \mathrm{MeCN}\right) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, C D_{3} C N, p p m$) $\delta_{F}=-141.5\left(q, \mathrm{BF}_{3}, \mathrm{~J}_{\mathrm{BF}}=14.5 \mathrm{~Hz}\right.$), -151.9 (s, $\left.\mathrm{BF}_{3}\right),-159.5\left(\mathrm{q}, \mathrm{BF}_{2}, 25.0 \mathrm{~Hz}\right),-159.2\left(\mathrm{q}, \mathrm{BF}_{2}, 22.5 \mathrm{~Hz}\right)$. Elemental analysis found $\mathrm{C} 48.2, \mathrm{H} 3.8, \mathrm{~N} 8.5 \%$. Calc. for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{~B}_{2} \mathrm{~F}_{5} \mathrm{C}$ 48.4, H 3.0, N 9.4\%.

Fig. ESI-1 ${ }^{19} \mathrm{~F}$ NMR (top) and ${ }^{11} \mathrm{~B}$ NMR (bottom) of $\mathbf{4 b} \cdot \mathrm{BF}_{3}$ in MeCN

Preparation of $4 \mathrm{c} \cdot \mathrm{HCl} \cdot \mathrm{THF}$

A solution of lithium bis(trimethylsilyl)amide ($0.426 \mathrm{~g}, 2.55 \mathrm{mmol}$) and 2,2'-dipyridyl ketone ($0.500 \mathrm{~g}, 2.55 \mathrm{mmol}$) in PhMe (20 mL) and heated to $90^{\circ} \mathrm{C}$ for 18 h . The solvent was removed in vacuo and the red residue redissolved in THF (20 mL). $\mathrm{Me}_{3} \mathrm{SiCl}(0.33 \mathrm{~mL}, 2.6 \mathrm{mmol}$) was added and the reaction mixture heated to $40^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and $\mathrm{Et}_{2} \mathrm{BOMe}(2.55 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 2.55 mmol) was added dropwise. The reaction was allowed to slowly warm to room temperature to give a pale brown precipitate under a dark brown liquid. The reaction mixture was filtered and colourless crystals grew from the filtrate over a period of 3 d . Yield: 0.252 g, 27\%.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta_{\mathrm{H}}=16.3(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$, $9.77(1 \mathrm{H}, \mathrm{d}, J=$ $\left.8.2 \mathrm{~Hz}, \boldsymbol{H}^{2}\right), 9.69\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \boldsymbol{H}^{5}\right), 8.84\left(1 \mathrm{H}, \mathrm{dm}, J=4.3 \mathrm{~Hz}, H^{3}\right)$, $8.69\left(1 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz}, \mathrm{H}^{4}\right), 8.49\left(1 \mathrm{H}, \mathrm{td}, J=7.7,1.38 \mathrm{~Hz}, H^{6}\right), 8.10(2 \mathrm{H}$, $\left.\mathrm{m}, \boldsymbol{H}^{2} \& \boldsymbol{H}^{8}\right), 7.63\left(1 \mathrm{H}, \mathrm{ddd}, J=7.7,4.8,1.0 \mathrm{~Hz}, \boldsymbol{H}^{7}\right), 1.20(2 \mathrm{H}, \mathrm{dq}, J=15.3$, $\left.7.7 \mathrm{~Hz}, \mathrm{BCH}^{a} \mathrm{H}^{\mathrm{b}} \mathrm{CH}_{3}\right)$, $0.88\left(2 \mathrm{H}, \mathrm{dq}, J=15.3,7.7 \mathrm{~Hz}^{2} \mathrm{BCH}^{a} \boldsymbol{H}^{b} \mathrm{CH}_{3}\right), 0.54$ $\left(6 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{BCH}_{2} \mathrm{CH}_{3}\right) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{CDCl}_{3}\right.$, $\mathrm{ppm}) \delta_{\mathrm{B}}=8$ (s). Elemental analysis (\%): Found $\mathrm{C} 63.4, \mathrm{H}_{7} .6, \mathrm{~N} 11.9 \%$, Calc. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{BN}_{3} \cdot \mathrm{HCl} \cdot 0.9 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ C $63.4, \mathrm{H}_{7.5}, \mathrm{~N} 11.9 \%$.

Crystallography

Single crystals of $4 \mathbf{a} \cdot \mathrm{HCl} \cdot \mathrm{THF}$ and $\mathbf{4 C \cdot H C I} \cdot \mathrm{THF}$ were mounted on glass fibres using fluoropolymer and examined on a Nonius Kappa CCD diffractometer using Mo-K α radiation (graphite monochromator, $\lambda=$ 0.71073 Å). Temperatures were maintained using an Oxford Cryostream cooler. For compound $\mathbf{4 a \cdot} \cdot \mathrm{HCl} \cdot \mathrm{THF}$ the crystals underwent a phase transition upon cooling to 180 K and data were collected at $240(2) \mathrm{K}$ whereas $4 \mathrm{C} \cdot \mathrm{HCl} \cdot \mathrm{THF}$ was collected at $180(2) \mathrm{K}$. Data collections were made using ω and ϕ scans using COLLECT. ${ }^{1}$ Cells were indexed using HKL Scalepack and reduced using HKL, Denzo and Scalepack. ${ }^{2}$ Data were corrected for absorption using symmetry equivalent reflections using the method of Blessing. ${ }^{3}$ A crystal of $\mathbf{4 b} \cdot \mathrm{BF}_{3}$ was mounted in paratone oil in a cryoloop and examined on a Bruker APEX CCD detector using Mo-K α radiation at 173(2) K with temperatures maintained using an Oxford Cryostream cooler. Data were collected using SMART software, ${ }^{4}$ reduced using SAINT, ${ }^{5}$ and an absorption correction applied using SADABS. ${ }^{6}$ Structures were solved using SHELXS-97 and refined using full matrix least squares methods on F^{2} using SHELXL-97. ${ }^{7}$ The structure of $4 \mathrm{c} \cdot \mathrm{HCl} \cdot \mathrm{THF}$ crystallised in the acentric space group P_{2}. Although the Flack parameter indicated possible merohedral twinning, there are two molecules in the asymmetric unit related via a non-crystallographic inversion centre (the molecules differ primarily in the orientation of the pyridyl groups on the cyclic backbone, Fig. ESI-2). Thus the crystal inherently comprises an equal mixture of both left- and right-handed isomers. Since the final R values were acceptable and the refinement clearly reveals that the structure containing both 'hands' in a $1: 1$ ratio no attempt was made to resolve the twin since determination of the absolute structure is of limited chemical meaning. Figures for publication were prepared using Mercury version 3.3. ${ }^{8}$ A summary of crystallographic data is presented in Table ESI-1 and the final structures available in crystallographic cif format. CCDC deposit numbers 1043411-1043413.

Fig. ESI-2 The two crystallographically independent molecules of $\mathbf{4 c}$ in the asymmetric unit, illustrating the non-crystallographic mirror plane.

Computational studies

Single point and geometry-optimised DFT calculations were undertaken on the structure of $\mathbf{4} \mathbf{b} \cdot \mathrm{BF}_{3}$ as determined by X -ray diffraction using the Pople $6-311 \mathrm{G}$ * triple zeta basis set ${ }^{9}$ and the B3LYP functional ${ }^{10}$ within Jaguar. ${ }^{11}$ Geometry optimisations were performed with bond elongation constraints along the $\mathrm{N}-\mathrm{BF}_{3}$ vector in $0.2 \AA \AA$ increments but failed to reveal a transition state. The $p \mathrm{~K}_{\mathrm{b}}$ of 4 C was determined from the value derived using the quantum mechanical $p \mathrm{~K}_{\mathrm{a}}$ prediction module in Jaguar based on $4 \mathrm{c} \cdot \mathrm{H}^{+}$in water. NBO analysis was undertaken on $\mathbf{4 b} \cdot \mathrm{BF}_{3}$ and revealed strong polarisation of the $\mathrm{B}-\mathrm{N}$ bonds in the sense $\mathrm{B}^{\delta+-} \mathrm{N}^{\delta-}$ in accord with electronegativity differences between B and N. The NBO analysis
revealed significant delocalisation and both the partial charges and formal NBO bond orders in the bicyclic core are shown in ESI Fig. 3.

Fig. ESI-3 NBO charges (left) and bond orders (right) for $\mathbf{4 b} \cdot \mathrm{BF}_{3}$

References

1. COLLECT, Nonius BV, Delft, The Netherlands
2. Z. Otwinowski and W. Minor, Methods in Enzymology: Macromolecular Crystallography, Part A, 1997, 276, 307.
3. R.H. Blessing, Cryst. Rev., 1987, 1, 3. (b) R. H. Blessing and D. A. Langs, J.Appl. Crystallogr., 1987, $20,427$.
4. Bruker SMART, Bruker AXS, Madison, WI, USA.
5. Bruker SAINT, Bruker AXS, Madison, WI, USA.
6. Bruker SADABS, Bruker AXS, Madison, WI, USA.
7. SHELXS/SHELXL, G.M. Sheldrick, Acta Cryst., 2008, A64, 112.
8. Mercury v.3.3, Build RC5, Cambridge Crystallographic Data Centre. http://www.ccdc.cam.ac.uk/mercury.
9. K. Raghavachari, J.S. Binkley, R. Seeger and J.A. Pople, J. Chem. Phys., 1980, 72, 650.
10. C. Lee, W. Yang and R.G. Parr, Phys. Rev. B., 1988, 37, 785.
11. Jaguar v.8.5; Schrödinger LLC, New York, NY, 2014. http:/www.schrodinger.com

Table ESI- $1 \quad$ Crystal data for compounds $\mathbf{4 a} \cdot \mathrm{HCl} \cdot \mathrm{THF}, \mathbf{4 b} \cdot \mathrm{BF}_{3}$ and $\mathbf{4 c} \cdot \mathrm{HCl} \cdot \mathrm{THF}$

	4a• $\mathrm{HCl} \cdot \mathrm{THF}$	$4 \mathrm{~b} \cdot \mathrm{BF}_{3}$	$4 \mathrm{c} \cdot \mathrm{HCl} \cdot \mathrm{THF}$
Formula	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{BN}_{2}, \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}, \mathrm{Cl}$	$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~B}_{2} \mathrm{~F}_{5} \mathrm{~N}_{2}$	$\begin{gathered} \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{BN}_{3}, \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}, \\ \mathrm{Cl} \end{gathered}$
FW	358.70	297.83	359.71
Temp. (K)	240(2)	173(2)	180(2)
Crystal system	Monoclinic	Orthorhombic	Monoclinic
Space group	$P 2_{1} / \mathrm{c}$	Pbca	$P 2_{1}$
a / A	9.2150(2)	9.934(3)	9.38350(10)
b/Å	13.4773(3)	12.290 (4)	12.8596(3)
c / \AA	17.1221(4)	21.001(7)	16.6196(3)
$\alpha /^{\circ}$	90.00	90.00	90.00
$\beta /{ }^{\circ}$	97.697(2)	90.00	99.1807(12)
$\gamma /{ }^{\circ}$	90.00	90.00	90.00
V / \AA^{3}	2107.29(8)	2564.0(14)	1979.77(6)
Z	4	8	4
$D_{C / M g ~ m}{ }^{-3}$	1.131	1.543	1.207
$\mu(\mathrm{Mo}-\mathrm{K} \alpha) / \mathrm{cm}^{-1}$	0.191	0.142	0.204
Total reflections	21422	25423	25481
Unique Reflections	6052	2957	7194
Reflns [$1>2 \sigma(I)]$	3359	2480	6037
θ range	$3.76 \leq \theta \leq 29.98$	$1.94 \leq$ ¢ ≤ 27.88	$2.69 \leq \theta \leq 26.37$
$R_{\text {int }}$	0.055	0.052	0.051
$R_{1}{ }^{\text {a }}$, $w R_{2}{ }^{\text {b }}$	0.093, 0.179	0.048, 0.139	$0.045,0.106$
Residual e^{-} / \AA^{3}	+0.50/-0.48	+0.49/-0.20	+0.30/-0.34

