Dalton Transactions

COMMUNICATION

Intramolecular N-coordination in ketiminoboranes

Cite this: DOI: 10.1039/x0xx00000x

Catherine E. Bacon,^a Liz Mansour,^b John J. Hayward,^b and Jeremy M. Rawson^{*b}

Electronic Supplementary Information:

Experimental

General considerations

All experiments were performed under a nitrogen atmosphere unless stated otherwise. Dry solvents were distilled off sodium (THF, diethyl ether, CaH₂ (acetonitrile, toluene. hexane) or dichloromethane) for the preparation of 4a·HCl and 4c·HCl or from a solvent purification system (4b-BF₃). All chemicals were commercially available and used as received. NMR spectra were recorded on a Bruker Avance III 400 MHz spectrometer or a Bruker Avance III 500 MHz spectrometer. ¹¹B NMR spectra were referenced to BF₃·Et₃O and ¹⁹F NMR spectra referenced to CFCl₃. Electron impact (EI) mass spectra were obtained using a KRATOS MS890 double focussing magnetic sector instrument; electrospray (ESI) spectra were recorded on a KRATOS Concept or Quattro LC mass spectrometer. Elemental analyses were carried out on an Exeter CE-440 Elemental Analyser.

Syntheses

Preparation of 4a·HCI.THF

A solution of Li[N(SiMe₃)₂] (0.452 g, 2.73 mmol) and 2-benzoylpyridine (0.500 g, 2.73 mmol) in PhMe (20 mL) was heated to 90 °C for 18 h. The solvent was removed *in vacuo* and the red residue redissolved in THF (25 mL). Me₃SiCl (0.35 mL, 2.75 mmol) was added and the reaction mixture heated to 45 °C for 2 h. The reaction mixture was cooled to -78 °C, Et₂BOMe (2.73 mL, 1.0 M in THF, 2.73 mmol) was added dropwise and the reaction allowed to slowly warm to room temperature. Colourless blocks grew from the solution over 3 d, isolated by filtration, washed with THF (2 × 10 mL) and dried *in vacuo* to give **4a**-HCI-THF as white hygroscopic crystals. Yield: 0.350 g, 37%.

¹**H NMR** (500 MHz, CDCl₃, ppm) δ_{H} = 16.3 (1H, br s,N*H*), 9.77 (1H, d, *J* = 5.5 Hz, *H*²), 8.70 (1H, t, *J* = 7.9 Hz, *H*²), 8.58 (1H, d, *J* = 8.1 Hz, *H*⁴), 8.28 (1H, t, *J* = 6.6 Hz, *H*³), 8.16 (2H, d, *J* = 7.3 Hz, 2×*H*⁵), 7.68 (1H, tt, *J* = 7.4,

1.5 Hz, *H*⁷), 7.61 (2H, t, *J* = 7.9 Hz, 2×*H*⁶), 1.07 (2H, dq, *J* = 15.3, 7.7 Hz, 2×BCH^aH^bCH₃), 0.79 (2H, dq, *J* = 15.3, 7.7 Hz, 2×BCH^aH^bCH₃), 0.49 (6H, t, *J* = 7.7 Hz, 2×BCH₂CH₃). ³³C NMR (100 MHz, CDCl₃, ppm) δ_{C} = 165.40, 146.24, 143.28, 142.88, 134.21, 130.08, 129.72, 128.90, 126.49, 126.35, 14.45, 8.54. ³³B{H} NMR (100 MHz, CDCl₃, ppm) δ_{B} = 8 (s). Elemental analysis found C 62.4, H 7.1, N 9.0%. Calc. for C₁₅H₁₈N₃B·HCl·1.15H₂O C 62.5, H 7.3, N 9.1%. MS (ESI+) *m*/*z* = 250.17 (23%), 251.17 (100%), 252.17 (18%) [M+H]⁺

Preparation of 4b·BF3

A solution of Li[N(SiMe₃)₂] (0.837 g, 5.00 mmol) and 2-benzoyl pyridine (0.916 g, 5.00 mmol) were heated in PhMe (40 mL) at 90 °C for 18 h to afford a dark red solution. The solvent was removed *in vacuo* and the red residue redissolved in THF (50 mL). Me₃SiCl (0.543 g, 5.00 mmol) was added and the reaction mixture heated to 45 °C for 2 h to afford a yellow-orange solution. The reaction mixture was cooled to -78 °C, BF₃·Et₂O (1.23 mL, 10 mmol) was added dropwise and the reaction allowed to slowly warm to room temperature. Colourless blocks formed on standing for 3 d which were isolated by filtration and dried *in vacuo* to give **4b**·BF₃ as white crystals. Yield: 0.910 g, 3.06 mmol, 61%.

¹¹B and ¹⁹F NMR data are consistent with the presence of an equilibrium between **4b**·BF₃ and **4b** and BF₃·MeCN in solution. NMR are shown below for this system (Fig. ESI-1). Both the ¹H and ¹³C NMR spectra are significantly complicated by the presence of a mixture of these two different components in solution, resulting in multiple overlapping signals which were not assigned.

¹¹**B{H} NMR** (160 MHz, CD₃CN, ppm) $\delta_B = 8$ (t, BF₂, ¹J_{BF} = 25.4 Hz), 6 (t, BF₂, ¹J_{BF} = 22.8 Hz), 1 (q, BF₃, ¹J_{BF} = 14.5 Hz), 0 (s, BF₃·MeCN). ¹⁹**F NMR** (471 MHz, CD₃CN, ppm) $\delta_F = -141.5$ (q, BF₃, ¹J_{BF} = 14.5 Hz), -151.9 (s, BF₃), -159.5 (q, BF₂, 25.0 Hz), -159.2 (q, BF₂, 22.5 Hz). **Elemental analysis** found C 48.2, H 3.8, N 8.5%. Calc. for C₁₂H₉N₂B₂F₅ C 48.4, H 3.0, N 9.4%.

Fig. ESI-1 $~^{19}\text{F}$ NMR (top) and ^{11}B NMR (bottom) of $\textbf{4b}{\cdot}\text{BF}_3$ in MeCN

Preparation of 4c·HCl·THF

A solution of lithium *bis*(trimethylsilyl)amide (0.426 g, 2.55 mmol) and 2,2'-dipyridyl ketone (0.500 g, 2.55 mmol) in PhMe (20 mL) and heated to 90 °C for 18 h. The solvent was removed *in vacuo* and the red residue redissolved in THF (20 mL). Me₃SiCl (0.33 mL, 2.6 mmol) was added and the reaction mixture heated to 40 °C for 2 h. The reaction mixture was cooled to –78 °C and Et₂BOMe (2.55 mL, 1.0 M in THF, 2.55 mmol) was added dropwise. The reaction was allowed to slowly warm to room temperature to give a pale brown precipitate under a dark brown liquid. The reaction mixture was filtered and colourless crystals grew from the filtrate over a period of 3 d. Yield: 0.252 g, 27%.

^a**H NMR** (500 MHz, CDCl₃, ppm) δ_{H} = 16.3 (1H, br s,N*H*), 9.77 (1H, d, *J* = 8.2 Hz, *H*^a), 9.69 (1H, d, *J* = 8.0 Hz, *H*⁵), 8.84 (1H, dm, *J* = 4.3 Hz, *H*³), 8.69 (1H, d, *J* = 5.6 Hz, *H*⁴), 8.49 (1H, td, *J* = 7.7, 1.38 Hz, *H*⁶), 8.10 (2H, m, *H*² & *H*⁸), 7.63 (1H, ddd, *J* = 7.7, 4.8, 1.0 Hz, *H*⁷), 1.20 (2H, dq, *J* = 15.3, 7.7 Hz, BCH^aH^bCH₃), 0.88 (2H, dq, *J* = 15.3, 7.7 Hz, BCH^aH^bCH₃), 0.54 (6H, t, *J* = 7.7 Hz, BCH₂C*H*₃). ^{as}B{^aH} **NMR** (100 MHz, CDCl₃, CDCl₃, ppm) δ_{B} = 8 (s). **Elemental analysis** (%): Found C 63.4, H 7.6, N 11.9%, Calc. for C₁₅H₁₈BN₃·HCl·0.9C₄H₈O C 63.4, H 7.5, N 11.9%.

Crystallography

Single crystals of 4a HCI THF and 4c HCI THF were mounted on glass fibres using fluoropolymer and examined on a Nonius Kappa CCD diffractometer using Mo-K α radiation (graphite monochromator, λ = 0.71073 Å). Temperatures were maintained using an Oxford Cryostream cooler. For compound 4a·HCI·THF the crystals underwent a phase transition upon cooling to 180 K and data were collected at 240(2) K whereas 4c·HCl·THF was collected at 180(2) K. Data collections were made using ω and ϕ scans using COLLECT.¹ Cells were indexed using HKL Scalepack and reduced using HKL, Denzo and Scalepack.² Data were corrected for absorption using symmetry equivalent reflections using the method of Blessing.3 A crystal of 4b·BF₃ was mounted in paratone oil in a cryoloop and examined on a Bruker APEX CCD detector using Mo-K α radiation at 173(2) K with temperatures maintained using an Oxford Cryostream cooler. Data were collected using SMART software,⁴ reduced using SAINT,⁵ and an absorption correction applied using SADABS.⁶ Structures were solved using SHELXS-97 and refined using full matrix least squares methods on F² using SHELXL-97.7 The structure of 4c·HCl·THF crystallised in the acentric space group P21. Although the Flack parameter indicated possible merohedral twinning, there are two molecules in the asymmetric unit related via a non-crystallographic inversion centre (the molecules differ primarily in the orientation of the pyridyl groups on the cyclic backbone, Fig. ESI-2). Thus the crystal inherently comprises an equal mixture of both left- and right-handed isomers. Since the final R values were acceptable and the refinement clearly reveals that the structure containing both 'hands' in a 1:1 ratio no attempt was made to resolve the twin since determination of the absolute structure is of limited chemical meaning. Figures for publication were prepared using Mercury version 3.3.8 A summary of crystallographic data is presented in Table ESI-1 and the final structures available in crystallographic cif format. CCDC deposit numbers 1043411-1043413.

Fig. ESI-2 The two crystallographically independent molecules of 4c in the asymmetric unit, illustrating the non-crystallographic mirror plane.

Computational studies

Single point and geometry-optimised DFT calculations were undertaken on the structure of **4b**·BF₃ as determined by X-ray diffraction using the Pople 6-311G* triple zeta basis set⁹ and the B3LYP functional¹⁰ within Jaguar.¹¹ Geometry optimisations were performed with bond elongation constraints along the N-BF₃ vector in 0.2Å increments but failed to reveal a transition state. The pK_b of **4c** was determined from the value derived using the quantum mechanical pK_a prediction module in Jaguar based on **4c**·H⁺ in water. NBO analysis was undertaken on **4b**.BF₃ and revealed strong polarisation of the B-N bonds in the sense B⁸⁺-N⁸⁻ in accord with electronegativity differences between B and N. The NBO analysis revealed significant delocalisation and both the partial charges and formal NBO bond orders in the bicyclic core are shown in ESI Fig. 3.

Fig. ESI-3 NBO charges (left) and bond orders (right) for 4b·BF₃

References

- 1. COLLECT, Nonius BV, Delft, The Netherlands
- Z. Otwinowski and W. Minor, Methods in Enzymology: Macromolecular Crystallography, Part A, 1997, 276, 307.
- R.H. Blessing, *Cryst. Rev.*, 1987, 1, 3. (b) R. H. Blessing and D. A. Langs, *J.Appl. Crystallogr.*, 1987, 20, 427.
- 4. Bruker SMART, Bruker AXS, Madison, WI, USA.
- 5. Bruker SAINT, Bruker AXS, Madison, WI, USA.
- 6. Bruker SADABS, Bruker AXS, Madison, WI, USA.
- 7. SHELXS/SHELXL, G.M. Sheldrick, Acta Cryst., 2008, A64, 112.
- 8. Mercury v.3.3, Build RC5, Cambridge Crystallographic Data Centre. http://www.ccdc.cam.ac.uk/mercury.
- K. Raghavachari, J.S. Binkley, R. Seeger and J.A. Pople, J. Chem. Phys., 1980, 72, 650.
- 10. C. Lee, W. Yang and R.G. Parr, Phys. Rev. B., 1988, 37, 785.
- 11. Jaguar v.8.5; Schrödinger LLC, New York, NY, 2014. http://www.schrodinger.com

Table ESI-1	Crystal data for compounds 4a HC1 THF, 4b BF3 and 4c HC1 THF

	4a·HCl·THF	4 b • BF ₃	4c·HCl·THF
Formula	C ₁₆ H ₂₀ BN ₂ ,C ₄ H ₈ O,Cl	$C_{12}H_9B_2F_5N_2$	C ₁₅ H ₁₉ BN ₃ ,C ₄ H ₈ O Cl
FW	358.70	297.83	359.71
Temp. (K)	240(2)	173(2)	180(2)
Crystal system	Monoclinic	Orthorhombic	Monoclinic
Space group	$P2_{I}/c$	Pbca	$P2_{I}$
a/Å	9.2150(2)	9.934(3)	9.38350(10)
<i>b</i> /Å	13.4773(3)	12.290(4)	12.8596(3)
c/Å	17.1221(4)	21.001(7)	16.6196(3)
$\alpha /^{\circ}$	90.00	90.00	90.00
β/°	97.697(2)	90.00	99.1807(12)
γ/°	90.00	90.00	90.00
$V/Å^3$	2107.29(8)	2564.0(14)	1979.77(6)
Ζ	4	8	4
$D_{c/Mg} \text{ m}^{-3}$	1.131	1.543	1.207
μ (Mo-K α)/ cm ⁻¹	0.191	0.142	0.204
Total reflections	21422	25423	25481
Unique Reflections	6052	2957	7194
Reflns $[I > 2\sigma(I)]$	3359	2480	6037
θ range	$3.76 \le \theta \le 29.98$	$1.94 \le \theta \le 27.88$	$2.69 \le \theta \le 26.37$
$R_{\rm int}$	0.055	0.052	0.051
$R_1^{a}, w R_2^{b}$	0.093, 0.179	0.048, 0.139	0.045, 0.106
Residual <i>e</i> /Å ³	+0.50/-0.48	+0.49/-0.20	+0.30/-0.34