Supplementary information

Rapid degradation of cyclic peroxides by titanium and antimony chlorides

Mark S. Bali^a, David Armitt^b, Lynne Wallace^a, Anthony I. Day*a.

^a School of Physical, Mathematical and Environmental Sciences, University of New South Wales at the Australian Defence Force Academy, Northcott Drive, Campbell ACT 2612, AUSTRALIA.

^b Weapons & Combat Systems Division, Defence Science and Technology Organisation, Edinburgh, Adelaide SA 5111 AUSTRALIA.

Table of Contents

	Figure
¹ H NMR of TPTP 1:3 TiCl ₄ Immediate reaction	S1
¹ H NMR of EP with TiCl ₄ Variable Temp	S2
¹ H NMR of 3P with TiCl ₄ Variable Temp	S3
¹ H NMR of TPTP 1:2 TiCl ₄ Variable Temp	S4
¹ H NMR of TPTP 1:2 TiCl ₄ reaction progression over days	S 5
¹ H NMR of TPTP 1:0.5 TiCl ₄ initial reaction progression	S6
¹ H NMR of TPTP 1:0.5 TiCl ₄ reaction progression over days	S 7
¹ H NMR of TPTP 1:0.5 TiCl ₄ reaction mixture, after 9 days –assigments of	S8
chlorinated products	
¹ H 2D NMR (HHgCOSY) 1:0.5 TiCl ₄ reaction mixture, after 9 days	S9
FT-IR of EP/3P with TiCl ₄	S10
FT-IR of reaction of TPTP with TiCl ₄ at $1:1/1:2/1:0.5$ in CH ₂ Cl ₂	S11
FT-IR of precipitate from reaction of TPTP with TiCl ₄ at 1:0.5 (KBr Disc)	S12

Fig. S2. ethyl propanoate (EP) 3:1 TiCl₄ – Variable Temp experiment

Fig. S4. TPTP 1:2 TiCl₄ – Variable Temp experiment

Fig. S5. TPTP 1:2 TiCl₄ (sealed 5 mm NMR tube sample over days) showing only trace chlorination product formation

Fig. S6. TPTP 1:0.5 TiCl₄ (sealed 10 mm NMR tube sample for collection of precipitate)

100min	"M			Mr.M.		Man	Mullinh	
90min	M			Mr.M.		M_m_	Mullinh	
80min	M			Mhm		M_m_	Mullinh	
70min	M			Mhm	M	Mann	Mr. Mr. M.	
60min	M			Mm	m	Mann	Mullim	
50min	M			Mm	······	Mm	Mr. Malle M	
40min				Mm	Mm	M_M_	MMMM	<u> </u>
30min				Mn	M	MM	MMM	
20min				M	M	m_rMm_	MMM	
10min				~	M	Mh	nnl	
	4.5 4.0	3.5	3.0 2	2.5	2.0	1.5	1.0	0.5 ppm

Fig. S7. TPTP 1:0.5 TiCl₄ (Sealed 5 mm NMR tube sample over days) showing significant chlorination product formation

Fig. S8. TPTP 1:0.5 TiCl₄ (sealed 5mm NMR tube sample after 9 days) with assigments of chlorinated products

A - 1-chloroethanol(?), Ref: No ref found, reasonable match with calculated spectra (Scifinder Scholar, ChemBioDraw ChemNMR)

B - 2-chloropropionyl chloride, Ref: M. Cocivera and A. Effio, J Org Chem, 1980, 45, 415-420.

C - 2-chloro-3-pentanone, Ref: M. Marigo, S. Bachmann, N. Halland, A. Braunton and K. A. Jorgensen, Angew Chem Int Edit, 2004, 43, 5507-5510.

D - ethyl propanoate, Ref: AIST, Spectral Database for Organic Compounds, Tsukuba, Japan, 2013.

E - 3-pentanone, Ref: AIST, Spectral Database for Organic Compounds, Tsukuba, Japan, 2013.

Fig. S9. TPTP 1:0.5 TiCl₄ (Sealed 5 mm NMR tube sample after 9 days - HHgCOSY) For confirmation characterisation of chlorination products by literature NMR shifts

Fig. S10. FT-IR of reactions of TiCl₄ with ethyl propanoate (EP) and 3-pentanone (3P). 1:1 molar ratio

Fig. S12. FT-IR of precipitate from reaction of TPTP with TiCl₄ 1:0.5, collected after 9 days (dried at 60°C *in vacuo*, 4 h)

