Molecular "Fingerhakel"* based on multiple $\boldsymbol{\pi}$-interactions
K. Ritter, ${ }^{a}$ C. Pehlken, ${ }^{a}$ D. Sorsche, ${ }^{a}$ and S. Rau ${ }^{a}$
Supplementary Information (27 pages total)

1. Pictures for elucidation of "Fingerhakel" 2
2. Concentration dependent ${ }^{1} \mathrm{H}$-NMR spectra 2
3. Peak assignment in the ${ }^{1} \mathrm{H}$-NMR spectra. 3
4. Comments on the modified methodology of the calculation K_{D} of Rutpphz 4
5. Details to the calculation on the dimerization constant K_{D} 5
6. Change of the photophysical properties of $\mathrm{tpphz}(\mathrm{tbp})_{2}$ 9
7. Details to the crystal stuctures 10

1. Pictures for elucidation of "Fingerhakel"

2. Concentration dependent ${ }^{\mathbf{1}} \mathbf{H}$-NMR spectra

Figure 1: concentration dependent ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{R u}(\mathbf{t b p})_{2} \mathbf{t p p h z}$ as a PF_{6} salt in Acitonitrile.

3. Peak assignment in the ${ }^{\mathbf{1}} \mathbf{H}$-NMR spectra

Figure 3: H-NMR of $\mathbf{R u}(\mathbf{t b p})_{2}$ tpphz $(20 \mathrm{mM})$ in Acitonitrile. The assignment of the signals was carried out with the aid of different NMR-techniques (COSY, HSQC, HMBC).

Figure 4: H-NMR of Rutpphz(tbp) $)_{2}(1.92 \mathrm{mM})$ in Acitonitrile. The assignment of the signals was carried out with the aid of different NMR-techniques (COSY, HSQC, HMBC) and analogy.

4. Comments on the modified methodology of the calculation K_{D} of Rutpphz

This publication introduces a different value for K_{D} of $\mathbf{R u t p p h z}\left(\mathrm{Ru}=\mathrm{Ru}^{2+}(\mathrm{tbbpy})_{2}\right.$, tbbpy $=4,4$ '-di-tert.-butyl-2,2'-bipyridine and tpphz $=$ tetrapyrido[3,2-a:2', 3'c:3', 2 '',- h:2'", $3^{\prime \prime \prime}$ j]phenazine) than the cited article in this publication (Ref. 5 of manuscript): $289 \pm 17 \mathrm{M}^{-1}$ (new) against $122 \pm 19 \mathrm{M}^{-1}$ (old). This deviation is caused by the use of more data points and a modification of the methodology of the calculation of the dimerization constant, which improves the accuracy of the calculation. The old value of the dimerization constant was produced by taking the average of the determined constants of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signals of two protons of the tpphz ligand, yielded from local non linear least squares fit curves. ${ }^{1,2}$ The disadvantages of this method are a relatively high standard error of 15.6% and the fact that the effect of the interaction is analyzed using only two protons. The concentration dependent ${ }^{1} \mathrm{H}$-NMR spectra of Rutpphz however show that the interaction influences the ppm value of nearly every proton. Thus the change of the signal position of more than two protons should be usable for the determination of the dimerization constant.

Consequently the new value was determined by the use of global non linear least squares curve fitting of the ${ }^{1} \mathrm{H}$-NMR signals of five protons. The use of this modified methodology together with more data points yielded a reduction of the percentage of the standard error from 15.6% to 5.9%. All other effects and details of this modification of the calculation methodology will be described and a separate publication, which is written at the time. The overall advantages of global fitting over local approaches are also described by P. Thordarson. ${ }^{3}$

[^0]
5. Details to the calculation on the dimerization constant K_{D}

Figure 5: Plot of the shift of the ppm values of the protons $\mathrm{c}^{\prime}, \mathrm{c}, \mathrm{a}^{\prime}, 6$, b^{\prime} and 5 of $\mathbf{R u}(\mathbf{t b p})_{2} \mathbf{t p p h z}$ versus the logarithm of the concentration of the complex. Extrapolation of the data points with a Boltzmann function yields the ppm values of the pure monomer $\left(\delta_{\mathrm{m}}\right)$ and the pure dimer $\left(\delta_{\mathrm{d}}\right) .^{4}$
$y=A 2+\frac{(A 1-A 2)}{\left(1+e^{\left(\frac{x-x_{0}}{d x}\right)}\right)}$
Fit statistics: reduced $\chi^{2}=4.77^{*} 10^{-5}$, adjusted $\mathrm{R}^{2}=1$.
Fit parameters: x_{0} is shared for all curves due to the global fit; $\mathrm{A} 1=\delta_{\mathrm{m}}, \mathrm{A} 2=\delta_{\mathrm{d}}$, $\mathrm{x}=\mathrm{c}\left(\mathbf{R u}(\mathbf{t b p})_{2} \mathbf{t p p h z}\right)$ and $\mathrm{y}={ }^{1} \mathrm{H}-\mathrm{NMR}$-shift. dx is adjusted during the fit.

[^1]

Figure 6: Plot of the shift of the ppm values of the protons $\mathrm{c}^{\prime}, \mathrm{c}, \mathrm{a}^{\prime}, 6$, b^{\prime} and 5 of $\mathbf{R u}(\mathbf{t b p})_{2} \mathbf{t p p h z}$ versus the concentration of the complex. The data points were treated with a least squares global fitting procedure using the following equation to yield the Dimerization constant $K_{D}=647 \pm 46 \mathrm{M}^{-1.5}$
$\delta_{o b s}=\delta_{m}+\left(\delta_{d}-\delta_{m}\right) \frac{\sqrt{1+8 K_{D}[M]}-1}{\sqrt{1+8 K_{D}[M]}+1}$
Fit statistics: reduced $\chi^{2}=0,00301$, adjusted $\mathrm{R}^{2}=0.99972$.
Fit parameters: K_{D} is shared for all curves due to the global fit; δ_{m} and δ_{d} were set as a constant for each proton using the values shown in Figure 5.

[^2]

Figure 7: Plot of the shift of the ppm values of the protons $\mathrm{c}, \mathrm{a}, 6, \mathrm{~b}$ and 5 of Rutpphz(tbp) $\mathbf{2}_{2}$ versus the logarithm of the concentration of the complex. Extrapolation of the data points with a Boltzmann function yields the ppm values of the pure monomer $\left(\delta_{\mathrm{m}}\right)$ and the pure dimer $\left(\delta_{\mathrm{d}}\right) .{ }^{4}$
$y=A 2+\frac{(A 1-A 2)}{\left(1+e^{\left(\frac{x-x_{0}}{d x}\right)}\right)}$
Fit statistics: reduced $\chi^{2}=1.55^{*} 10^{-4}$, adjusted $\mathrm{R}^{2}=0.99979$.
Fit parameters: x_{0} is shared for all curves due to the global fit; $\mathrm{A} 1=\delta_{m}$, $\mathrm{A} 2=\delta_{\mathrm{d}}$, $\mathrm{x}=\mathrm{c}\left(\right.$ Rutpphz $\left.(\mathbf{t b p})_{2}\right)$ and $\mathrm{y}={ }^{1} \mathrm{H}-\mathrm{NMR}$-shift. dx is adjusted during the fit.

Figure 8: Plot of the shift of the ppm values of the protons $\mathrm{c}, \mathrm{a}, 6, \mathrm{~b}$ and 5 of $\mathbf{R u t p p h z}(\mathbf{t b p})_{2}$ versus the concentration of the complex. The data points were treated with a least squares global fitting procedure using the following equation to yield the Dimerization constant $\mathrm{K}_{\mathrm{D}}=3634 \pm 176 \mathrm{M}^{-1.5}$
$\delta_{o b s}=\delta_{m}+\left(\delta_{d}-\delta_{m}\right) \frac{\sqrt{1+8 K_{D}[M]}-1}{\sqrt{1+8 K_{D}[M]}+1}$
Fit statistics: reduced $\chi^{2}=0.00125$, adjusted $\mathrm{R}^{2}=0.99832$.
Fit parameters: K_{D} is shared for all curves due to the global fit; δ_{m} and δ_{d} were set as a constant for each proton using the values shown in Figure 7.

6. Change of the photophysical properties of tpphz(tbp) $\mathbf{2}_{2}$

In an experiment we prepared a stock solution $(66.0 \mu \mathrm{~m})$ and measured immediately the absorptionand emission-properties $(5 \mu \mathrm{~m})$ (dashed line in figures below). The stock solution was held under ambient light for 15 d . Afterwards again the absorption and emission properties were measured (dotted line in the figures below).

The absorption bands at 273 nm and 330 nm decrease significantly and the fine structure of the bands between 350 nm and 400 nm disappears. The emission band at 473 nm decreases and a new emission band rises at 503 nm .

The reason for this behavior is not clear yet. One possible explanation could be a complicated aggregation processes in solution, maybe enhanced by the π-attraction, which leads to this change of photo physical properties. Further investigation into this interesting behavior is underway.

Left: Absorption spectra and right: emission spectra of phen $(\mathrm{tbp})_{2}$ (solid), tpphz(tbp) $)_{2}$ solution freshly prepared (dashed), tpphz $(\operatorname{tbp})_{2}$ after 15 d in solution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{DCM})$.

7. Details to the crystal stuctures

Table 1. Crystal data and structure refinement for $\mathbf{p h e n B r} \mathbf{O}_{2} \mathbf{O} \mathbf{X}$

Empirical formula	C15 H10 Br2 N2 O2
Formula weight	410.07
Temperature	150(2) K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$\mathrm{a}=6.9502(7) \AA \quad \alpha=82.560(7)^{\circ}$.
	$\mathrm{b}=10.2517(9) \AA \quad \beta=78.404(8)^{\circ}$.
	$\mathrm{c}=10.6485(9) \AA \quad \gamma=75.662(8)^{\circ}$.
Volume	717.54(12) \AA^{3}
Z	2
Density (calculated)	$1.898 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$5.653 \mathrm{~mm}^{-1}$
F(000)	400
Crystal size	$0.3807 \times 0.1388 \times 0.0429 \mathrm{~mm}^{3}$
Theta range for data collection	3.441 to 26.372°.
Index ranges	$-8<=\mathrm{h}<=8,-12<=\mathrm{k}<=10,-13<=\mathrm{l}<=13$
Reflections collected	5644
Independent reflections	2927 [$\mathrm{R}(\mathrm{int})=0.0317]$
Completeness to theta $=25.242^{\circ}$	99.7 \%
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2927 / 0/192
Goodness-of-fit on F^{2}	1.108
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0394, \mathrm{wR} 2=0.1080$
R indices (all data)	$\mathrm{R} 1=0.0474, \mathrm{wR} 2=0.1148$
Largest diff. peak and hole	1.027 and -0.758 e $\cdot \AA^{-3}$

Figure 9: ORTEP representation of phenBr $\mathbf{r}_{2} \mathbf{O}_{2} \mathbf{X}$, probability ellipsoids given at 50%.

Table 2. Crystal data and structure refinement for $\mathbf{p h e n}(\mathbf{t b p})_{2} \mathbf{O}_{\mathbf{2}} \mathbf{X}$

Empirical formula	C36 H37 Cl3 N2 O2
Formula weight	636.02
Temperature	150(2) K
Wavelength	1.54184 A
Crystal system	Triclinic
Space group	$P-1$
Unit cell dimensions	$a=10.9557(7) \AA \quad \alpha=104.299(5)^{\circ}$.
	$\mathrm{b}=11.8569(7) \AA \quad \beta=109.647(6)^{\circ}$.
	$\mathrm{c}=14.1102(9) \AA \quad \gamma=95.094(5)^{\circ}$.
Volume	1642.82(19) \AA^{3}
Z	2
Density (calculated)	$1.286 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.792 \mathrm{~mm}^{-1}$
F(000)	668
Crystal size	$0.3391 \times 0.1704 \times 0.151 \mathrm{~mm}^{3}$
Theta range for data collection	7.593 to 73.963°.
Index ranges	$-13<=\mathrm{h}<=12,-14<=\mathrm{k}<=14,-17<=1<=17$
Reflections collected	11349
Independent reflections	$6421[\mathrm{R}(\mathrm{int})=0.0188]$
Completeness to theta $=67.684^{\circ}$	99.5 \%
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	6421 / 0 / 420
Goodness-of-fit on F^{2}	1.028
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0561, \mathrm{wR} 2=0.1450$
R indices (all data)	$\mathrm{R} 1=0.0588, \mathrm{wR} 2=0.1474$
Largest diff. peak and hole	1.322 and $-0.537 \mathrm{e} \cdot \AA^{-3}$

Figure 10: ORTEP representation of $\mathbf{p h e n}(\mathbf{t b p})_{2} \mathbf{O}_{\mathbf{2}} \mathbf{X}$, probability ellipsoids given at 50%.

Table 3. Crystal data and structure refinement for phen(tbp) 2 $_{\text {. }}$

Empirical formula	C32 H32 N2
Formula weight	444.59
Temperature	180(2) K
Wavelength	1.54178 A
Crystal system	Monoclinic
Space group	$P 2{ }_{1} / \mathrm{n}$
Unit cell dimensions	$\mathrm{a}=16.2831(12) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=9.4620(5) \AA \quad \beta=115.158(8)^{\circ}$.
	$\mathrm{c}=17.5232(11) \AA \quad \gamma=90^{\circ}$.
Volume	2443.7(3) \AA^{3}
Z	4
Density (calculated)	$1.208 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.531 \mathrm{~mm}-1$
F(000)	952
Crystal size	$0.2384 \times 0.0985 \times 0.0427 \mathrm{~mm}^{3}$
Theta range for data collection	7.604 to 74.114°.
Index ranges	$-20<=\mathrm{h}<=16,-11<=\mathrm{k}<=11,-21<=1<=21$
Reflections collected	10148
Independent reflections	$4800[\mathrm{R}(\mathrm{int})=0.0306]$
Completeness to theta $=67.679^{\circ}$	99.6\%
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4800 / 0 / 335
Goodness-of-fit on F^{2}	1.037
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0670, \mathrm{wR} 2=0.1870$
R indices (all data)	$\mathrm{R} 1=0.0980, \mathrm{wR} 2=0.2194$
Largest diff. peak and hole	0.486 and $-0.231 \mathrm{e} \cdot \AA^{-3}$

Figure 11: ORTEP representation of phen(tbp) $)_{2}$, probability ellipsoids given at 50%. The tert-butyl group on the right-hand side is calculated on two alternative conformations.

Table 4. Crystal data and structure refinement for $\mathbf{p h e n}(\mathbf{t b p})_{2} \mathbf{O}_{2}$.

Empirical formula	C32 H30 N2 O2
Formula weight	474.58
Temperature	150(2) K
Wavelength	1.54178 £
Crystal system	Triclinic
Space group	$P-1$
Unit cell dimensions	$\mathrm{a}=6.3897(4) \AA \quad \alpha=97.594(6)^{\circ}$.
	$\mathrm{b}=10.1543(7) \AA \quad \beta=91.675(5)^{\circ}$.
	$\mathrm{c}=19.0511(13) \AA \quad \gamma=92.920(6)^{\circ}$.
Volume	$1222.85(14) \AA^{3}$
Z	2
Density (calculated)	$1.289 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.630 \mathrm{~mm}^{-1}$
F(000)	504
Crystal size	$0.2878 \times 0.077 \times 0.048 \mathrm{~mm}^{3}$
Theta range for data collection	7.412 to 73.739°.
Index ranges	$-7<=\mathrm{h}<=7,-12<=\mathrm{k}<=10,-23<=1<=23$
Reflections collected	14141
Independent reflections	$4802[\mathrm{R}(\mathrm{int})=0.0317]$
Completeness to theta $=67.679^{\circ}$	99.7 \%
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4802 / 0 / 325
Goodness-of-fit on F^{2}	1.079
Final R indices [$\mathrm{I} \times 2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0467, \mathrm{wR} 2=0.1165$
R indices (all data)	$\mathrm{R} 1=0.0653, \mathrm{wR} 2=0.1285$
Largest diff. peak and hole	0.241 and $-0.192 \mathrm{e} \cdot \AA^{-3}$

Figure 12: ORTEP representation of $\mathbf{p h e n}(\mathbf{t b p})_{2} \mathbf{O}_{2}$, probability ellipsoids given at 50

Table 5. Crystal data and structure refinement for $\mathbf{t p p h z}(\mathbf{t b p})_{2}$.

Empirical formula	C47 H42 Cl6 N6
Formula weight	903.56
Temperature	180(2) K
Wavelength	1.54178 A
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$\mathrm{a}=7.6741(4) \AA \quad \alpha=73.800(4)^{\circ}$.
	$\mathrm{b}=15.7010(6) \AA \quad \beta=88.093(4)^{\circ}$.
	$\mathrm{c}=19.5176(8) \AA \quad \gamma=86.939(4)^{\circ}$.
Volume	2254.68(18) \AA^{3}
Z	2
Density (calculated)	$1.331 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$3.790 \mathrm{~mm}^{-1}$
F(000)	936
Crystal size	$0.1408 \times 0.0925 \times 0.044 \mathrm{~mm}^{3}$
Theta range for data collection	7.397 to 74.491°.
Index ranges	$-9<=\mathrm{h}<=9,-14<=\mathrm{k}<=19,-23<=\mathrm{l}<=24$
Reflections collected	22502
Independent reflections	$9194[\mathrm{R}(\mathrm{int})=0.0424]$
Completeness to theta $=67.679^{\circ}$	99.7 \%
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	9194 / 0 / 542
Goodness-of-fit on F^{2}	1.114
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0730, \mathrm{wR} 2=0.2191$
R indices (all data)	$\mathrm{R} 1=0.0945, \mathrm{wR} 2=0.2337$
Largest diff. peak and hole	1.090 and $-0.514 \mathrm{e} \cdot \AA^{-3}$

Figure 13: ORTEP representation of $\mathbf{t p p h z}(\mathbf{t b p})_{2}$, probability ellipsoids given at 50%. The anisotropic parameters of the C -atoms in the tert.-butyl- are enlarged due to structural disorder. The phenyl substituent on the left-hand side is calculated in two alternative conformations with respect to their twist relative to the adjacent pyridyl moiety.

Table 6. Crystal data and structure refinement for $\mathbf{R u} \mathbf{(t b p})_{\mathbf{2}} \mathbf{t p p h z}$.

Empirical formula	C96 H108 F12 N18 P2 Ru
Formula weight	1905.01
Temperature	180(2) K
Wavelength	$1.54178 \AA$
Crystal system	Monoclinic
Space group	C 2/c
Unit cell dimensions	$a=51.8116(7) \AA \quad \alpha=90^{\circ}$.
	$b=15.1574(2) \AA \quad \beta=91.5900(10)^{\circ}$.
	$\mathrm{c}=25.2431(3) \AA \quad \gamma=90^{\circ}$.
Volume	19816.5(4) \AA^{3}
Z	8
Density (calculated)	$1.277 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.222 \mathrm{~mm}^{-1}$
F(000)	7936
Crystal size	$0.2072 \times 0.1366 \times 0.0946 \mathrm{~mm}^{3}$
Theta range for data collection	7.452 to 72.564°.
Index ranges	$-47<=\mathrm{h}<=62,-18<=\mathrm{k}<=18,-31<=\mathrm{l}<=30$
Reflections collected	56735
Independent reflections	$19053[\mathrm{R}(\mathrm{int})=0.0289]$
Completeness to theta $=67.679^{\circ}$	99.3 \%
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	19053 / 6 / 991
Goodness-of-fit on F^{2}	0.780
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0495, \mathrm{wR} 2=0.1341$
R indices (all data)	$\mathrm{R} 1=0.0675, \mathrm{wR} 2=0.1472$
Largest diff. peak and hole	0.725 and $-0.588 \mathrm{e} \cdot \AA^{-3}$

Figure 14: ORTEP representation of $\mathbf{R u}(\mathbf{t b p})_{2} \mathbf{t p p h z}$, probability ellipsoids given at 50%. The anisotropic parameters of the C -atoms in the tert.-butyl-groups and of the F -atoms in the PF_{6}-anion are enlarged due to structural disorder.

Table 7. Crystal data and structure refinement for Rutpphz(tbp) ${ }_{2}$.

Empirical formula	C85.50 H95 Cl11 F12 N10 P2 Ru
Formula weight	2043.67
Temperature	150(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	C 2/c
Unit cell dimensions	$\mathrm{a}=45.6046(9) \AA \quad \alpha=90^{\circ}$.
	$b=22.1737(4) \AA \quad \beta=116.956(3)^{\circ}$.
	$\mathrm{c}=21.5480(6) \AA \quad \gamma=90^{\circ}$.
Volume	19422.5(9) \AA^{3}
Z	8
Density (calculated)	$1.398 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.567 \mathrm{~mm}^{-1}$
F(000)	8376
Crystal size	$0.122 \times 0.1019 \times 0.0639 \mathrm{~mm}^{3}$
Theta range for data collection	3.408 to 26.372°.
Index ranges	$-56<=\mathrm{h}<=56,-27<=\mathrm{k}<=26,-26<=\mathrm{l}<=24$
Reflections collected	62965
Independent reflections	$19815[\mathrm{R}($ int $)=0.0580]$
Completeness to theta $=25.242^{\circ}$	99.7 \%
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	19815 / 0 / 1037
Goodness-of-fit on F^{2}	0.985
Final R indices [$\mathrm{I}>2$ sigma(I)]	$\mathrm{R} 1=0.0531, \mathrm{wR} 2=0.1383$
R indices (all data)	$\mathrm{R} 1=0.0793, \mathrm{wR} 2=0.1510$
Largest diff. peak and hole	0.608 and -0.496 e \AA^{-3}

Figure 15: ORTEP representation of Rutpphz(tbp) $)_{2}$, probability ellipsoids given at 50%. The anisotropic parameters of the C -atoms in the tert.-butyl-groups, of the F -atoms in the hexafluorophosphate-anion and of the Cl -atoms in dichloromethane are enlarged due to structural disorder.

Table 8. Crystal data and structure refinement for $\mathbf{R u}(\mathbf{t b p})_{2} \mathbf{t p p h z R u}$

Empirical formula	C143.50 H198 F24 N14 O5.50 P4 Ru2
Formula weight	2989.17
Temperature	150(2) K
Wavelength	1.54178 Å
Crystal system	Monoclinic
Space group	I $2 / \mathrm{a}$
Unit cell dimensions	$\mathrm{a}=19.8215(8) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=44.8370(12) \AA \quad \beta=106.727(3)^{\circ}$.
	$\mathrm{c}=19.8740(5) \AA \quad \gamma=90^{\circ}$.
Volume	16915.4(10) \AA^{3}
Z	4
Density (calculated)	$1.174 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.450 \mathrm{~mm}^{-1}$
$F(000)$	6260
Crystal size	$0.2754 \times 0.1604 \times 0.1417 \mathrm{~mm}^{3}$
Theta range for data collection	7.480 to 74.464°.
Index ranges	$-24<=\mathrm{h}<=14,-56<=\mathrm{k}<=52,-23<=\mathrm{l}<=22$
Reflections collected	26007
Independent reflections	$14622[\mathrm{R}($ int $)=0.0349]$
Completeness to theta $=67.679^{\circ}$	86.3 \%
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	14622 / 46 / 977
Goodness-of-fit on F^{2}	1.062
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0658, \mathrm{wR} 2=0.1932$
R indices (all data)	$\mathrm{R} 1=0.0926, \mathrm{wR} 2=0.2178$
Largest diff. peak and hole	0.978 and -0.669 e \AA^{-3}

Figure 16: ORTEP representation of $\mathbf{R u}(\mathbf{t b p})_{2}$ tpphzRu, probability ellipsoids given at 50%. The anisotropic parameters of the C -atoms in the tert.-butyl-groups and of the F -atoms in the PF_{6}-anion are enlarged due to structural disorder. The tert-butylphenyl substituents can be found on either side of the bridging ligand with respect to the crystal packing. Adjacent PF_{6}-anions are found on different positions in the lattice accordingly.

Table 9. Crystal data and structure refinement for $\mathbf{R u}(\mathbf{t b p})_{2} \mathbf{p h e n}$.

Empirical formula	C75 H90.50 F12 N9.50 P2 Ru
Formula weight	1516.07
Temperature	180(2) K
Wavelength	1.54178 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$a=15.7991(4) \AA \quad \alpha=104.461(2)^{\circ}$.
	$\mathrm{b}=16.8342(4) \AA \quad \beta=116.670(3)^{\circ}$.
	$\mathrm{c}=16.8521(5) \AA \quad \gamma=92.680(2)^{\circ}$.
Volume	3812.4(2) \AA^{3}
Z	2
Density (calculated)	$1.321 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.711 \mathrm{~mm}^{-1}$
F(000)	1578
Crystal size	$0.2341 \times 0.1185 \times 0.0612 \mathrm{~mm}^{3}$
Theta range for data collection	7.407 to $74.493{ }^{\circ}$.
Index ranges	$-19<=\mathrm{h}<=15,-20<=\mathrm{k}<=20,-19<=\mathrm{l}<=21$
Reflections collected	42405
Independent reflections	$15533[\mathrm{R}($ int $)=0.0357]$
Completeness to theta $=67.679^{\circ}$	99.7 \%
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	15533 / 0 / 979
Goodness-of-fit on F^{2}	1.039
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0430, \mathrm{wR} 2=0.1126$
R indices (all data)	$\mathrm{R} 1=0.0499, \mathrm{wR} 2=0.1200$
Largest diff. peak and hole	1.138 and $-0.824 \mathrm{e} \cdot \AA^{-3}$

Figure 17: ORTEP representation of $\mathbf{R u}(\mathbf{t b p})_{2} \mathbf{p h e n}\left(\mathbf{P F}_{6}\right)_{2}$, probability ellipsoids given at 50%. The anisotropic parameters of the C -atoms in the tert.-butyl-groups and of the F -atoms in the PF_{6}-anion are enlarged due to structural disorder. One molecule of water is distributed between two alternative positions.

[^0]: ${ }^{1}$ V. Steullet and D. W. Dixon, Chem. Soc., Perkin Trans. 2, 1999, 1547.
 ${ }^{2}$ N. R. de Tacconi, R. Chitakunye, F. M. MacDonnell and R. O. Lezna, J. Phys. Chem. A, 2008, 112, 497.
 ${ }^{3}$ P. Thordarson, Chem. Soc. Rev., 2011, 40, 1305.

[^1]: ${ }^{4}$ V. Steullet and D. W. Dixon, Chem. Soc., Perkin Trans. 2, 1999, 1547.

[^2]: ${ }^{5}$ J.-S. Chen and R. B. Shrits, The Journal of Physical Chemistry, 1985, 89, 1643.

