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X-ray crystallography

Crystallographic and structure refinement data are given in Table S1. A single crystal of 2 was
mounted on a glass fibre using Paratone-N oil. All measurements were made on a Rigaku Saturn CCD
area detector with graphite monochromated Mo-K[J radiation solved on an AFC8-Saturn 70 single
crystal X-ray diffractometer from Rigaku, equipped with an X-stream 2000 low temperature system.
Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Direct
Methods and refined with the ShelXL [3] refinement package using Least Squares minimisation.

Raw data images from the diffraction experiment were converted from Rigaku format to Bruker
format via the program Eclipse (Parsons, Simon. 2010. ECLIPSE — Program for masking high pressure
diffraction images and conversion between CCD image formats) for inspection, integration and scaling
using APEX2 software (Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.) The
program Cell Now (Sheldrick, G. M. (2004). CELL NOW. University of Goéttingen, Germany) was
used to search for twin domains and returned four twin orientations. Upon inspection of the raw data
frames it was determined that these four orientations were not twin domains but rather represented four
unique orientations of the crystal for each run of the data collection. This is consistent with reports that
the diffractometer used for data collection experienced slippage of the y axis during data collections,
resulting in shifting crystal orientation relative to the goniometer zeroes. Two of the orientations were
similar enough that those two runs (Runs 1 and 3) could be integrated using the same orientation
matrix. The other two runs were integrated separately, each with its own orientation matrix. After
integration, the refined unit cell used for Runs 1 and 3 was used as the true unit cell. All four runs were
scaled and corrected for absorption together using the program SADABS (Bruker (2001). SADABS.
Bruker AXS Inc., Madison, Wisconsin, USA) to produce a merged, scaled HKLF file which was used
for structure solution.

H-atoms were introduced in calculated positions, and refined on a riding model. All non-hydrogen
atoms were refined anisotropically. One of the #-butyl groups was disordered with two orientations.
These were refined as PARTs witth PART 1 = C26-C28 (and corresponding H-atoms) with occupancy
=0.508(8); PART 2 = C29-C31 (and corresponding H-atoms) with occupancy = 0.492(8). Distance and
anisotropic restraings (RIGU and SADI) were applied to this group.

The OLEX2 [1] solvent masking routine was applied to recover 56.6 electrons per unit cell in two
voids. An area of disperse electron density appeared to be present prior to the solvent masking,
however, a good point atom model could not be achieved for this, and the content was not accounted
for in the formula (or resulting intensive properties). The application of the solvent mask gave a good
improvement in the data statistics and allowed for a full anisotropic refinement of the framework
structure.
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Table S1. Crystallographic and structure refinement data for 2

Compound
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group

a/A

b/A

c/A

o

o/
pre

v/°

Volume/A3

Z

Peateg/cM’

wmm-!

F(000)

Crystal size/mm?

Radiation

20 range for data collection/°
Index ranges

Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F?

Final R indexes [[>=2c (I)]
Final R indexes [all data]
Largest diff. peak/hole / e A3
CCDC Reference Number

“ Ry = X(|F| ~ [F)/ TFol): wRs = [E(W(ES ~ F2P) Tw(ERP'2,

2

CssHgaMgoN4O,4
925.89

163(2)
monoclinic

C2/c

31.345(14)
9.706(5)
25.551(12)

90

113.998(14)

90

7102(6)

4

0.866

0.070

2016.0

0.20 x 0.20 x 0.20
MoKa (A =10.71073)
4.432 t0 52.876

-38<h<38,-12<k<10,-31 <1<31

31988

7246 [Rin; = 0.0748, Rgigma = 0.0820]

7246/15/339

0.985

R;=0.0784, wR, =0.2128
R;=0.1222, wR, = 0.2416
0.41/-0.38

1043113
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Fig. S1. MALDI-TOF mass spectrum of complex 1 with theoretical and experimental representation of
the isotopic distribution pattern of both the monomer and the dimer ions.
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Fig. S2. MALDI-TOF mass spectrum of complex 2.
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Fig S3. Conversion (%) vs. time for the ROP of rac-LA initiated by 1 under the conditions described in
Table 1, entry 3.
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Fig. S4. MALDI-TOF mass spectrum of PLA produced by 1 according to Table 1, entry 1.
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Fig. S5 Top: Expanded region (m/z 830 — 1160, n = 54 - 61) of the spectrum with modelled theoretical
polymer peaks. Bottom: Expanded region of series (b) with modelled theoretical polymer peaks and
possible structures of the polymers based on the calculations shown.
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a)

Fig. S6. Physical appearance of polylactide obtained (a) without BnOH, Table 1, entry 3 and (b) with
BnOH, Table 1, entry 4.

b)
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Fig. S7. Top: DSC third heating curve of the polymer obtained using the conditions of Table 1, entry 3
(without BnOH). Bottom: DSC third heating curve of the polymer obtained using the conditions of
Table 1, entry 4 (with BnOH).
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Fig. S8A. TGA curves of polymers obtained, Top: without BnOH using the conditions of Table 1,
entry 3. Bottom: With BnOH using the conditions of Table 1, entry 4. Scan rate of 10 °C/min.
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Fig. S8B. TGA curves of polymers obtained, Top: without BnOH using the conditions of Table 1, entry
3. Bottom: With BnOH using the conditions of Table 1, entry 4. Scan rate of 5 °C/min.
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Fig. S9. 'H{'H}-NMR spectrum of the PLA methine region obtained from rac-lactide catalyzed by 1
according to conditions in Table 1, entry 1.
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Fig. S10. Plot of In[LA]¢/[LA]; vs. time, [LA]o/[Mg]o = 100, in toluene at 90 °C according to the
conditions in Table 3, entry 1.
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Fig. S11. Activity vs ¢ plot for rac-lactide ROP according to the conditions described in Table 3, entry
1.
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Fig. S12. Stacked 'H-NMR spectra of polymerization of rac-lactide by 2 in presence of iPrOH co-
initiator ([LA]:[Mg]:[ROH] = 100:1:1) at 90 °C in toluene (Table 3, entry 1).
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Fig. S13. Plot of In[LA]¢/[LA]; vs. time, [LA]¢/[Mg]o = 100, in toluene at 90 °C according to the

conditions in Table 3, entries 3 (top) and 4 (bottom).
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Fig. S14. 'H NMR spectra of complex 2 (bottom) and 1:1 mixture of BnOH co-initiator with complex
2 (top) in toluene-dg at 363 K.
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