SUPPLEMENTARY DATA

Table 1. The relative energies, vibrational frequencies and bond lengths of $[B_5O_6(OH)_4]^-$ monomer when modelled at B3LYP/6-311++G(*d*,*p*) in the gas phase. Relative energies and vibrational frequencies are quoted to the nearest whole number.

Conformer ^a	Point Group	Relative Energy (kJ mol ⁻¹)	Lowest Vibrational Frequency (cm ⁻¹)	v _{OH} (cm ⁻¹)	Bond Length r _{OH} (Å)
iiii	D _{2d}	0	37	3869-3870	0.962
iiio	C ₁	4	35	3868-3873	0.962 (<i>i</i>) 0.961 (<i>o</i>)
oiio	C ₂	8	35	3868-3873	0.962 (<i>i</i>) 0.961 (<i>o</i>)
ooii	C_{2v}	11	33	3870-3878	0.962 (<i>i</i>) 0.961 (<i>o</i>)
<i>000i</i>	C ₁	15	33	3868-3878	0.962 (<i>i</i>) 0.961 (<i>o</i>)
0000	D _{2d}	22	33	3877-3878	0.961

^a *i* and *o* relate to the position of the OH groups, where *i* denotes the OH pointing in, towards the tetrahedral B centre, and *o* denotes the OH group pointing out, away from the tetrahedral B centre.

Table 2. The relative energies, vibrational frequencies and bond lengths of $[B_5O_6(OH)_4]^-$ monomer when modelled at B3LYP/6-311++G(*d*,*p*) using a PCM implicit solvent model. Relative energies and vibrational frequencies are quoted to the nearest whole number.

Conformer ^a	Point Group	Relative Energy (kJ mol ⁻¹)	Lowest Vibrational Frequency (cm ⁻¹)	$\frac{v_{OH}}{(cm^{-1})}$	Bond Length r _{OH} (Å)
iiii	D _{2d}	0	33	3853	0.963
iiio	C ₁	1	32	3852-3854	0.963
oiio	C ₂	2	33	3853-3854	0.963
ooii	C_{2v}	2	32	3853-3855	0.963
oooi	C ₁	3	31	3853-3855	0.963
0000	D _{2d}	5	31	3854-3855	0.963

^a *i* and *o* relate to the position of the OH groups, where *i* denotes the OH pointing in, towards the tetrahedral B centre, and *o* denotes the OH group pointing out, away from the tetrahedral B centre.

Table 3. The binding energies of $[B_5O_6(OH)_4H]_n$ polymers (n = 2, 3) when modelled at B3LYP/6-311++G(d,p) using neutral pentaborate monomers (formed by protonating the γ O atom distal to the H-bonding). Binding energies are quoted to the nearest whole number.

Species	Point Group	Energy of monomer (x10 ³ kJ mol ⁻¹)	Absolute Energy of polymer (x10 ³ kJ mol ⁻¹)	Binding Energy (kJ mol ⁻¹)	Energy per H-bond (kJ mol ⁻¹)
[B ₅ O ₆ (OH) ₄]H <i>iiii</i>	C_{2v}	-2311.9153	-4623.8365	0	0
[B ₅ O ₆ (OH) ₄]H <i>iiio</i>	C ₁	-2311.9183	-4623.8305	0	0
$R_2^2(8) \alpha^a$	C _{2h}	-2311.9153	-4623.9065	-76	-32
$R_2^2(8) \alpha^b$	C_{2v}	-2311.9153	-6935.8843	-139	-32
$R_2^2(12) \beta^c$	C_{2h}	-2311.9183	-4623.8669	-30	-15
C(8) β	C_1	1) -2311.9153 2) -2311.9183	-4623.8457	-12	-12
$R_2^2(8) \gamma$	C _{2h}	-2311.9183	-4623.8713	-34	-17

^aThis dimer was found to contain two additional O---O interactions (3.092 Å) between the protonated O atom of one monomer to the O atom within the R_2^2 (8) ring of the other monomer. ^b This molecule is a trimer which was found to have no bending of the boroxole rings on the central pentaborate unit and comprised of 4 H-bond and 2 O---O interactions. This energy of the O---O interaction (-7 kJ mol⁻¹) was evaluated from a series of simultaneous linear equations. ^c This dimer was found to contain an additional interaction between the two central O atoms (3.008 Å) within the 12-membered ring, however it's energy could not be calculated.

Table 4. The binding energies, dimerization type and bond lengths of $[B_5O_6(OH)_4]_2^{2-}$ dimers when modelled at B3LYP/6-311++G(*d*,*p*) using a PCM implicit solvent model. Binding energies are quoted to the nearest whole number.

Dimerization reciprocal	Point Group	Dimerization type	Number of H-	Binding Energy	(ic distance Å)
position	-		bonds	$(kJ mol^{-1})$	r _{OH}	r _{OHO}
α	Ci	$R_2^2(8)$	2	-21	1.773	2.755
β	C ₁	$R_2^2(12)$	2	-10	1.973	2.941ª
β	C ₁	C(8)	1	-16	1.846	2.814
γ	C _{2h}	$R_2^2(8)$	2	-16	1.849	2.825

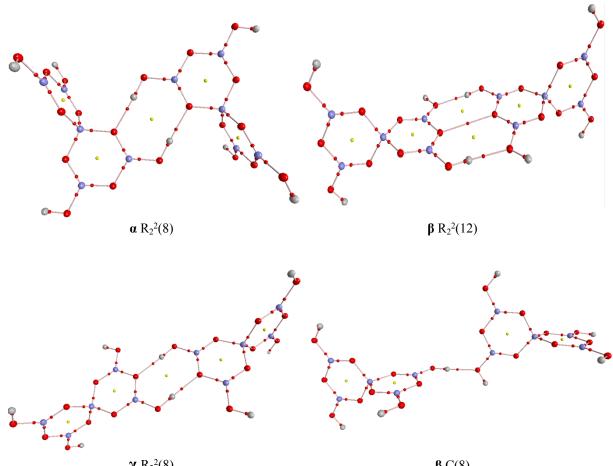
^a This dimer was found to contain an additional interaction between the two central O atoms (3.043 Å) within the 12-membered ring.

Reciprocal dimer	Interacting Bond Length r _{OH} (Å)	Non- interacting Bond Length r _{OH} (Å)	Lowest Vibrational Frequency (cm ⁻¹)	Number of interacting OH	v _{OH} (interacting) (cm ⁻¹)	v _{OH} (non- interacting) (cm ⁻¹)
$\boldsymbol{\alpha} \operatorname{R}_2^2(8)$	0.983	0.963	11	2	3422-3451	3851-3854
$\beta R_2^2(12)$	0.974	0.963	8	2	3635-3638	3851-3853
β C(8)	0.975	a) 0.963 b) 0.964 ^a	4	1	a)3596 b) 3589ª	3852-3853
$\gamma R_2^2(8)$	0.976	0.963	7	2	3563-3581	3853-3854

Table 5. The frequencies and bond lengths of the OH bonds of $[B_5O_6(OH)_4]_2^{2-}$ dimers when modelled at B3LYP/6-311++G(*d*,*p*) using a PCM implicit solvent model. Frequencies are quoted to the nearest whole number.

^a Proton accepting OH

Table 6. The geometries of the dimerization motifs of $[B_5O_6(OH)_4]_2^{2-}$ dimers when modelled at B3LYP/6-311++G(*d*,*p*) using a PCM implicit solvent model.


Reciprocal dimer	Interatomic distance r _{OH} (Å)	OH ^b O ^c angle (°)	BOH ^b angle (°)	BO ^c H ^b angle (°)
$\alpha R_2^2(8)$	1.773	178.14	113.92	121.70
$\beta R_2^2(12)$	1.973	171.83	113.05	125.23
$\beta^{a} R_{2}^{2}(12)$	1.973	172.93	113.00	124.86
β C(8)	1.846	171.52	114.27	128.96
$\gamma R_2^2(8)$	1.849	178.08	114.57	124.61

^a The $\beta R_2^2(12)$ dimer was found to be asymmetric, ^b donor atom, ^c acceptor atom.

unury515.			Atomic Un	its (a.u.)				
Reciprocal dimer	Bond	$\rho_b{}^b$	$\lambda_1^{\ c}$	λ ₂ °	$\lambda_3 c$	$\nabla^{2}\left(\rho_{b}\right)_{d}$	Character ^e	εf
$(\mathbf{p}, \mathbf{p}, 2(0))$	O-H*	0.336	-1.683	-1.673	1.013	-2.342	А	0.006
$\boldsymbol{\alpha} \operatorname{R}_2^2(8)$	ОН	0.037	-0.060	-0.056	0.237	0.121	В	0.058
	O-H*	0.347	-1.736	-1.723	1.019	-2.440	А	0.007
$\beta R_2^2(12)$	ОН	0.022	-0.030	-0.028	-0.140	0.082	В	0.087
	OO	0.008	-0.007	-0.006	-0.039	0.026	В	0.142
(10)	O-H*	0.347	-1.735	-1.723	1.019	-2.439	А	0.007
$\beta^{a} R_{2}^{2}(12)$	ОН	0.022	-0.030	-0.028	0.140	0.082	В	0.085
0 (2(0))	O-H*	0.345	-1.734	-1.722	1.031	-2.425	А	0.007
β C(8)	ОН	0.030	-0.045	-0.042	0.196	0.109	В	0.059
- 2.403	О-Н*	0.344	-1.726	-1.714	1.027	-2.413	А	0.007
$\gamma R_2^2(8)$	ОН	0.030	-0.046	-0.043	0.195	0.106	В	0.066

Table 7. A summary of the electron density and bond character of $[B_5O_6(OH)_4]_2^{2-}$ dimers found in QTAIM analysis.

^a The β R₂²(12) dimer was found to be asymmetric but close to the idealized C₂ symmetry, ^b Electron density at the BCP, ^c Eigenvalues of Hessian, ^d Laplacian of the electron density at the BCP, ^e A = covalent, highly polar, B = "closed-shell", ^f Bond ellipticity, * Atom involved in hydrogen bonding.

 $\begin{array}{c} \gamma \ R_2{}^2(8) & \beta \ C(8) \\ \mbox{Figure 1. The four dimerization types of } [B_5O_6(OH)_6]_2{}^2{}^2 \ \mbox{under QTAIM analysis. Any BCPs (small red balls), } RCPs (small yellow balls) and bond paths are displayed. H---O and O---O interactions are indicated. \end{array}$