Supporting Information

Bis(phenolate)amine-supported lanthanide borohydride complexes for styrene and *trans*-1,4-isoprene (co-)polymerisations.

Fanny Bonnet,*^{*a*}, Hellen E. Dyer,^{*b*} Yassine El Kinani,^{*a*} Carin Dietz,^{*c*} Pascal Roussel,^{*a*} Marc Bria,^{*d*} Marc Visseaux,^{*a*} Philippe Zinck ^{*a*} and Philip Mountford.*^{*b*}

^{*a*} Unité de Catalyse et de Chimie du Solide, CNRS, University of Lille 1, Science and Technology, 59655 Villeneuve d'Ascq, France. E-mail : <u>fanny.bonnet@ensc-lille.fr</u>

^b Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK. E-mail: <u>philip.mountford@chem.ox.ac.uk</u>

^{*c*} Laboratory of Polymer Chemistry, Department of Chemical Engineering and Chemistry, University of Technology Eindhoven, Den Dolech 2, Helix, STO 1.37, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

^{*d*} Centre Commun de Mesure RMN, University of Lille 1, Science and Technology, 59655 Villeneuve d'Ascq, France.

Figure SI1. SEC traces of *trans*-polyisoprene synthesized with catalyst **3-Nd** (run 7, table 1). $M_n = 15330$ g.mol⁻¹ (corrected with coefficient 0.5 [SI1]) and D = 1.62.

[SI1] P. Zinck, M. Terrier, A. Mortreux and M. Visseaux, Polymer Testing, 2009, 28, 106.

Figure SI2. SEC traces of polystyrene synthesized with catalyst **4-Sm** (run 11, table 2). $M_n = 34800 \text{ g.mol}^{-1}$ and D = 1.58.

Figure SI3. Experimental and simulated MALDI-ToF mass spectra of the polystyrene (PS) formed with $Sm(O_2N^{py})(BH_4)(THF)$ (**1-Sm**). (a) Expansion of experimental spectrum in the range m/z = 2479-2589 amu. (b) Calculated spectrum for H-terminated PS. (c) Calculated spectrum for Et-terminated PS. (d) Calculated spectrum for Bu-terminated PS. (e) Calculated spectrum for Et and Bu-terminated PS. (f) Calculated spectrum for Me and Et-terminated PS. (g) Calculated spectrum for Me and Bu-terminated PS.

Figure SI4. Experimental and simulated MALDI-ToF mass spectra of the polystyrene (PS) formed with $Sm(O_2N^{OMe})(BH_4)(THF)$ (**2-Sm**). (a) Expansion of experimental spectrum in the range m/z = 2479-2579 amu. (b) Calculated spectrum for H-terminated PS. (c) Calculated spectrum for Et-terminated PS. (d) Calculated spectrum for Bu-terminated PS. (e) Calculated spectrum for Et and Bu-terminated PS.

Figure SI5. Experimental and simulated MALDI-ToF mass spectra of the polystyrene (PS) formed with $Sm(O_2N^{pr})(BH_4)(THF)_2$ (**4-Sm**). (a) Expansion of experimental spectrum in the range m/z = 2479-2579 amu. (b) Calculated spectrum for H-terminated PS. (c) Calculated spectrum for Et-terminated PS. (d) Calculated spectrum for Bu-terminated PS.

Figure SI6. Experimental and simulated MALDI-ToF mass spectra of the polystyrene (PS) formed with $Nd(O_2N^{NMe2})(BH_4)(THF)$ (**3-Nd**). (a) Expansion of experimental spectrum in the range m/z = 2479-2579 amu. (b) Calculated spectrum for H-terminated PS. (c) Calculated spectrum for Et-terminated PS. (d) Calculated spectrum for Bu-terminated PS.

Figure SI7. Experimental and simulated MALDI-ToF mass spectra of the polyisoprene (PI) formed with $Sm(O_2N^{NMe2})(BH_4)(THF)$ (**3-Sm**). (a) Expansion of experimental spectrum in the range m/z = 1220-1290 amu. (b) Calculated spectrum for Et-terminated PI. (b) Calculated spectrum for Buterminated PI. (c) Calculated spectrum for H-terminated PI. (c) Calculated for Et- and Buterminated PI. (f) Calculated for Et- and Me-terminated PI.

Scheme SI1. Potential occurrence of β -hydride transfer during the propagation according to 1,4- (top), 4,1- (middle), or 3,4- (bottom) mechanisms

Run	Complex	[Mg]/[Ln]	[Al]/[Ln]	T (°C)	T (h)	Yield (%)	Microstructure ^e		
							% trans-	% cis-	% 3,4
							1,4	1,4	
1	1-Sm	5	-	70	96	29	28.5	2.9	68.6
2	2-Sm	5	-	70	96	33	19.3	2.2	78.5
3	3-Sm	5	-	70	96	37	17	1	82
4	4-Sm	5	-	70	96	28	32.7	2.3	65
5	1-Nd	5	-	50	24	12	26	0	74
6	2-Nd	5	-	50	24	18	30.8	3	66.2
7	3-Nd	5	-	50	24	19	25.6	2.7	71.7
8	3-Nd	5	-	70	24	31	17.5	1.5	81
9	3-Nd	1	5	50	48	38	82	13.5	4.5
10	3-Nd	1	10	50	72	25	82.5	8	9.5

Table SI1. CCTP of Isoprene (IP) with complexes 1- to 4-Sm and 1- to 3-Nd / Mg(ⁿBu)(Et) or Al(ⁱBu)₃^a

^{*a*} Experimental conditions: [IP]/[Ln] = 800, n Ln = 6.2×10^{-6} mol; solvent = toluene with V(IP) = V (toluene) ^{*b*} Isolated yield. ^{*c*} Microstructure of the soluble fraction determined from ¹H and ¹³C NMR spectra in CDCl₃.

Figure SI8. ¹³C NMR spectra in the phenyl *ipso* carbon region of the copolymer poly[(1,4-*trans*-isoprene)-co-styrene] synthesized with **2-Nd** in run 24, table 4 (CDCl₃, 300K)¹

¹ P. Zinck, M.Terrier, A. Mortreux, A. Valente, M. Visseaux, *Macromol. Chem. Phys.* 2007, 208, 973.