Dalton Transactions

RSCPublishing

ARTICLE

Complexation of Uranium(VI) with Glutarimidoxioxime: Thermodynamic and Computational Studies

Francesco Endrizzi, Andrea Melchior, Marilena Tolazzi, Linfeng Rao*

Supplementary Information

NMR Analysis of Glutarimidoxioxime (HC)

The ¹H-NMR spectrum of HC is characterized by a defined quintet signal at 1.66 ppm, indicating the absence of byproducts. The ¹³C{¹H}-NMR spectrum is indicative of the purity of the product: five unique and distinct peaks are detectable at 18.7, 24.6, 32.2, 145, 170 ppm (see Figure S1). This latter signal in particular is related to the unique C=O group of HC, lacking instead in H₂A and H₂B.

Table S1 Protonation of HL^{III}. Analytical data of the potentiometric and microcalorimetric experiments. Negative H⁺ concentrations mean the total concentration of OH⁻.

Potentiometric	experiments				
Titration n.	$C_{H, \text{ mM}}^{0}$	$C_{L, \text{mM}}^{0}$	$C_{H}^{tit.}$ mM	$C_{L}^{tit.}$, mM	V^{0} , mL
1 (Fig. 1a)	20.3	7.20	-101.6	-	19.03
2 (Fig. 1b)	27.7	15.8	-101.6	-	20.84
3	23.3	7.79	-101.6	-	16.04
4	-1.69	6.02	495.5	-	19.78
Microcalorimet	ric experiments				
Titration n.	$C_{H, \text{ mM}}^{0}$	$C_{L, \text{ mM}}^{0}$	$C_{H}^{tit.}$, mM	$C_{L}^{tit.}$, mM	V^{0} , mL
1 (Fig. 2a)	490	0.251	19.2	19.2	0.770
2 (Fig. 2b)	19.2	19.2	99.9	-	0.750

3 (Fig. 2c)	3.86	3.86	-101.6	-	0.757
4 (Fig. 2d)	19.1	19.1	-101.6	-	0.756
5	100	-	19.2	19.2	0.750

Table S2 Potentiometric titrations for the complexation of U(VI) with HL ^{III} . Analytical data of the potentiometric experiments. Negative H ⁺	
concentrations mean the total concentration of OH ⁻ .	

Titration n.	C _{UO2} , mM	$C_{H, \text{ mM}}^{0}$	$C_{L, \text{ mM}}^0$	$C_{edta, M}^{0}$	$C_{H, \text{mM}}^{tit.}$	V^{0} , mL
1 (Fig. 3a)	0.460	4.82	1.95	0.230	-20.0	10.8
2 (Fig. 3b)	0.410	3.75	1.21	0.210	-20.0	12.3
3	0.470	2.93	-	0.240	-20.0	10.6
4	0.820	18.9	3.14	3.33	-102.1	12.3

	А	b	c	d	e	f	g	h	i	j	k	1
U-O _{oxime}	2.037	2.312	2.138	2.147	2.177	2.176	2.306	2.336	2.346	2.215	2.240	2.268
U-N _{oxime}	-	-	2.303	-	-	-	-	-	-	2.357	2.342	2.329
$U\text{-}N_{ring}$	-	2.306	-	-	-	-	2.623	2.644	2.673	-	-	-
U-O _{carb}		2.561	-	-	-	-	3.73	3.77	3.82	-	-	-
U-O _{water}	-	-	-	2.49(0.03)	2.56(0.03)	2.55(0.05)	2.51(0.07)	2.49(0.06)	2.46(0.03)	2.54(0.01)	2.65(0.05)*	2.51(0.04)

Complete reference to Gaussian09 program

Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J.
R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li,
H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A.
Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N.
Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J.
Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J.
Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.
Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S.
Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.