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Fig. S1 3-D supramolecular network of 1 extended by the lattice water molecules (green balls).

Fig. S2 3-D supramolecular network of 2 extended by hydrogen-bonding interactions (green dashed lines).
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Fig. S3 3-D supramolecular networks of 3 (left) and 4 (right) extended by hydrogen-bonding interactions
(green dashed lines).

Fig. S4 Left: Extension of dinuclear units into layer motif through n-- 7 (green dashed lines) and
anion-- - interactions (violet dashed lines). The hydrogen-bonding and weak Ag---O interactions
were denoted as black and double-colored dash lines. Right: 3-D host-guest supramolecular

network of 5 extended by hydrogen-bonding interactions (green dashed lines).
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Fig. S5 3-D microporous networks of 6 (left) and 7 (right) showing the small channels along b- or a-axis. The guest

anions and water molecules were denoted as space-filling modes.
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Fig. S6 3-D supramolecular network of 8 extended by hydrogen-bonding interactions (black

dashed lines). Green and red lines indicated the snake-shaped chains in different directions.
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Powder X-ray diffraction (PXRD)

Powder X-ray diffraction (PXRD) patterns for solid samples of complexes 1-8 are measured at room
temperature as illustrated in Fig. S7. The patterns are highly similar to their simulated ones (based on
the single-crystal X-ray diffraction data), indicating that the single-crystal structures are really

representative of the bulk of the corresponding samples.
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Fig. S7 PXRD patterns for complexes 1-8.
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Thermogravimetric analysis (TGA)

The thermal stability of complexes 1-8 were analyzed on crystalline samples by thermogravimetric
analyses (TGA) from room temperature to 900 °C at a rate of 10 °C min"! under N, atmosphere. As
shown in Fig. S8, the TGA curves indicate that complexes 1 and 5-7 show two loss steps with the first
one corresponding to the release of lattice water molecules during the range 60-122 °C for 1, 59-130
°C for 5, 50-102 °C for 6 and 62-112°C for 7, respectively. The observed weight loss of 5.64% in 1,
10.94% in 5, 4.11% in 6 and 3.78% in 7, are reasonably close to the calculated value (5.70% in 1,
10.86% in 5, 4.06% in 6 and 3.74% in 7). Then, the organic components are removed progressively,
leaving the residual of Ag at 736 °C for 1, 336 °C for 5, 754 °C for 6 and 847 °C for 7, respectively.
In contrast to the above four complexes, complexes 2-4 and 8 undergo a slow weight loss during the
range 185-850 °C for 2, 190-870 °C for 3, 210-790 °C for 4 and 180-825°C for 8, respectively, and
also leaving the residual of Ag. All the left values for the residual of Ag (34.21% for 1, 23.30% for 2,
25.45% for 3, 23.37% for 4, 14.55% for 5, 24.41% for 6, 22.53% for 7, and 28.62% for 8) are close to
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Fig. S8 TG curves of complexes 1-8



their calculated values (34.13% for 1, 23.26% for 2, 25.31% for 3, 23.26% for 4, 14.45% for 5, 24.28%
for 6, 22.40% for 7, and 28.52% for 8).
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Fig. S9 Excitation and emission spectra of complexes 1, 2 and 5 in solid state at room temperature.
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Table S1 Selected bond distances (A) for complexes 1-8?

Complex 1

Ag(1)-N(1) 2.228(4) Ag(1)-Ag(2) 3.0163(5)
Ag(1)-N(@4)! 2.272(4) Ag(2)-N(3) 2.215(4)
Ag(1)-0(4) 2.551(4) Ag(2)-N(2) 2.215(3)
Ag(1)-0(1) 2.571(5)

Complex 2

Ag(1)-N(2) 2.264(4) Ag(1)-N(4) 2.368(4)
Ag(1)-NQ3)! 2.345(4) Ag(1)-N(1) 2.454(4)
Complex 3

Ag(1)-N(1) 2.283(3) Ag(1)-N(2)i 2.367(3)
Ag(1)-N(3)! 2.358(3) Ag(1)-N(4)i 2.369(3)
Complex 4

Ag(1)-N(1) 2.268(4) Ag(1)-N(2)! 2.399(4)
Ag(1)-NQ3) 2.363(4) Ag(1)-N(4)i 2.419(4)
Complex 5

Ag(1)-N(4) 2.137(4) Ag(1)-N(1) 2.144(4)
Complex 6

Ag(1)-N(1)! 2.357(7) Ag(1)-N(2)i 2.421(6)
Ag(1)-N(1) 2.357(7) Ag(1)-N(2)i 2.421(6)
Complex 7

Ag(1)-N(1) 2.384(5) Ag(1)-N(2)i 2.400(4)
Ag(1)-N(1) 2.384(5) Ag(1)-N(2)i 2.400(4)
Complex 8

Ag(1)-N(1) 2.128(5) Ag(3)-N(4) 2.202(5)
Ag(1)-N(1)! 2.128(5) Ag(3)-N(7) 2.318(5)
Ag(2)-N(5) 2.221(5) Ag(3)-N(6) 2.341(5)
Ag(2)-N(2) 2.343(5) Ag(4)-N(8)i 2.138(6)
Ag(2)-N(3) 2.365(5) Ag(4)-N(8) 2.138(6)

aSymmetry tansformations used to generate equivalent atoms: For 1 (i) -x+3/2,y+1/2,z; For 2 (i) -
x+3/2,y+1/2,-z+3/2; For 3 (i) -x+1,-y+1,-z+1; (i) X,y+1,z; For 4 (i) -x+1,-y+1,-z+1; (ii) x,y-1,z;
For 5 (i) -x+2,-y+1,-z+1; For 6 (i) -xt3/4,-y+3/4,z; (ii) x-1/4,y+1/4,-z+1/2; (iii) -x+1,-y+1/2,-
z+1/2; For 7 (i) -x-3/4,-y-3/4,z; (i) x-1/4,y-1/4,-z; (ii1) -x-1/2,-y-1/2,-z; For 8 (i) -x+1,-y-1,-z; (ii) -

X,-y,-Z-1.




Electronic Supplementary Information for Dalton Transactions

This journal is (c) The Royal Society of Chemistry 2015

Table S2 Selected hydrogen bond parameters for complexes 1-8?

D-H...A d(D-H) d(H..A) d(D..A) <(DHA)
Complex 1

O(1W)-H(1W1)...0(3)i 0.85 1.99 2.826(8) 166.8
O(1W)-H(1W2)...0(1) 0.85 1.86 2.698(7) 167.3
O(1W)-H(1W2)...0(3) 0.85 2.51 3.176(7) 136.3
O(2W)-H(2W1)...0(1W)  0.85 1.74 2.589(9) 1723
O(2W)-H(2W2)...0(6) 0.85 2.17 3.011(7) 171.6
O(2W)-H(2W2)...0(4) 0.85 242 3.055(7) 1319
N(2)-H(2N)...02W)V 0.85(4) 2.21(2) 3.003(6) 154(4)
N(3)-H(3N)...0(3)" 0.86(4) 2.269(15) 3.114(6) 168(4)
N(3)-H(3N)...O(2)¥ 0.86(4) 2.56(3) 3.265(6)  140(4)
Complex 2

N(2)-H(2N)...O(1) 0.86(8) 2.49(4) 3217(8)  144(5)
N(2)-H(2N)...0(2) 0.86(8) 2.53(2) 3.349(8) 161(5)
N(3)-H(3N)...O(3)ii 0.86(1) 2.84(1) 3.288(1) 114(2)
Complex 3

N(2)-H(2N)...0(3)" 0.86(5) 2.408(12) 3.264(5) 178(4)
N(2)-H(2N)...O(1)" 0.86(5) 2.63(3) 3.260(5) 131(3)
N(3)-H(3N)...O(1) 0.86(5) 2.35(2) 3.140(5) 154(4)
Complex 4

N(2)-H(2N)...0(4) 0.85(3) 2.45(3) 3.28(3) 162(5)
N(3)-H(3N)...O(1)" 0.86(3) 2.43(3) 3.173(9) 145(5)
Complex 5

O(1W)-H(1W1)...0(11)"  0.85 2.31 3.143(7) 168.5
O(1W)-H(1W2)..0(2W)  0.85 1.95 2.786(11) 169.2
O(2W)-H(2W1)...0(6) 0.84(4) 2.34(4) 2.976(9)  134(5)
O(2W)-H(2W2)...0(2) 0.84(4) 2.41(4) 3.016(11) 131(5)
O(BW)-H(3W1)...0(4W)  0.85 2.01 2.853(6) 170.4
OBW)-H(3W2)...0(11)ii  0.85 2.17 3.014(6) 170.1
O(4W)-H(4W1)...0(1W)  0.85 1.87 2.681(9) 159.7

O(4W)-H(4W2)..0(5W)  0.85 2.09 2.902(6) 160.3




O(5W)-H(5W1)..03W)| 0.85 1.98 2.826(6) 172.3

O(5W)-H(5W2)...0(7)! 0.85 2.19 3.033(7) 1722
N(2)-H(2N2)...0(5W)! 0.86(2) 2.08(2) 2.898(5) 160(4)
N(2)-H(2N1)...0(9)ii 0.86(2) 2.25(2) 3.022(6)  150(4)
N(2)-H(2N1)...0(6)i 0.86(2) 2.53(4) 3.141(8)  129(4)
N(3)-H(3N1)...0(3) 0.86(2) 2.37(2) 3.187(8)  156(4)
N(3)-H(3N1)...0(3)" 0.86(2) 2.38(3) 3.014(7) 130(4)
N(3)-H(3N2)...0(4W)! 0.86(2) 2.03(2) 2.844(6) 156(4)
Complex 6

O(1W)-H(1W)...0(1) 0.85 2.04 2.870(15) 172.0
N(2)-H(2)...0(1W) 0.88 2.17 3.050(8) 1752
Complex 7

O(1W)-H(1W)...0(1) 0.85 242 3.13(2) 142.0
N(2)-H(2N)...0(1W) 0.86(7) 2.313(13) 3.172(7)  175(5)
Complex 8

N(2)-H(2N)...O(8)ii 0.86(3) 2.28(3) 3.088(6)  156(6)
N(3)-H(3N)...O(6)ii 0.86(3) 2.47(3) 3.246(7)  150(6)
N(6)-H(6N)...0(3)" 0.86(3) 2.39(3) 3.200(8)  157(6)
N(7)-H(7N)...0(4)" 0.86(3) 2.36(4) 3.089(7)  143(6)

aSymmetry transformations used to generate equivalent atoms: For 1, (iii) -x+1,-y+2,-
z+2; (iv) -x+1,y-1/2,-z+3/2; (v) x,y-1,z; For 2, (iii)) -x+1,-y+1,-z+1; For 3, (iv) -
x+1/2,y+1/2,-z+3/2; For 4, (iv) -x+3/2,y+1/2,-z+1/2; For 5, (i) -x+2,-y+1,-z+1; (ii) -
x+1,-y+1,-z+1; (iii) x+1,y,z; (iv) -x+2,-y+1,-z+2; For 8, (iii) -x,y-1/2,-z-1/2; (iv) -
x+1,y+1/2,-z-1/2.
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Table S3 Detailed structural analyses of complexes 1-8

complexes coordination modes conformations metal geometry structures
1 e (K'NT : k'N2 : 'N3 : «'N4)  distorted ‘W’ shaped N,0,Ag tetradrons (4,4) layer
N,OAg triangles
2 1y (K'N1 : x'N2 : k!N3 : kIN4) linear N,Ag tetrahedra helix
3 13 (KN kN2 : kN3 : 'N4) ‘V’ shaped N,Ag tetrahedra helix
4 3 (KINT : N2 : kN3 : x'N4) ‘V’ shaped N,Ag tetrahedra helix
5 1y (K'N1 : k'N4) ‘L’ shaped N,Ag lines dinuclear
6 g (KINT : x'N2 : k!N3 : xN4) ‘W’ shaped N,Ag tetrahedra 3D network
7 s (K'N1 : 'N2 : k'N3 : k'N4) ‘W’ shaped N,Ag tetrahedra 3D network
8 3 (KINT : kN2 : kN3 : xIN4) ‘V’ shaped N;OAg tetrahedral ~ snake-shaped
13 (KNS5 kN6 : N7 : k!'N8) N;Ag triangles chain

N,Ag lines




