Electronic Supplementary Information

Tetraphenolate niobium and tantalum complexes for the ring

opening polymerization of *ε*-caprolactone

Yahya Al-Khafaji,^a Xinsen Sun,^a Timothy. J. Prior,^a Mark R.J. Elsegood,^b and Carl Redshaw,^{a*}

^a Department of Chemistry, University of Hull, Hull, HU6 7RX, U.K.

^b Chemistry Department, Loughborough University, Loughborough, Leicestershire, LE11 3TU, U.K.

Contents

Figure S1 Molecules of $L^2H_4 \cdot 2MeCN$ form centrosymmetric pairs encapsulating pairs of symmetry-related acetonitrile molecules.

Figure S2 Molecular structure of 4.5MeCN

Figure S3 Bimodal distribution of products using 2.

Figure S4 Plot of monomer conversion *versus* number average molecular weight for **2** (low molecular weight fraction).

Figure S5 Plot of monomer conversion *versus* number average molecular weight for 2 (high molecular weight fraction).

Figure S6 M_n (low molecular weight fraction) versus [CL]/[2]

Figure S7 M_n (high molecular weight fraction) versus [CL]/[2]

Figure S8 MALDI-TOF spectrum of PCL from run 22 (Table 2).

Figure S9 ¹H NMR spectrum of the PCL from run 6 (Table 2).

Figure S1 Molecules of $L^2H_4 \cdot 2MeCN$ form centrosymmetric pairs encapsulating pairs of symmetry-related acetonitrile molecules.

Figure S2 Molecular structure of 4.5MeCN

Figure S3 Bimodal distribution of products using 2.

Figure S4 Plot of monomer conversion *versus* number average molecular weight for 2 (low molecular weight fraction).

Figure S5 Plot of monomer conversion *versus* number average molecular weight for 2 (high molecular weight fraction).

Figure S6 M_n (low molecular weight fraction) versus [CL]/[2]

