New iron tetrazolate frameworks: synthesis temperature effect, thermal behavior, Mössbauer and magnetic studies

Vanessa Pimenta,^a Quang Hoang Hanh Le,^a Lucy Clark,^b Jérôme Lhoste,^{a,*} Annie Hémon-Ribaud,^a Marc Leblanc,^a Jean-Marc Grenèche,^a Gilles Dujardin,^a Philip Lightfoot^b and Vincent Maisonneuve.^a

^aIMMM-UMR 6283 CNRS, LUNAM, Faculté des Sciences et Techniques, Université du Maine, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France ^bSchool of Chemistry and EaStChem, University of St. Andrews, St. Andrews, Fife, KY16 9ST, United Kingdom

^{*} To whom correspondence should be addressed. E-mail: jerome.lhoste@univ-lemans.fr Phone: (33).(0)2 43 83 33 59. Fax: (33).(0)2 43 83 35 06

SUPPLEMENTARY INFORMATION

Atom	Wyckoff position	τ	x	У	Z	B _{eq} (Å ²)
Fe(1)	1d	1	1/2	0	0	3,34(8)
Fe(2)	1a	1	0	0	0	3,24(8)
Fe(3)	21	1	1/2	0.36593(9)	1⁄2	1,83(3)
Fe(4)	1f	1	0	1⁄2	1⁄2	2,16(5)
F(1)	2m	1	0.190(2)	0	-0.1361(7)	3,1(2)
F(2)	40	1	0.2041(9)	0.3842(4)	0.5206(12)	5,1(2)
F(3)/OW(3)	2n	0.5/0.5	0.587(2)	1⁄2	0.6606(9)	3,5(2)
F(4)/OW(4)	2n	0.5/0.5	0.044(2)	1⁄2	0.7241(12)	5,9(4)
N(1)	40	1	0.209(2)	0.1248(7)	0.1406(12)	4,3(4)
N(2)	40	1	0.418(2)	0.1234(7)	0.1468(10)	4,7(3)
N(3)	40	1	0.522(2)	0.1964(7)	0.2489(11)	4,3(3)
N(4)	40	1	0.399(2)	0.2479(4)	0.3127(8)	3,6(2)
N(5)	40	1	-0.0029(16)	0.2336(8)	0.2700(16)	5,6(3)
C(1)	40	1	0.204(2)	0.2018(8)	0.2425(12)	3,9(3)
C(1)A	2ј	0.5	1/2	0.401(3)	0	3,5(6)
N(1)A	2n	0.25	0.457(8)	1/2	-0.107(6)	2,8(9)
C(2)A	2m	0.50	0.185(3)	0	-0.503(4)	2,1(3)
N(2)A	40	0.125	0.003(11)	0.044(4)	-0.446(6)	2,4(9)

Table S1. Atomic coordinates and equivalent ADP of [Hdma] ·(Fe₅F₈(H₂O)₂(amtetraz)₄) (1)

Table S2. Atomic coordinates and equivalent ADP of [Hdma]_{1.5}·(Fe₅F₇(H₂O)(HCOO)(amtetraz)₄) (2)

Atom	Wyckoff position	τ	х	У	z	$\mathbf{B}_{eq}(\mathrm{\AA}^2)$
Fe(1)	1d	1	1/2	0	0	1,24(2)
Fe(2)	1a	1	0	0	0	1,11(2)
Fe(3)	21	1	1⁄2	0.36653(6)	1⁄2	1,29(2)
Fe(4)	lf	1	0	1⁄2	1⁄2	1,46(2)
F(1)	2m	1	0.8042(5)	0	0.1388(4)	1,76(6)
F(2)	4o	1	0.2183(4)	0.38055(18)	0.5425(3)	2,16(4)
F(3)/OW(3)	2n	0.25/0.75	0.6061(6)	1⁄2	0.6660(5)	2,03(6)
F(4)/OW(4)	2n	0.25/0.75	-0.0035(8)	1⁄2	0.2577(5)	3,53(9)
N(1)	4o	1	0.7972(5)	0.1250(3)	0.8589(4)	1,64(6)
N(2)	4o	1	0.5890(5)	0.1212(3)	0.8501(4)	1,65(6)
N(3)	4o	1	0.4812(5)	0.1927(3)	0.7506(4)	1,84(6)
N(4)	4o	1	0.6162(5)	0.2471(3)	0.6892(4)	1,60(6)
C(1)	4o	1	0.8082(6)	0.2050(3)	0.7593(5)	1,76(6)
N(5)	4o	1	0.9897(6)	0.2360(4)	0.7306(6)	4,1(2)
C(4)	2n	0.50	0.176(2)	1⁄2	0.2290(18)	3,4(3)
C(1)A	2j	0.75	1⁄2	0.4010(7)	0	3,9(3)
N(1)A	2n	0.375	0.437(2)	1/2	0.9086(17)	2,8(3)
C(2)A	2m	0.75	-0.1875(16)	0	0.5031(11)	3,6(3)
N(2)A	4o	0.1875	-0.050(4)	-0.0477(18)	0.460(2)	3,5(5)

Figure S1. Experimental and simulated XRD patterns of [Hdma]·(Fe₅F₈(H₂O)₂(amtetraz)₄) (1) and [Hdma]_{1.5}·(Fe₅F₇(H₂O)(HCOO)(amtetraz)₄) (2)

Figure S2. Evolution of XRD patterns and phase composition as a function of the synthesis temperature

Figure S3. Infrared spectroscopy of [Hdma]·(Fe₅F₈(H₂O)₂(amtetraz)₄) (1)

Figure S4. Infrared spectroscopy of [Hdma]_{1.5}·(Fe₅F₇(H₂O)(HCOO)(*amtetraz*)₄) (2)