Supporting Information

[1,1-(dppe)-3-(NC₅H₅)-*closo*-1,2-RhSB₉H₈]:

conformational lability and reactivity with H₂

upon protonation

María C. Mateo, Beatriz Calvo, Ramón Macías, María José Artigas, Fernando Lahoz

and Luis A. Oro

Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis

Homogénea-ISQCH, Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, 50009-

Zaragoza, Spain

Figure S1¹¹B-{¹H} NMR spectra for **2** (bottom), **3** (middle) and the mixture of isomers **4** (top).

Figure S2 ¹H-{¹¹B} NMR spectra for 2 (bottom), 3 (middle) and the mixture of isomers 4 (top).

Figure S3 ³¹P-{¹H}NMR spectra for 2 (1st from bottom), 3 (2nd) and the mixture of isomers 4 (3rd and 4th top).

Figure S4 ³¹P-{¹H}NMR spectra for the mixture of isomers, **4a** and **4b** (red ellipsoids), under an atmosphere of 10 bar of H_2 (bottom and middle spectra); the spectrum at the top results after releasing some dihydrogen from the quick pressure valve NMR tube. The doublet marked with a blue ellipsoid corresponds to **3**, and the singlet marked with an X is an impurity.

Figure S5 VT ${}^{31}P-{}^{1}H$ NMR spectra of compound 3 in CD₂Cl₂.

Calculation of free energy of activation by the coalescence temperature

 $\Delta G^{\ddagger} = -RT_{\rm C}[\ln(\pi\delta\upsilon h/2^{1/2}\kappa_{\rm B}T_{\rm C})] = RT_{\rm c}[22.8 + \ln(T_{\rm C}/\delta\upsilon)] = 36.1 \text{ kJ/mol} = 8.6 \text{ kcal /mol}$

 $T_{\rm c} = 213$ K, $\delta \upsilon = 2388$ Hz in a magnetic field of 202 MHz.

$$R = 8.3145 \text{ J/K mol}$$

$$h = 6.626 \cdot 10^{-34} \text{ J} \text{ s}$$

$$\kappa_{\rm B} = 1.381 \bullet 10^{-23} \text{ J/K}$$

Fluxionalities that cannot be stopped on the NMR time-scale down to about -100 °C imply values of $\Delta G^{\ddagger} < ca$. 7 kcal/mol.

[8,8-dppe-nido-RhSB9H10]

The synthesis and characterization of this 11-vertex dppe-ligated rhodathiaborane was reported first by Welch and co-workers in *J. Organomet. Chem.* **1998**, *550*, 315. The compound was latter prepared, following a different route, by Barton and Macías (*Organometallics, 18, 1999,* 3639). However, these works do not report the fluxional behavior of this cluster. Now, we have carried out a VT NMR study that has provided new spectroscopic data as well as the measurement of the free activation energy for the fluxional process of this compound. These data are gathered bellow.

NMR data. ¹¹B–{¹H} (128 MHz) and ¹H-{¹¹B} NMR (400 MHz) in CD₂Cl₂ at 323 K) {cluster resonances ordered as: assignment δ (¹¹B)/ppm [δ (¹H)/ppm for directly attached exo-hydrogen]}: 1BH +10.7 [+2.35], 2BH +8.9 [+3.26], 1BH –7.5 [+1.83], 2BH –11.7 [+2.17], 2BH –13.2 [+1.59], 1BH –26.8 [+1.65]. Additional ¹H NMR data are: δ = +7.81 to +7.39 (20H, dppe, C₆H₅), +2.89 (m, 2H; CH₂), +2.43 (m, 2H; CH₂), -2.10 (s, 1H, B–H–B). ³¹P-{¹H} NMR (162 MHz, CD₂Cl₂, 323 K): δ = +58.07 (d, *J*_{RhP}= 150.2 Hz).

Figure S6 VT ³¹P-{¹H} NMR spectra (162 MHz) of compound [8,8-(dppe)-*nido*-8,7-RhSB₉H₁₀] in CD₂Cl₂.

1. Free energy calculated from the ³¹P NMR spectra

 $\Delta G^{\ddagger} = -RT_{\rm C}[\ln(\pi \delta \upsilon h/2^{1/2} \kappa_{\rm B} T_{\rm C})] = RT_{\rm c}[22.8 + \ln(T_{\rm C}/\delta \upsilon)] = 45.3 \text{ kJ/mol} = 10.8 \text{ kcal /mol}$ $T_{\rm c} = 265 \text{ K}, \, \delta \upsilon = 2508 \text{ Hz in a magnetic field of 162 MHz}.$

Figure S7 VT ¹H-{¹B} NMR spectra (400 MHz) of compound [8,8-(dppe)-*nido*-8,7-RhSB₉H₁₀] in CD₂Cl₂.

2. Free energy calculated from the ¹H NMR spectra

The proton resonances at +3.52 and +2.85 ppm that exhibit a δv of 273 Hz in the

spectrum at 183K, coalesce at 250 K in a magnetic field of 400 MHz.

 $\Delta G^{\ddagger} = -RT_{\rm C}[\ln(\pi \delta \upsilon h/2^{1/2} \kappa_{\rm B} T_{\rm C})] = RT_{\rm c}[22.8 + \ln(T_{\rm C}/\delta \upsilon)] = 47.2 \text{ kJ/mol} = 11.3 \text{ kcal /mol}$