Supporting information for:

Intramolecular Hydrogen Bonding Stabilizes the Nuclearity of Complexes. A comparative study based on the H-carborane and Mecarborane framework.

Mònica Fontanet,^[a] Montserrat Rodríguez, ^[a] Xavier Fontrodona, ^[a] Isabel Romero,* ^[a] Clara Viñas,^[b] and Francesc Teixidor,* ^[b]

^aDepartament de Química and Serveis Tècnics de Recerca, Universitat de Girona, Campus de Montilivi, E-17071 Girona, Spain. ^bInstitut de Ciencia de Materials de Barcelona, ICMAB-CSIC, Campus UAB, E-08193 Bellaterra, Spain.

Table S1. Crystal Data for X-ray structures of 1-5.

Table S2. Crystal Data for X-ray structures of 2'and 4'.

Table S3. Selected bond lengths (Å) and angles (°) for complexes 2' and 4'.

Table S4. Comparison of the structural parameters in Cu(II) dinuclear paddle-wheel and Cu(II)

mononuclear carboranylcarboxylate complexes of the ligands 1-CO₂H-2-H-1,2-closo-C₂B₁₀H₁₀ and 1-

 CO_2H -2- CH_3 -1,2-closo- $C_2B_{10}H_{10}$.

Table S5. Selected hydrogen bonding distances (Å) for complexes 1-5.

Figure S1. Cyclic voltammetry recorded for complexes 2-5 in acetonitrile

Figure S2. DPV images for complexes **3-5** at potential range from -0.6 to -0.1 in acetonitrile (0.1 M TBAH) with pulse amplitude of 0.05 V, pulse width of 0.05 s, sampling width of 0.02 s and pulse period of 0.5 s.

Figure S3. NMR spectra of the compounds **1**, **2**/**2**', **3**, **4**/**4**', **5** and **LH**. The deconvolution of the ¹¹B NMR spectrum of compound **1** is also reported.

Figure S4. Comparison of a) ¹H-NMR, b) ¹H{¹¹B}-NMR of compound **3** in chloroform at 298K (purple) and in acetone at 260K (black).

Figure S5. ${}^{1}H{}^{11}B$ -NMR of compound **3** in d₆-acetone at 260K.

Figure S6. ${}^{1}H{}^{11}B{}$ -NMR and ${}^{1}H$ -NMR of compound **3** in d₆-acetone at 298K.

	1	2	3	4	5
Empirical formula	$C_{20}H_{60}B_{40}O_{10}Cu_2$	$C_{22}H_{54}B_{40}N_2O_8Cu_2$	$C_{24}H_{52}B_{40}F_6N_2O_8Cu_2$	$C_{24}H_{60}B_{40}N_2O_9Cu_2$	$C_{20}H_{40}B_{20}N_2O_4Cu$
Formula weight	1020.26	1034.15	1170.16	1080.22	652.28
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space group	<i>P</i> 21/c	P-21/c1	<i>P-21/c</i> 1	C2/C	P-1
a [Å]	10.318(12)	10.439(18)	22.168(14)	25.36(2)	7.1845(19)
b [Å]	13.473(16)	13.510(2)	12.368(8)	20.832(17)	10.920(3)
c [Å]	22.1272(19)	22.149(3)	22.299(14)	12.538(11)	12.489(3)
α [°]	90	90	90	90	70.332(4)
β [°]	117.26(4)	117.38(6)	101.86(10)	106.308(13)	83.340(4)
γ [°]	90	90	90	90	71.536(4)
V [ų]	2734(5)	2773.8(7)	5980.6(7)	6357(9)	875.1(4)
Formula Units/Cell	2	2	4	4	1
$ ho_{calc.}$ [g cm ⁻³]	1.239	1.238	1.300	1.129	1.238
μ [mm ⁻¹]	0.820	0.808	0.772	0.709	0.655
<i>R</i> 1 ^[a] , [I > 2σ(I)]	0.0569	0.0920	0.0586	0.0699	0.0424
$wR_2^{[b]}$ [all data]	0.1799	0.3179	0.1907	0.2408	0.1131

Table S1. Crystal Data for X-ray structures of 1-5.

[a] $R_1 = \Sigma ||F_o| - |F_c|/\Sigma |F_o|$ [b] $wR_2 = [\Sigma \{w(F_o^2 - F_c^2)^2\}/\Sigma \{w(F_o^2)^2\}]^{\frac{1}{2}}$, where $w = 1/[\sigma^2(Fo^2) + (0.0042P)^2]$ and $P = (F_o^2 + 2F_c^2)/3$

 Table S2.
 Crystal Data for X-ray structures of 2'and 4'.

	2'	4'
Empirical formula	$C_{32}H_{64}B_{40}O_8N_4Cu_2$	$C_{36}H_{68}B_{40}O_8N_4Cu_2$
Formula weight	1192.35	1244.42
Crystal system	Triclinic	Triclinic
Space group	<i>P</i> -1	P-1
a [Å]	11.764(3)	13.360(8)
b [Å]	13.327(3)	13.632(8)
c [Å]	13.366(3)	24.431(14)
α [º]	99.539(3)	76.585(10)
β [≌]	115.311(3)	75.857(9)
γ [º]	112.975(3)	60.941(9)
V [Å ³]	1598.8(6)	3738(4)
Formula Units/Cell	1	2
$ ho_{calc.}$ [g cm ⁻³]	1.238	1.106
μ [mm ⁻¹]	0.711	0.611
<i>R</i> 1 ^[a] , [I > 2σ(I)]	0.1312	0.0622
$wR_2^{[b]}$ [all data]	0.4576	0.2052

[a] $R_1 = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$ [b] $wR_2 = [\Sigma \{w(F_o^2 - F_c^2)^2\}/\Sigma \{w(F_o^2)^2\}]^{\frac{1}{2}}$, where $w = 1/[\sigma^2(Fo^2) + (0.0042P)^2]$ and $P = (F_o^2 + 2F_c^2)/3$

	2'	4'	
Cu(1)-O(1)	1.954(4)	1.964(19)	Cu(1)-O(1)
Cu(1)-O(2)#1	2.288(5)	2.382(2)	Cu(1)-O(1)#1
Cu(1)-O(5)	1.977(5)	1.993(19)	Cu(1)-O(3)
Cu(1)-N(1)	2.013(8)	2.006(3)	Cu(1)-O(3)#1
Cu(1)-N(2)	2.017(8)	2.011(3)	O(1)-Cu(1)-O(1)#1
Cu(1)-Z			O(3)-Cu(1)-O(3)#1
O(1)-Cu(1)-Y			O(3)-Cu(1)-O(1)#1
O(1)-Cu(1)-O(5)	164.1(2)	163.89(8)	O(3)#1-Cu(1)-O(1)
O(1)-Cu(1)-N(1)	88.3(2)	88.57(10)	O(3)-Cu(1)-O(1)
O(5)-Cu(1)-N(1)	88.1(2)	90.07(10)	O(3)#1-Cu(1)-O(1)#1
O(1)-Cu(1)-N(2)	89.2(2)	89.57(10)	
O(5)-Cu(1)-N(2)	92.0(2)	90.94(10)	
N(1)-Cu(1)-N(2)	170.7(2)	176.68(9)	
O(1)-Cu(1)-O(2)#1	109.93(19)	115.31(7)	
O(5)-Cu(1)-O(2)#1	85.72(18)	80.73(7)	
N(1)-Cu(1)-O(2)#1	92.8(2)	89.61(9)	
N(2)-Cu(1)-O(2)#1	96.5(2)	93.68(8)	

Table S3. Selected bond lengths (Å) and angles (°) for complexes 2' and 4'.

Table S4. Comparison of the structural parameters in Cu(II) dinuclear paddle-wheel and Cu(II)mononuclear carboranylcarboxylate complexes of the ligands $1-CO_2H-2-H-1, 2-closo-C_2B_{10}H_{10}$ and $1-CO_2H-2-CH_3-1, 2-closo-C_2B_{10}H_{10}$.

	1		2		3		4				
	C-CH₃	C-H	C-CH	3 C-H	C-CH₃	C-H	C-CH₃	C-H		C-CH₃	C-H
Cu(1)-O(1)	1.956(2)	1.959(2)	1.953(3)	1.962(4)	1.965(3)	1.986(2) 1.941(2)	1.970(3)	1.922(4)	Cu(1)-O(1)	1.9418(16)	1.9409(14)
Cu(1)-O(2)#1	1.959(2)	1.960(2)	1.956(3)	1.957(4)	1.975(3)	1.973(2) 1.952(2)	1.964(3)	1.913(3)	Cu(1)-O(1)#	1.9418(16)	1.9409(14)
Cu(1)-O(3)	1.972(2)	1.959(2)	1.957(3)	1.972(4)	1.971(4)	1.953(2) 1.965(2)	1.965(4)	2.139(4)	Cu(1)-N(1)	2.0222(19)	2.0288(16)
Cu(1)-O(4)	1.973(2)	1.960(2)	1.956(3)	1.967(4)	1.965(3)	1.959(2) 1.977(2)	1.970(4)	2.040(4)	Cu(1)-N(1)#	2.0222(19)	2.0288(16)
Cu(1)-X	2.114(2)	2.100(2)	2.104(3)	2.113(3)	2.118(3)	2.126(2) 2.127(2)	2.104(4)	2.060(5)			
Cu(1)-Cu(1)#	2.672(2)	2.6786(6)	2.693(9)	2.730(12)	2.733(15)	2.7439(5)	2.716(13)	3.009(2)			
C(1)-C(2)OO	1.54(1)	1.521(4)	1.518(6)	1.561(6)	1.492(7)	1.500(4)	1.523(6)	1.516(7)		1.538(3)	1.530(3)
C(4)-C(5)OO ⁻	1.512(1)	1.506(3)	1.514(4)	1.52(1)	1.512(9)	1.530(4)	1.520(9)	1.514(8)			
C(7)-C(8)OO ⁻	<u> </u>					1.504(4)				<u> </u>	
C(10)-C(11)OO ⁻						1.511(4)					

C _c -H _{xA} -O _x	1	2	3	4	5	2'	4'
C_3 - H_{3A} - O_x	2.797 (x=1)	2.772 (x=2)	3.181 (x=1)	2.750 (x=1)	2.529(x=2)	2.279 (x=5), 2.534 (X=2)	
							2.375(X=5),
C_6 - H_{6A} - O_X	2.801 (x=3)	3.068 (x=6)	2.665 (x=3)	2.855 (x=3)			
							2.626(X=2)
			2.376				
C99A C3			2.070				
C_{12} - H_{12A} - O_8			2.597				

Table S5. Hydrogen bonding C_c -H···O distances (Å) for complexes 1- 5.

For compounds 1-5.

For compounds 2' and 4'.

Figure S1. Cyclic voltammetry recorded for complexes 2-5 in acetonitrile

Figure S2. DPV images for complexes **3-5** at potential range from -0.6 to -0.1 in acetonitrile (0.1 M TBAH) with pulse amplitude of 0.05 V, pulse width of 0.05 s, sampling width of 0.02 s and pulse period of 0.5 s.

Figure S3. NMR spectra of the compounds 1, 2/2', 3, 4/4', 5 and LH.

a) Compound 1

¹H-NMR

10

 $^{11}B{}^{1}H$ -NMR

11

Deconvolution of the ¹¹B NMR spectrum.

b) Compound 2/2"

¹H-NMR

 ${}^{1}H{}^{11}B{}-NMR$

¹¹B-NMR

 ${}^{11}B{}^{1}H{}-NMR$

c) Compound 3

${}^{1}H{}^{11}B{}-NMR$

¹¹B-NMR

 ${}^{11}B{}^{1}H{}-NMR$

16

d) Compound 4

¹H-NMR

¹¹B-NMR

17

 $^{11}B{}^{1}H$ -NMR

e) Compound 5

 ${}^{1}H{}^{11}B{}-NMR$

¹¹B-NMR

 $^{11}B{}^{1}H$ -NMR

f) Ligand **LH**

¹¹B-NMR in d₆-acetone.

 $^{11}B{}^{1}H$ -NMR in d₆-acetone.

Figure S4. Comparison of a) ¹H-NMR of compound **3** in chloroform (purple) and in acetone (black), b) ¹H{¹¹B}-NMR of compound **3** in chloroform (purple) and in acetone (black). a)

b)

Figure S5. ${}^{1}H{}^{11}B$ -NMR of compound **3** in d₆-acetone at 260K.

