Supporting Information

All reagents were purchased and used without further purification.

UV-Vis spectrophotometry: Measurements were performed on a varian Cary 300 Bio UV-Vis spectrometer

Electrospray ionization mass spectrometry: Experiments were carried on a MicrOTOF-Q Bruker instrument using a source acceleration voltage of 3 kV and transfer capillary temperature (i.e. Dry heater on this particular instrument) of 140°C. About 1 pM solutions were injected without addition of charge carriers. Data was calibrated internally with ESI-L Low Concentration Tuning Mix (Agilent-Technologies).

Magnetism: The magnetic properties of (1) and (2) were studied on a SQUID Quantum Design MPMS 5 spectrometer using a microcrystalline samples placed in gelatin capsules. Experimental molar magnetic susceptibility ($\chi_m T$) measurements were performed in a temperature (*T*) range of 10 to 400 K in an applied constant magnetic field of 5000 Oe. Collected data were corrected from the contribution of the sample holder and from diamagnetic contributions deduced using Pascal's constant tables.

Gaz Chromatorgaphy: measurements were performed using a SHIMADZU GC-2014A equipped with a POROPAK Q 80/100 column (1/8") and a FID detector. The following conditions were used: vector $gaz = N_2$. $T_{injector} = 250^{\circ}$ C. $T_{oven} = 150^{\circ}$ C. $T_{detector} = 250^{\circ}$ C.

X-ray crystallography: Crystals were mounted on a CryoLoop (Hampton Research) with Paratone-N (Hampton Research) as cryoprotectant and flashfrozen in a nitrogen-gas stream at 100 K. The temperature was maintained throughout the experiment to within an accuracy of ± 1 K by means of a 700 series Cryostream cooling device. X-ray diffraction data were collected using a Kappa X8 APPEX II Bruker diffractometer with graphite-monochromated MoK α radiation ($\lambda = 0.71073$ Å) and corrected for Lorentz polarization, and absorption effects. The structures were solved by direct methods using SIR-97¹ and refined against F^2 by full-matrix least-squares techniques using SHELXL-97² with anisotropic displacement parameters for all non-hydrogen atoms. Hydrogen atoms were located on a difference Fourier map and introduced into the calculations as a riding model with isotropic thermal parameters. All calculations were performed using the crystal structure crystallographic software package WINGX.³ The crystal data collection and refinement parameters are given in Table S1.

Synthesis: In a 5 mL round bottom flask, ACC (11 mg, 0.11 mmol, 1 equiv.) and N(n-Bu)₄OH . 30 H₂O (90 mg, 0.11 mmol, 1 equiv.) were stirred in water (1 mL) for 5 min. Water was then evaporated and the obtained ionic liquid was transferred into a glove box under argon. With the help of acetonitrile (2 mL) the ionic liquid was added to an acetonitrile (20 mL) solution of (1) (98.7 mg, 0.11 mmol, 1 equiv.) in a 200 mL round bottom flask. After addition of ether (150 mL) a solid formed, it was collected by filtration and wasted with 100 mL of ether. Recrystallization by slow ether diffusion in acetonitrile provided 20 mg (27 %) of crystalline (2).

Reactivity studies with H_2O_2: 1 mM acetonitrile solutions of complex (2) or 1:1 mixture of iron(II) triflate and N(n-Bu)₄ACC (blank) were placed in hermetically sealed tubes. The reactions were initiated by injection of 1 and up to 100 equiv. of concentrated H_2O_2 (30%) solutions through the septa of the seals (final concentration ranging from 1 to 100 mM). After one hour of reaction time at RT, gas from the headspace was analyzed by Gas Chromatography.

¹⁾ A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori and R. Spagna, J. Appl. Crystallogr., 1999, 32, 115-119.

²⁾ G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112-122.

³⁾ L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837-838.

Cambridge Crystallographic Data Centre (CCDC) numbers 1029372-1029373 and the attached .CIF files contain supplementary crystallographic data for this paper. These data can be obtained free of charge from the CCDC via http://www.ccdc.cam.ac.uk/Community/Requestastructure.

Compound	1	2	
	CCDC 1029373	CCDC 1029372	
Empirical Formula	C ₂₀ H ₂₈ Fe N ₆ , 2(F ₆ Sb)	C ₂₀ H ₂₈ Fe N ₅ O ₂ , F ₆ Sb	
M _r	879.83	662.08	
Crystal size, mm ³	0.17 x 0.12 x 0.03	0.08 x 0.07 x 0.04	
Crystal system	monoclinic	monoclinic	
Space group	$P 2_1/c$	$P 2_1/c$	
a, Å	17.2217(6)	10.6202(3)	
b, Å	20.1069(7)	20.6412(6)	
c, Å	16.9451(6)	11.6374(3)	
α, °	90	90	
β, °	91.4780(10)	100.1960(10)	
γ, °	90	90	
Cell volume, Å ³	5865.7(4)	2510.79(12)	
Z;Z'	8;2	4;1	
Т, К	100(1)	100(1)	
F ₀₀₀	3408	1320	
μ, mm ⁻¹	2.416	1.725	
θ range, °	1.56 - 33.82	1.95 - 30.63	
Reflection collected	72 834	61 655	
Reflections unique	21 292	7 528	
R _{int}	0.0240	0.0485	
GOF	1.021	1.068	
Refl. obs. $(I \ge 2\sigma(I))$	17 682	6 041	
Parameters	747	318	
wR_2 (all data)	0.0751	0.0892	
R value $(I > 2\sigma(I))$	0.0304	0.0368	
Largest diff. peak and hole (eÅ-3)	-1.516 ; 3.405	-1.336 ; 2.053	

Table S1	Crystallogranhic	data and structure	refinement details	for compounds	(1)	and ((2)
Table 51.	Ci ystanogi apine	uata anu structure	remember actails	tor compounds	(1)	anu	(2)

Table S2. Selected bond lengths and angles from the crystal structure of complex (2).

	Bond length (Å)		Angle (°)
Fe-N1	2.203(2)	O1-Fe-N1	79.89(8)
Fe-N2	2.232(2)	O1-Fe-N4	96.69(9)
Fe-N3	2.242(3)	O1-Fe-N3	103.04(9)
Fe-N4	2.203(2)	O1-Fe-N5	93.35(8)
Fe-N5	2.211(2)	N1-Fe-N4	96.08(9)
Fe-O1	2.0164(19)	N1-Fe-N2	97.74(8)
		N1-Fe-N5	93.18(8)

Figure S1. (A) UV-Visible monitoring of a 0,5 mM acetonitrile solution of complex $[Fe(BPMEN)(CH_3CN)_2](SbF_6)_2$ (1) (bold black line) upon successive additions of N(n-Bu)₄ACC up to 3 equiv. (bold green line). The red line is obtained for the addition of 1 equiv. N(n-Bu)₄ACC.

Figure S2. X-ray crystal structure of the [Fe(BPMEN)(CH₃CN)₂](SbF₆)₂ complex (1). Ellipsoids are drawn at the 30 % probability level. Counter ions are omitted for the sake of clarity.

Figure S3. Plot of $\chi_m T$ vs. T obtained from the magnetization measurements collected from microcrystalline samples of complex (2) on the left and complex (1) on the right.

Figure S4. UV-visible spectra of a 0.25 mM solution of $[Fe(BPMEN)ACC]SbF_6$ complex (1) in CH₃CN before (black line) and after addition of 10 equivalent H₂O₂ (red line).