Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Novel ligand for keplerate chemistry. Synthesis and characterization of three keplerates based on {W₇₂Mo₆₀} spherical core with selenates introduced inside the cavity.

Vladimir S. Korenev^{*a,b}, Pavel A. Abramov^{a,b}, Cristian Vicent^c, Artem A. Zhdanov^{a,b}, Alphiya R. Tsygankova^a, Maxim N. Sokolov^{a,b}, Vladimir P. Fedin^{a,b}

Supplementary

- 1) Figure S1: Comparison of the IR-spectra of keplerates 1a and 3.
- 2) Figure S2: Comparison of the UV/Vis spectra of keplerates 1a and 3.
- 3) Figure S3: Location of coordinated $Me_2NH_2^+$ cations in 2.
- 4) Figure S4: Crystal packing of 2.
- 5) Table S1: Crystallographic data for 2.

ESI mass spectra and peak assignments for compounds 1a and 1b.

- 6) Figure S5: Negative ESI mass spectrum of 1a.
- 7) Table S2: Peak assignment in the ESI-MS of 1a.
- 8) Figure S6: Negative ESI mass spectrum of 1b recorded at low cone voltaje, Uc = 10 V.
- 9) Figure S7: Negative ESI mass spectrum of compound 1b recorded at different cone voltaje.
- 10) Table S3: Peak assignment in the ESI-MS of 1b.
- ESI mass spectra and peak assignments for compounds 2.
- 11) Figure S8: Negative ESI mass spectrum of compound 2.
- 12) Table S4: Peak assignment in the ESI-MS of 2.

Figure S1: Comparison of the IR-spectra of keplerates 1a and 3.

Figure S2: Comparison of the UV/Vis spectra of keplerates 1a and 3.

Figure S3. Location of coordinated $Me_2NH_2^+$ cations in 2.

Figure S4. Three-layered crystal packing of 1a.

Chemical formula	$\frac{C_{45}H_{162}Mo_{60}N_{22,50}O_{601,26}Se_{21,57}W_{72}}{}$
M _r	31335.89
Crystal system, space group	Trigonal, R ⁻ 3:H
Temperature (K)	100
a, c (Å)	32.8171 (9), 74.653 (2)
<u>V (Å³)</u>	<mark>69627 (4)</mark>
Z	3
Radiation type	Mo Ka
μ (mm ⁻¹)	10.58
Crystal size (mm)	$0.15 \times 0.12 \times 0.05$
Diffractometer	Bruker Nonius X8Apex CCD
Absorption correction	Multi-scan SADABS (Bruker-AXS, 2004)
T_{\min}, T_{\max}	0.300, 0.620
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	153672, 35539, 24563
R _{int}	0.057
θ values (°)	$\theta_{\rm max} = 27.5, \theta_{\rm min} = 1.5$
Range of <i>h</i> , <i>k</i> , <i>l</i>	$h = -36 \rightarrow 42, k = -42 \rightarrow 27, l = -96 \rightarrow 74$
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.051, 0.159, 1.11
No. of reflections	35539
No. of parameters	1479
H-atom treatment	H-atom parameters not defined
Weighting scheme	$w = 1/[\sigma^2(F_o^2) + (0.0899P)^2 + 157.9436P]$, where $P = (F_o^2 + 2F_c^2)/3$
<mark>∆□_{max}, ∆□_{min} (e Å⁻³)</mark>	4.73, -3.99

 Table S1. Crystallographic data for 2.

Computer programs: APEX2 (Bruker-AXS, 2004), SAINT (Bruker-AXS, 2004), SHELXS2013, SHELXL2013, Diamond 3.1, CIFTAB-97 (Sheldrick, 1998).

The ESI mass spectra of 1a and 1b (see Figure S5 and S6) displayed six broad peaks centered at m/z 12-7-. encompassing charge states from to This implies that for the $[\{W_6O_{21}(H_2O)_6\}_{12}\{MO_2O_4(SeO_4)\}_{30}]^{72}$ polyanion, from 60 to 65 negative charges must be compensated. Two posible ESI ionization mechanisms are compatible to account for the charge alleviation from the large $[\{W_6O_{21}(H_2O)_6\}_{12}\{MO_2O_4(SeO_4)\}_{30}]^{72}$ - polyanion; i) cation adduct formation yielding anions of general formula $[\{W_6O_{21}(H_2O)_6\}_{12}\{MO_2O_4(SeO_4)\}_{30 + m}cat]^{n-}$ (n = 12 to 7; m = 60 to 65) or ii) cation adduct formation accompanied by m-fold releasing of SeO₄²⁻ groups that yield $[\{W_6O_{21}(H_2O)_6\}_{12}\{MO_2O_4(SeO_4)_{(30-m)}\} + _{(60-2m)}cat]^{n-} (n = 12 \text{ to } 7; m = 30 \text{ to } 0).$ This latter mechanism the POM has been observed for closely related keplerate cluster $(NH_4)_{42}[Mo_{132}O_{372}(H_2O)_6(CH_3COO)_{30}]$ that yields $(NH_4)_m[Mo_{132}O_{372}(CH_3COO)_{12}]^{n-}$ (m = 12 to 14; n = 12 to 10) upon ESI conditions. According to the experimentally determined m/z values (see Tables S2-S3) the distribution of charge states from 12- to 7- is produced by countercation adduct formation and solvation. Further support to this formulation comes from ESI-MS analysis of 1b at high cone voltages (Figure S7) from which a m/z shift towards lower values is observed. An estimation of m/z shift is ca. 1200 that roughly account for the liberation of all 72 water molecules from the $[\{W_6O_{21}(H_2O)_6\}_{12}\{MO_2O_4(SeO_4)\}_{30}]^{72}$ polyanion. The indicated formula collected in **Tables S2-S3**, corresponds to the ion that match the m/z position at the maximum of the envelope; however, we are aware that other plausible molecular composition are also possible; for example, related ions to those included in Table S3 at m/z 4582 may origin from replacing one Me₂NH⁺ cation by the combination of $H^+ + CH_3CN$.

Figure S5. Negative ESI mass spectrum of 90:10 $CH_3CN:H_2O$ solutions of compound 1a recorded at low cone voltage Uc = 10 V.

m/z	Envelop assignment ^a
(charge state)	
2534 (12)	$[[{W_6O_{21}(H_2O)_6}_{12}{Mo_2O_4(SeO_4)}_{30}]^{72-}+60H^+]^{12-}$
2788 (11)	$[[\{W_6O_{21}(H_2O)_6\}_{12}\{Mo_2O_4(SeO_4)\}_{30}]^{72-} + NH_4^+ + 60H^+ + H_2O]^{11-}$
3080 (10)	$[[\{W_6O_{21}(H_2O)_6\}_{12}\{Mo_2O_4(SeO_4)\}_{30}]^{72-} + 2NH_4^+ + 60H^+ + H_2O + 2CH_3CN]^{10-}$
3441 (9)	$[[\{W_6O_{21}(H_2O)_6\}_{12}\{Mo_2O_4(SeO_4)\}_{30}]^{72-} + 3NH_4^+ + 60H^+ + 2H_2O + 6CH_3CN]^{9-}$
3960 (8)	$[[\{W_6O_{21}(H_2O)_6\}_{12}\{Mo_2O_4(SeO_4)\}_{30}]^{72-} + 4NH_4^+ + 560^+ + 9H_2O + 18CH_3CN]^{8-}$
4648 (7)	$[[\{W_6O_{21}(H_2O)_6\}_{12}\{Mo_2O_4(SeO_4)\}_{30}]^{72-} + 5NH_4^+ + 60H^+ + 20H_2O + 35CH_3CN]^{7-}$

Table S2. Peak assignment of the series of peaks observed in the ESI mass spectrum shown in figure S5 of compound 1a.

^a the envelopes display different extent of cation adduct formation (where cat stands for NH_4^+ or H^+) as well as solvated water or acetonitrile molecules. For this particular simple, peaks were significantly broader than those for **1b** and **2** most likely due to the mixture of solvent used for ESI analysis.

Figure S6. Negative ESI mass spectrum CH_3CN solutions of compound 1b recorded at low cone voltaje, Uc = 10 V.

Figure S7. Negative ESI mass spectrum CH_3CN solutions of compound 1b recorded at low cone voltaje, Uc = 10 V (bottom) and 60 V (top). Dashed lines of the same colour illustrates the shift towards lower m/z values upon increasing the cone voltage.

m/z	Envelop assignment ^a
(charge state)	
2632 (12)	$[[\{W_6O_{21}(H_2O)_6\}_{12}\{MO_2O_4(SeO_4)\}_{30}]^{72-} + 20Me_2NH^+ + 5NH_4^+ + 35H^+]^{12-}$
2877 (11)	$[[\{W_6O_{21}(H_2O)_6\}_{12}\{MO_2O_4(SeO_4)\}_{30}]^{72-} + 21Me_2NH^+ + 5NH_4^+ + 35H^+ + CH_3CN]^{11-}$
3176 (10)	$ [[\{W_6O_{21}(H_2O)_6\}_{12}\{Mo_2O_4(SeO_4)\}_{30}]^{72-} + 22Me_2NH^+ + 5NH_4^+ + 35H^+ + 2CH_3CN]^{10-} $
3536 (9)	$[[\{W_6O_{21}(H_2O)_6\}_{12}\{MO_2O_4(SeO_4)\}_{30}]^{72-} + 23Me_2NH^+ + 5NH_4^+ + 35H^+ + 2CH_3CN]^{9-}$
3999 (8)	$[[\{W_6O_{21}(H_2O)_6\}_{12}\{MO_2O_4(SeO_4)\}_{30}]^{72-} + 24Me_2NH^+ + 5NH_4^+ + 35H^+ + 5CH_3CN]^{8-}$
4582 (7)	$[[\{W_6O_{21}(H_2O)_6\}_{12}\{MO_2O_4(SeO_4)\}_{30}]^{72-} + 25Me_2NH^+ + 5NH_4^+ + 35H^+ + 6CH_3CN]^{7-}$

Table S3. Peak assignment of the series of peaks observed in the ESI mass spectrum shown in Figure S6 of compound 1b.

^aThe envelopes display different extent of cation adduct formation (where cat stands for Me₂NH⁺, NH₄⁺ or H⁺) as well as solvated acetonitrile molecules, resulting in broad peaks. The indicated formula corresponds to the ion that match the m/z position at the maximum of the envelope; however, we are aware that other plausible molecular composition are also possible; for example, related ions to those included in **Table S2** at m/z 4582 may origin from replacing one Me₂NH⁺ cation by the combination of H⁺ + CH₃CN.

ESI mass spectra and peak assignments for compound 2.

The ESI mass spectrum of **2** (see **Figure S8**) displayed six broad peaks centered at m/z encompassing charge states from 12- to 7-. That means that for the $[\{W_6O_{21}(H_2O)_6\}_{12}\{MO_2O_4\}_{30}(SeO_4)(H_2O)_{20}]^{52-}$ polyanion, from 40 to 45 negative charges must be compensated and analogously to those ESI ionization mechanisms mentioned above for **1a** and **1b**, charge alleviation via cation adduct formation or m-fold releasing of SeO₄²⁻ groups are also posible. According to the experimentally determined m/z values (see **Table S4**), the distribution of charge states from 12- to 7- is produced by countercation adduct formation and solvation. The indicated formula collected in **Table S4**, corresponds to the ion that match the m/z position at the maximum of the envelope.

Figure S8. Negative ESI mass spectrum CH_3CN solutions of compound 2 recorded at low cone voltage, Uc = 10 V.

Table S4. Peak assignment of the series of peaks observed in the ESI mass spectrum shown in**Figure S8** of compound 2.

m/z (charge state)	Envelop assignment ^a
2561 (12)	$[[\{W_6O_{21}(H_2O)_6\}_{12}\{Mo_2O_4\}_{30}(SeO_4)_{20}(H_2O)_{20}]^{52-} + 25Me_2NH^+ + 5NH_4^+ + 10H^+]^{12-}$
2803 (11)	$ [[{W_6O_{21}(H_2O)_6}_{12}{Mo_2O_4}_{30}(SeO_4)_{20}(H_2O)_{20}]^{52-} + 26Me_2NH^+ + 5NH_4^+ + 10H^+ + CH_3CN]^{11-} $
3097 (10)	$ [[{W_6O_{21}(H_2O)_6}_{12}{Mo_2O_4}_{30}(SeO_4)_{20}(H_2O)_{20}]^{52-} + 27Me_2NH^+ + 5NH_4^+ + 10H^+ + 3CH_3CN]^{10-} $
3450 (9)	$ [[{W_6O_{21}(H_2O)_6}_{12}{Mo_2O_4}_{30}(SeO_4)_{20}(H_2O)_{20}]^{52-} + 28Me_2NH^+ + 5NH_4^+ + 10H^+ + 5CH_3CN]^{9-} $
3900 (8)	$ [[{W_6O_{21}(H_2O)_6}_{12}{Mo_2O_4}_{30}(SeO_4)_{20}(H_2O)_{20}]^{52-} + 29Me_2NH^+ + 5NH_4^+ + 10H^+ + 6CH_3CN]^{8-} $
4460 (7)	$ [[\{W_6O_{21}(H_2O)_6\}_{12}\{Mo_2O_4\}_{30}(SeO_4)_{20}(H_2O)_{20}]^{52-} + 30Me_2NH^+ + 5NH_4^+ + 10H^+ + 7CH_3CN]^{7-} $

^aThe envelopes display different cation adduct formation (where cat stands for Me_2NH^+ , NH_4^+ or H^+) as well as solvated water molecules, resulting in broad peaks.