Electronic Supporting Information

An Experimental and Theoretical Magneto-Structural Study of Polynuclear Ni^{II} Complexes Assembled from a Versatile bis(salicylaldehyde)diamine Polytopic Ligand.

Itziar Oyarzabal, José Ruiz, Antonio J. Mota, Antonio Rodríguez-Diéguez, José M. Seco, Enrique Colacio

 Table S1. Crystallographic data for complexes 1-6.

Compound	1	2	3	4	5	6
Formula	$C_{20}H_{26}N_4O_{12}Br_2Ni$	$C_{32}H_{39}N_3O_9Br_2Ni_2$	$C_{23}H_{23}N_3O_6SBr_2Ni_2$	$C_{50}H_{61}N_{11}O_{17}Br_2Ni_3$	$C_{48}H_{72}N_4O_{22}Br_4Ni_4$	$C_{45}H_{54}N_{10}O_{15}Br_4Ni_4$
<i>M</i> _r	732.98	886.90	746.74	1583.87	1611.58	1529.46
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Triclinic	Triclinic
Space group (no.)	<i>P21/c</i> (14)	C2/c (15)	<i>I2/a</i> (15)	<i>P21/c</i> (14)	<i>P-1</i> (2)	<i>P-1</i> (2)
<i>a</i> (Å)	12.3321(6)	20.9791(14)	21.9768(3)	21.6387(9)	11.7285(10)	13.3880(4)
b (Å)	9.5827(4)	14.469(2)	9.7423(10)	10.6943(12)	12.3966(13)	14.4846(5)
<i>c</i> (Å)	21.5074(9)	26.9753(19)	24.826(4)	27.2254(7)	12.6195(15)	14.9568(5)
α(°)	90.00	90.00	90.00	90.00	89.018(9)	106.726(3)
β (°)	94.157(4)	118.361(9)	95.237(2)	111.474(2)	70.217(9)	95.185(3)
γ (°)	90.00	90.00	90.00	90.00	64.859(9)	93.111(3)
V (Å ³)	2534.95(19)	7205.3(13)	5293.2(10)	5862.9(7)	1545.6(3)	2756.53(16)
Ζ	4	8	8	4	1	2
<i>D_c</i> (g cm ⁻³)	1.921	1.635	1.874	1.794	1.731	1.843
μ(MoKα) (mm ⁻¹) ^a	3.990	3.318	6.426	3.759	5.046	4.318
<i>Т (</i> К)	100(2)	100(2)	100(2)	100(2)	100(2)	100(2)
Observed reflections	5889 (4775)	6345 (5721)	5329 (4677)	10308 (7841)	6058 (4762)	9673 (7112)
R _{int}	0.0438	0.0247	0.0357	0.0414	0.0267	0.0323
Parameters	378	466	337	748	329	694
GOF	1.109	1.107	1.031	1.038	1.094	1.058
R ₁ ^{b,c}	0.0560 (0.0400)	0.0349 (0.0299)	0.0538 (0.0467)	0.0608 (0.0399)	0.0556 (0.0447)	0.0744 (0.0496)
wR ₂ ^{c,d}	0.0909 (0.0843)	0.0687 (0.0666)	0.1071 (0.1030)	0.0934 (0.0862)	0.1298 (0.1239)	0.1302 (0.1192)
Largest difference in peak and hole (e Å-3)	1.220 and -0.638	0.920 and -0.544	2.544 and -1.891	1.175 and -0.760	1.744 and -1.010	1.037 and -0.894

^a μ (CuK α) (mm⁻¹) in **3** and **5**.

 ${}^{\mathrm{b}}R_1 = \Sigma ||\mathbf{F}_{\mathrm{o}}| - |\mathbf{F}_{\mathrm{c}}|| / \Sigma |\mathbf{F}_{\mathrm{o}}|.$

^c Values in parentheses for reflections with $l > 2\sigma(l)$.

^d $wR_2 = \{\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]\}^{\frac{1}{2}}$

Compound	1	2	3	4	5	6
Ni(1)-O(1A)	2.039(2)					
Ni(1)-O(2A)	1.965(2)	2.125(2)	2.018(3)	2.059(3)	2.066(3)	2.040(4)
Ni(1)-O(3A)	1.981(2)	2.060(2)	1.982(3)	2.020(3)	2.109(3)	2.112(4)
Ni(1)-O(4A)	2.041(2)					
Ni(1)-O(1C)	2.123(2)					
Ni(1)-O(1W)	2.074(3)					
Ni(1)-O(1B)		2.040(2)	1.943(3)		2.065(3)	2.057(4)
Ni(1)-O(2B)		2.011(3)				
Ni(1)-O(1P)				2.137(3)		
Ni(1)-O(1M)					2.058(3)	
Ni(1)-N(1A)		2.130(2)	2.047(4)	2.066(3)	2.114(3)	2.098(5)
Ni(1)-N(2A)		2.135(2)	2.066(3)	2.096(3)	2.126(3)	2.104(5)
Ni(1)-N(1P)				2.077(4)		
Ni(1)-N(1C)						2.113(5)
Ni(2)-O(1A)		2.058(3)	2.041(3)	2.007(3)	2.065(3)	2.047(4)
Ni(2)-O(2A)		2.032(2)	2.019(3)	1.983(3)	2.021(3)	2.017(4)
Ni(2)-O(3A)		2.058(2)	2.014(3)			
Ni(2)-O(3A)*					2.094(3)	2 075(4)
Ni(2)-O(4A)			2.052(3)			
Ni(2)-O(1B)				2.008(3)		
Ni(2)-O(2B)			2.079(3)	1.985(3)	2.043(3)	2.008(4)
Ni(2)-O(1C)		1.980(2)				
Ni(2)-O(2C)		2.016(2)				
Ni(2)-O(1W)		2.091(2)			/-)	
Ni(2)-O(1M)					2.065(3)	
NI(2)-O(1M)^				0.440(0)	2.024(3)	
NI(2)-O(1P)				2.119(3)		
NI(2) - O(2P)			0.04E(4)	2.129(3)		0.400(4)
NI(2) - N(1C)			2.015(4)			2.129(4)
NI(2) - N(1C)				2.071(2)		2.061(4)
NI(3) - O(2D)				2.071(3)		
Ni(3) - O(3D)				2.034(3)		2 065(4)
Ni(3) - O(2D)						2.003(4)
Ni(3) - O(3D)						2.133(4)
Ni(3)-O(2P)				2 127(3)		2.003(4)
Ni(3) - O(2P)				2.127(3) 2 113(3)		
Ni(3)-N(1R)				2.115(3)		
Ni(3)-N(2B)				2.000(0)		
Ni(3)-N(1D)				2.107(0)		2 103(5)
Ni(3)-N(2D)						2 115(5)
Ni(3)-N(1E)						2 111(5)
Ni(4)-O(1D)						2.044(4)
Ni(4)-O(2D)						2.016(4)
Ni(4)-O(3D)*						2.072(4)
Ni(4)-O(2E)						1.995(4)
Ni(4)-N(1F)						2.156(5)
Ni(4)-N(1F)*						2.082(5)

Table S2. Selected bond lengths (Å) and angles (°) for complexes 1-6.

Ni(1)⋯Ni(2)	3.203(1)	2.954(1)	3.118(1)	3.009(1)	3.026(1)
Ni(1)⋯Ni(2)*				3.212(1)	3.273(1)
Ni(1)⋯Ni(1)*				5.417(1)	5.456(1)
Ni(2)…Ni(2)*				3.067(1)	3.159(1)
Ni(2)⋯Ni(3)			3.136(1)		
Ni(3)⋯Ni(4)					3.030(1)
Ni(3)⋯Ni(4)*					3.266(1)
Ni(3)⋯Ni(3)*					5.435(1)
Ni(4)⋯Ni(4)*					3.186(1)
Ni(1)-O(2A)-Ni(2)	100.79(7)	94.1(1)	101.0(1)	94.8(1)	96.5(2)
Ni(1)-O(3A)-Ni(2)	102.16(8)	95.4(1)			
Ni(1)-O(3A)-Ni(2)*				99.7(1)	102.9(2)
Ni(1)-O(1P)-Ni(2)			94.2(1)		
Ni(2)-O(2B)-Ni(3)			101.3(1)		
Ni(2)-O(2P)-Ni(3)			95.0(1)		
Ni(1)-O(1M)-Ni(2)				93.8(1)	
Ni(1)-O(1M)-Ni(2)*				103.8(1)	
Ni(2)-O(1M)-Ni(2)*				97.2(1)	
Ni(1)-N(1C)-Ni(2)					91.1(2)
Ni(1)-N(1C)-Ni(2)*					102.7(2)
Ni(2)-N(1C)-Ni(2)*					97.3(2)
Ni(3)-O(2D)-Ni(4)					95.9(2)
Ni(3)-O(3D)-Ni(4)					101.9(2)
Ni(3)-N(1F)-Ni(4)					90.4(2)
Ni(3)-N(1F)-Ni(4)*					102.3(2)
Ni(4)-N(1F)-Ni(4)*					97.5(2)

Figure S1. A perspective view of the structure of 1 together with intramolecular (green dotted lines) and intermolecular (red dotted lines) hydrogen bonds.

Figure S2. A perspective view of the structure of 4 together with intramolecular (green dotted lines) and intermolecular (red dotted lines) hydrogen bonds.

Figure S3. A perspective view of the structure of **4** together with intermolecular (red dotted lines) hydrogen bonds forming a chain running along the *b* axis.

Figure S4. Field dependence of the magnetization for 2.

Atoms	2	3	4	5	6A	6B
Ni1	+1.6907	+1.6554	+1.6610	-1.6873	+1.6683	+1.6711
Ni2	-1.7206	+1.7375	-1.7230	-1.7203	+1.6797	+1.6804
Ni3	-	-	+1.6718	+1.6872	+1.6683	+1.6711
Ni4	-	-	-	+1.7203	+1.6797	+1.6804
O _{phenoxo}	+0.0083 -0.0059	+0.0900ª	+0.0624 ^a -0.0166 ^a	-0.0000 ^{a,d} +0.0001 ^{a,d}	+0.0758ª	+0.0722ª
O _{aldehyde}	-0.0380	+0.0455ª	-0.0598	-0.0344 +0.0344	+0.0414ª	+0.0449ª
O _{acetate}	-	+0.0595ª	-	-0.0410ª +0.0410ª	+0.0474ª	+0.0472ª
O _{acac}	+0.0476 ^a -0.0592 ^a	-	-	-	-	-
O _{methoxide}	-	-	-	-0.0554 +0.0554	-	-
O _{water}	-0.0292	-	-0.0592 ^{a,c} +0.0161	-	-	-
N _{en} ^b	+0.0640ª	+0.0677ª	+0.0916ª	-0.0625ª +0.0626ª	+0.0703ª	+0.0707ª
N _{SCN}	-	+0.0690	_	_	-	-
Nacetonitrile	-	-	+0.0454	_	-	-
N _{azide}					+0.1944 ^e	+0.1889 ^e

Table S3. Spin densities of compound 2-6.

^{*a*} Mean values.^{*b*} From the ethylenediamine moiety of the ligand. ^{*c*} Bridged molecules. ^{*d*} Due to the symmetry of the system. ^{*e*} Sum of the three *N* atoms of the azide ligand.

(3)

(5)

Figure S5. Calculated spin densities for structures **2-6**. The isodensity surfaces represented correspond to a cut-off value of 0.012 e bohr⁻³. Grey and blue colors correspond to positive and negative values, respectively.