## **Supplementary materials**

# An open chain carboxyethyltin functionalized sandwich-type tungstophosphate based on trivacant Dawson subunit: synthesis, characterization and properties

Jian-Ping Bai,<sup>a</sup> Fang Su,<sup>a,b</sup> Hao-Tian Zhu,<sup>a</sup> Hang Sun,<sup>a</sup> Lan-Cui Zhang,<sup>\*a</sup> Mei-Ying Liu,<sup>a</sup> Wan-Sheng You<sup>\*a</sup> and Zai-Ming Zhu<sup>\*a</sup>

- 1. Crystal structure figures
- 2. Selected bond lengths and angles of SnR-Mn-P<sub>2</sub>W<sub>15</sub>
- 3. Physical characterizations
- 4. Catalysis experiments

### 1. Crystal structure figures



Fig. S1 Mixed ball-and-stick and polyhedral representation of  $SnR-Mn-P_2W_{15}$  (All hydrogen atoms and lattice water molecules are omitted for clarity)



Fig. S2 ORTEP drawing of the polyoxoanion of  $SnR-Mn-P_2W_{15}$  with thermal ellipsoids at 30 % probability (Hydrogen atoms and free water molecules have been omitted for clarity)



**Fig. S3** The packing arrangement of the polyoxoanion in **SnR-Mn-P<sub>2</sub>W<sub>15</sub>** (All H atoms, the isolated  $[C(NH_2)_3]^+$  and water molecules existed in the interspaces are omitted for clarity)



Scheme S1 Hydrolysis of estertin into open chain carboxyethyltin group during the synthetic process of  $SnR-Mn-P_2W_{15}$ 

## 2. Selected bond lengths and angles of $SnR\mbox{-}Mn\mbox{-}P_2W_{15}$

| Bond   | Length (Å) | Bond    | Length (Å) | Bond      | Length (Å) |
|--------|------------|---------|------------|-----------|------------|
| W1-O22 | 1.702(11)  | W7-O20  | 1.868(11)  | W13-O46   | 2.034(11)  |
| W1-O2  | 1.873(10)  | W7-O7   | 1.906(10)  | W13-O54   | 2.318(10)  |
| W1-O10 | 1.884(10)  | W7-O43  | 2.000(10)  | W14-O24   | 1.725(11)  |
| W1-07  | 1.912(10)  | W7-O31  | 2.389(10)  | W14-O18   | 1.860(11)  |
| W1-O41 | 2.010(10)  | W8-O23  | 1.691(12)  | W14-O17   | 1.868(11)  |
| W1-O15 | 2.376(10)  | W8-08   | 1.885(10)  | W14-O51   | 1.948(11)  |
| W2-O3  | 1.695(12)  | W8-019  | 1.903(10)  | W14-O6    | 1.975(12)  |
| W2-O32 | 1.838(10)  | W8-056  | 1.904(10)  | W14-O44   | 2.379(10)  |
| W2-O9  | 1.881(10)  | W8-O2   | 1.920(10)  | W15-O37   | 1.715(12)  |
| W2-O48 | 1.938(10)  | W8-014  | 2.388(11)  | W15-O46   | 1.850(11)  |
| W2-O39 | 1.995(11)  | W9-012  | 1.714(12)  | W15-O39   | 1.873(11)  |
| W2-O16 | 2.388(11)  | W9-O45  | 1.799(10)  | W15-O51   | 1.944(10)  |
| W3-O42 | 1.703(10)  | W9-O40  | 1.915(11)  | W15-O55   | 1.972(11)  |
| W3-O25 | 1.817(10)  | W9-019  | 1.941(10)  | W15-O44   | 2.363(11)  |
| W3-O40 | 1.872(11)  | W9-017  | 2.020(10)  | Sn1-O34#1 | 2.069(11)  |
| W3-O48 | 1.918(11)  | W9-014  | 2.337(10)  | Sn1-O13#1 | 2.070(10)  |
| W3-O18 | 1.993(10)  | W10-O52 | 1.703(12)  | Sn1–O41   | 2.098(10)  |
| W3-O16 | 2.352(10)  | W10-O50 | 1.875(10)  | Sn1-O43   | 2.110(10)  |
| W4-O29 | 1.720(11)  | W10-O56 | 1.892(10)  | Sn1–C1    | 2.16(2)    |
| W4-013 | 1.821(10)  | W10-O11 | 1.896(11)  | Sn1-O30#1 | 2.223(11)  |
| W4-O28 | 1.909(11)  | W10-O49 | 1.927(10)  | Mn1–O47   | 2.043(11)  |
| W4-O27 | 1.913(11)  | W10-O54 | 2.382(10)  | Mn1-O35#1 | 2.065(12)  |
| W4-O25 | 2.005(10)  | W11-O36 | 1.723(12)  | Mn1-O43#1 | 2.129(11)  |
| W4-O26 | 2.347(10)  | W11-O35 | 1.776(12)  | Mn1–O41   | 2.168(11)  |
| W5-01  | 1.745(11)  | W11-O5  | 1.889(11)  | Mn1-O30#1 | 2.291(11)  |
| W5-O47 | 1.766(11)  | W11-O20 | 1.982(11)  | Mn1-O30   | 2.301(12)  |
| W5-O28 | 1.911(11)  | W11-O21 | 2.081(10)  | P1-O31    | 1.530(10)  |
| W5-O10 | 1.951(10)  | W11-O31 | 2.334(10)  | P1015     | 1.536(11)  |
| W5-O45 | 2.106(10)  | W12-O53 | 1.735(12)  | P1-O26    | 1.540(12)  |

Table S1 Selected bond lengths (Å) and angles (°) for  $SnR-Mn-P_2W_{15}$ 

| W5-O15     | 2.349(10) | W12-O55     | 1.875(11) | P1-O30        | 1.584(11) |
|------------|-----------|-------------|-----------|---------------|-----------|
| W6-O33     | 1.713(12) | W12-O6      | 1.880(11) | P2-O16        | 1.523(11) |
| W6-O34     | 1.826(10) | W12-O8      | 1.941(11) | P2-O14        | 1.529(11) |
| W6-O5      | 1.914(11) | W12-O50     | 1.955(10) | P2-O54        | 1.534(10) |
| W6-O27     | 1.949(10) | W12-O44     | 2.412(11) | P2-O44        | 1.575(11) |
| W6-O32     | 1.987(10) | W13-O38     | 1.714(11) | C1–C2         | 1.514(10) |
| W6-O26     | 2.381(11) | W13-O21     | 1.790(10) | C2–C3         | 1.523(10) |
| W7-O4      | 1.718(11) | W13-O9      | 1.901(11) | C3–O57        | 1.279(10) |
| W7-O49     | 1.864(10) | W13-O11     | 1.958(12) | C3–O58        | 1.290(10) |
| Bond       | Angle(°)  | Bond        | Angle(°)  | Bond          | Angle(°)  |
| O22-W1-O15 | 172.6(4)  | O49-W7-O43  | 166.0(4)  | O11-W13-O54   | 73.5(4)   |
| O2-W1-O41  | 167.4(5)  | O20-W7-O31  | 73.2(4)   | O46-W13-O54   | 79.4(4)   |
| O10-W1-O15 | 72.4(4)   | O43-W7-O31  | 80.5(4)   | O24-W14-O44   | 168.1(5)  |
| O7-W1-O41  | 84.7(4)   | O23-W8-O14  | 172.2(5)  | O18-W14-O6    | 157.0(5)  |
| O3-W2-O16  | 172.0(5)  | O8-W8-O2    | 160.0(5)  | O51-W14-O44   | 71.2(4)   |
| O32-W2-O39 | 162.3(5)  | O19-W8-O14  | 73.0(4)   | O6-W14-O44    | 72.8(4)   |
| O48-W2-O16 | 72.9(4)   | O2-W8-O14   | 78.2(4)   | O37-W15-O44   | 167.9(5)  |
| O39-W2-O16 | 79.6(4)   | O12-W9-O14  | 170.0(5)  | O39-W15-O55   | 158.4(4)  |
| O42-W3-O16 | 171.6(5)  | O45-W9-O17  | 162.6(4)  | O51-W15-O44   | 71.6(4)   |
| O25-W3-O18 | 161.5(4)  | O19-W9-O14  | 73.6(4)   | O55-W15-O44   | 72.7(4)   |
| O48-W3-O16 | 74.1(4)   | O17-W9-O14  | 79.3(4)   | O34#1-Sn1-O41 | 88.7(4)   |
| O18-W3-O16 | 79.0(4)   | O52-W10-O54 | 171.0(5)  | O13#1-Sn1-O43 | 89.5(4)   |
| O29-W4-O26 | 174.2(5)  | O50-W10-O49 | 161.6(5)  | C1-Sn1-O30#1  | 176.6(6)  |
| O13-W4-O25 | 164.0(4)  | O11-W10-O54 | 73.0(4)   | O41-Sn1-C1    | 103.0(7)  |
| O27-W4-O26 | 74.2(4)   | O49-W10-O54 | 78.7(4)   | O35#1-Mn1-O30 | 176.6(4)  |
| O25-W4-O26 | 82.5(4)   | O36-W11-O31 | 170.5(4)  | O47-Mn1-O30#1 | 175.2(5)  |
| O1-W5-O15  | 169.5(5)  | O35-W11-O21 | 165.7(5)  | O43#1-Mn1-O30 | 77.3(4)   |
| O47-W5-O45 | 166.6(4)  | O20-W11-O31 | 72.6(4)   | O41-Mn1-O30#1 | 76.7(4)   |
| O10-W5-O15 | 72.0(4)   | O21-W11-O31 | 81.0(4)   | O31-P1-O15    | 111.9(6)  |
| O10-W5-O45 | 82.0(4)   | O53-W12-O44 | 174.1(5)  | O31-P1-O26    | 111.2(6)  |
| O33-W6-O26 | 173.3(5)  | O6-W12-O50  | 155.9(5)  | O15-P1-O30    | 108.0(6)  |
| O34-W6-O32 | 163.1(5)  | O55-W12-O44 | 73.1(4)   | O16-P2-O14    | 111.8(6)  |
| O34-W6-O26 | 81.0(4)   | O6-W12-O44  | 73.5(4)   | O14-P2-O54    | 112.8(6)  |

| O27-W6-O26 | 72.8(4)  | O38-W13-O54 | 170.7(5) | O14-P2-O44 | 106.7(6) |
|------------|----------|-------------|----------|------------|----------|
| O4-W7-O31  | 170.5(5) | O21-W13-O46 | 162.4(4) |            |          |

| Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y,-z |            |                     |                    |            |  |  |
|---------------------------------------------------------------------------|------------|---------------------|--------------------|------------|--|--|
| Table S2 Hydrogen bonds for SnR-Mn-P2W15                                  |            |                     |                    |            |  |  |
| D–H···A                                                                   | d(D-H) (Å) | $d(H \cdots A)$ (Å) | $d(D\cdots A)$ (Å) | ∠(DHA) (°) |  |  |
| N1-H1C…O10                                                                | 0.86       | 2.08                | 2.916(18)          | 163.3      |  |  |
| N1-H1D…O37#2                                                              | 0.86       | 2.04                | 2.90(2)            | 177.0      |  |  |
| N2-H2C···O4#3                                                             | 0.86       | 2.21                | 3.044(19)          | 163.4      |  |  |
| N2-H2D…O51#2                                                              | 0.86       | 2.17                | 3.01(2)            | 164.1      |  |  |
| N3-H3A…O20#3                                                              | 0.86       | 2.05                | 2.89(2)            | 164.0      |  |  |
| N3-H3B…O1                                                                 | 0.86       | 2.16                | 3.01(2)            | 170.0      |  |  |
| N4-H4A…O39                                                                | 0.86       | 2.14                | 2.995(18)          | 170.5      |  |  |
| N4-H4B…O19#4                                                              | 0.86       | 1.99                | 2.840(18)          | 172.2      |  |  |
| N5-H5A…O18                                                                | 0.86       | 2.13                | 2.90(2)            | 149.5      |  |  |
| N5-H5A…O48                                                                | 0.86       | 2.62                | 3.26(2)            | 132.9      |  |  |
| N5-H5B····O52#5                                                           | 0.86       | 2.13                | 2.96(2)            | 161.3      |  |  |
| N6-H6A…O12#4                                                              | 0.86       | 2.03                | 2.89(2)            | 174.2      |  |  |
| N6-H6B…O11#5                                                              | 0.86       | 2.10                | 2.93(2)            | 163.5      |  |  |
| N7-H7A…O23                                                                | 0.86       | 2.38                | 3.12(3)            | 144.5      |  |  |
| N7-H7A···O37#2                                                            | 0.86       | 2.63                | 3.12(2)            | 116.9      |  |  |
| N7-H7B…O3W#2                                                              | 0.86       | 2.48                | 3.24(4)            | 148.0      |  |  |
| N7-H7B····O46#2                                                           | 0.86       | 2.54                | 3.18(2)            | 131.7      |  |  |
| N8-H8A…O24#6                                                              | 0.86       | 2.46                | 3.18(3)            | 142.0      |  |  |
| N8-H8BO3W#2                                                               | 0.86       | 2.59                | 3.34(4)            | 145.4      |  |  |
| N9-H9A···O24#6                                                            | 0.86       | 2.20                | 3.00(2)            | 154.1      |  |  |
| N9-H9B…O56                                                                | 0.86       | 2.36                | 3.13(2)            | 147.7      |  |  |
| N10-H10A…O38                                                              | 0.86       | 2.54                | 3.27(2)            | 142.8      |  |  |
| N10-H10A…O9                                                               | 0.86       | 2.60                | 3.30(2)            | 140.4      |  |  |
| N11-H11A…O53#4                                                            | 0.86       | 2.32                | 3.17(2)            | 172.2      |  |  |
| N11-H11B…O42#7                                                            | 0.86       | 2.16                | 3.00(2)            | 165.0      |  |  |
| N12-H12A…O38                                                              | 0.86       | 2.25                | 3.05(2)            | 155.3      |  |  |
| N13-H13A…O28#7                                                            | 0.86       | 2.26                | 3.088(19)          | 160.3      |  |  |
| N13-H13BO36                                                               | 0.86       | 2.13                | 2.92(2)            | 152.2      |  |  |
| N14-H14A…O36                                                              | 0.86       | 2.41                | 3.13(2)            | 140.8      |  |  |
| N14-H14A…O5                                                               | 0.86       | 2.63                | 3.37(2)            | 145.3      |  |  |
| N14-H14B…O4W                                                              | 0.86       | 2.18                | 2.99(5)            | 157.7      |  |  |
| N15-H15A…O29#7                                                            | 0.86       | 2.18                | 2.98(2)            | 155.7      |  |  |
| N15-H15B…O4W                                                              | 0.86       | 2.50                | 3.24(5)            | 144.7      |  |  |
| N16-H16B····O35#1                                                         | 0.86       | 2.26                | 3.03(3)            | 149.5      |  |  |
| N16-H16B····O34#1                                                         | 0.86       | 2.55                | 3.16(2)            | 128.7      |  |  |
| N17-H17A…O35#1                                                            | 0.86       | 2.23                | 3.00(2)            | 149.3      |  |  |
| N17-H17B…O1#8                                                             | 0.86       | 2.34                | 2.99(2)            | 131.8      |  |  |
| N18-H18BO2W#3                                                             | 0.86       | 1.97                | 2.82(3)            | 170.9      |  |  |

Symmetry transformations used to generate equivalent atoms: #1 -x+1, -y, -z; #2 x+1/2, -y+1/2, z+1/2; #3 x+1, y, z; #4 x-1/2, -y+1/2, z-1/2; #5 x+1/2, -y+1/2, z-1/2; #6 x-1/2, -y+1/2, z+1/2; #7 x-1, y, z; #8 -x+2, -y, -z

## 3. Physical characterizations



Fig. S4 The IR spectrum of  $SnR-Mn-P_2W_{15}$ 



Fig. S5 TG curves of  $SnR-Mn-P_2W_{15}$  (a) and  $Mn-P_2W_{15}$  (b)



**Fig. S6** The IR spectra of **SnR-Mn-P<sub>2</sub>W<sub>15</sub>** at different temperatures. At 350 °C, the characteristic peaks of polyanion at 1096, 948, 910, 756 cm<sup>-1</sup> (20 °C) belonging to v (P–O), v (W=O<sub>d</sub>), v (W–O<sub>a</sub>), v (W–O<sub>b</sub>) and v (W–O<sub>c</sub>) respectively still retain, indicating the existence of intrinsic sandwich-type structure. After 500 °C, the  $v_{as}$ (COO<sup>-</sup>) and  $v_s$ (COO<sup>-</sup>) vibrations at 1618 and 1358 cm<sup>-1</sup> disappeared, which illustrated the decomposition of organtin groups. Furthermore, the peak of P–O vibration become weaker, meaning that the polyoxoanion skeleton collapsed, and resulting in the obvious weight loss in the TG curve



Fig. S7 The simulated and experimental XRPD patterns of SnR-Mn-P<sub>2</sub>W<sub>15</sub>



Fig. S8 UV-vis absorption spectra of  $SnR-Mn-P_2W_{15}$  and  $Mn-P_2W_{15}$  in NaCl aqueous solution, respectively



**Fig. S9** Cyclic voltammogram of **SnR-Mn-P<sub>2</sub>W<sub>15</sub>** in 1 mol  $L^{-1}$  Na<sub>2</sub>SO<sub>4</sub>-H<sub>2</sub>SO<sub>4</sub> aqueous solution (pH = 4) at different scan rates

#### 4. Catalysis experiments



**Fig S10** Electrocatalytic reduction of  $H_2O_2$  with a  $1.0 \times 10^{-4}$  mol L<sup>-1</sup> solution of **Mn-P<sub>2</sub>W<sub>15</sub>**/MnCl<sub>2</sub> in a 1 mol·L<sup>-1</sup> Na<sub>2</sub>SO<sub>4</sub>-H<sub>2</sub>SO<sub>4</sub> aqueous solution (pH = 4) at the scan rate of 50 mV·s<sup>-1</sup>. (a) **Mn-P<sub>2</sub>W<sub>15</sub>**; (b) MnCl<sub>2</sub>; (c) Comparison of **SnR-Mn-P<sub>2</sub>W<sub>15</sub>** and **Mn-P<sub>2</sub>W<sub>15</sub>** 



**Fig S11** Electrocatalytic reduction of NaNO<sub>2</sub> with a  $1.0 \times 10^{-4}$  mol L<sup>-1</sup> solution of **Mn-P<sub>2</sub>W<sub>15</sub>/MnCl<sub>2</sub>** in a 1 mol·L<sup>-1</sup> Na<sub>2</sub>SO<sub>4</sub>-H<sub>2</sub>SO<sub>4</sub> aqueous solution (pH = 4) at the scan rate of 50 mV·s<sup>-1</sup>. (a) **Mn-P<sub>2</sub>W<sub>15</sub>**; (b) **MnCl<sub>2</sub>**; (c) Comparison of **SnR-Mn-P<sub>2</sub>W<sub>15</sub>** and **Mn-P<sub>2</sub>W<sub>15</sub>**.



Scheme S2 Ketalization of cyclohexanone with glycol



**Fig. S12** Influence of reaction time on cyclohexanone ethylene ketal productivity: cyclohexanone (0.1 mol)/glycol molar ratio, 1:1.4; **SnR-Mn-P<sub>2</sub>W<sub>15</sub>** (based on W)/cyclohexanone molar ratio, 1:200; reaction temperature, 95-100 °C; water-carring agent, cyclohexane (10 mL)



**Fig. S13** Influence of the material ratio on cyclohexanone ethylene ketal productivity: **SnR-Mn-P<sub>2</sub>W<sub>15</sub>** (based on W)/cyclohexanone (0.1 mol) molar ratio, 1:200; reaction temperature, 95-100 °C; reaction time, 3.5 h. wate<u>r</u>-carring agent, cyclohexane (10 mL)



**Fig. S14** Influence of the amount of **SnR-Mn-P**<sub>2</sub>**W**<sub>15</sub> on cyclohexanone ethylene ketal productivity: cyclohexanone (0.1 mol)/glycol molar ratio, 1:1.4; reaction temperature, 95-100 °C; reaction time, 3.5 h; water-carring agent, cyclohexane (10 mL)



**Fig. S15** The catalytic activities of **SnR-Mn-P<sub>2</sub>W<sub>15</sub>** used four cycles for the synthesis of cyclohexanone ethylene ketal, and catalyst was recovered by simple filtration without any treatment. The reaction conditions: catalyst (based on W)/cyclohexanone (0.1 mol) molar ratio, 1:200; cyclohexanone (0.1 mol)/glycol molar ratio, 1:1.4; reaction temperature, 95-100 °C; reaction time, 3.5 h; water-carring agent, cyclohexane (10 mL)

| Entry | Catalyst                                                             | Solubility | Time (h) | Yield (%) |
|-------|----------------------------------------------------------------------|------------|----------|-----------|
| 1     | P <sub>2</sub> W <sub>15</sub>                                       | insoluble  | 3.5      | 6         |
| 2     | Mn-P <sub>2</sub> W <sub>15</sub>                                    | insoluble  | 3.5      | 10        |
| 3     | Cl <sub>3</sub> SnCH <sub>2</sub> CH <sub>2</sub> COOCH <sub>3</sub> | soluble    | 3.5      | 97        |
| 4     | MnCl <sub>2</sub>                                                    | soluble    | 3.5      | 86        |
| 5     | SnR-Mn-P <sub>2</sub> W <sub>15</sub>                                | insoluble  | 3.5      | 90        |

Table S3Catalytic performance of catalystsSnR-Mn-P2W15, the parentMn-P2W15, monomerP2W15, $Cl_3SnCH_2CH_2COOCH_3$  and  $MnCl_2$  for the synthesis of cyclohexanone ethylene ketal

Table S4 Catalytic performance of various catalysts for the oxidation of cyclohexanol to cyclohexanone with H<sub>2</sub>O<sub>2</sub>

| Entry | Catalyst                                                             | H <sub>2</sub> O <sub>2</sub> | Solvent | Solubility | Temperature | Time  | Isolated  |
|-------|----------------------------------------------------------------------|-------------------------------|---------|------------|-------------|-------|-----------|
|       |                                                                      | (equiv.)                      |         |            | (°C)        | (min) | yield (%) |
| 1     | P <sub>2</sub> W <sub>15</sub>                                       | 2.2                           | MeCN    | soluble    | 80          | 150   | 70.9      |
| 2     | $Mn-P_2W_{15}$                                                       | 2.2                           | MeCN    | soluble    | 80          | 150   | 16.7      |
| 3     | MnCl <sub>2</sub>                                                    | 2.2                           | MeCN    | soluble    | 80          | 150   | 7.7       |
| 4     | Cl <sub>3</sub> Sn(CH <sub>2</sub> ) <sub>2</sub> COOCH <sub>3</sub> | 2.2                           | MeCN    | soluble    | 80          | 150   | 34.5      |
| 5     | SnR-Mn-P <sub>2</sub> W <sub>15</sub>                                | 2.2                           | MeCN    | soluble    | 80          | 150   | 72.4      |