Stable and Color Tunable Emission Properties Based on Non-Cyclometalated Gold(III) Complexes

Michael Bachmann, Olivier Blacque and Koushik Venkatesan*

Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich,

Switzerland

*To whom correspondence should be addressed. Email: <u>venkatesan.koushik@chem.uzh.ch</u>

Table of Contents

Crystal structure determinations of $1-5$	S2
UV/Vis profiles of the free pyridine ligands	S23
DFT and TD-DFT calculations	S24

Crystal structure determination of 1

Figure S1a. The molecular structure of 1, with displacement ellipsoids drawn at the 30% probability level. The solvent molecule and all H atoms are omitted.

Figure S1b. A view along the *b* axis of the crystal packing of **1** showing $\pi \dots \pi$ interactions as green dashed lines.

Figure S1c. A view along the *a* axis of the crystal packing of **1** showing C—F... π interactions as green dashed lines.

CCDC number	1024826
Empirical formula	$C_{59}H_{16}Au_2Cl_2F_{34}N_2$
Formula weight	1863.57
Temperature/K	183(1)
Crystal system	triclinic
Space group	P-1
a/Å	8.4911(4)
b/Å	10.3695(4)
c/Å	17.1054(11)
α/°	98.487(4)
β/°	100.945(5)
γ/°	92.939(4)
Volume/Å ³	1457.63(13)
Z	1
$\rho_{calc}g/cm^3$	2.123
µ/mm⁻¹	5.271
F(000)	882.0
Crystal size/mm ³	$0.33 \times 0.26 \times 0.13$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	5.81 to 56.558
Index ranges	$-11 \leq h \leq 11, -13 \leq k \leq 13, -22 \leq l \leq 22$
Reflections collected	22202
Independent reflections	7227 [R _{int} = 0.0495, R _{sigma} = 0.0530]
Data/restraints/parameters	7227/39/470
Goodness-of-fit on F ²	1.049
Final R indexes [I>=2σ (I)]	$R_1 = 0.0349$, w $R_2 = 0.0731$
Final R indexes [all data]	$R_1 = 0.0448$, $wR_2 = 0.0775$
Largest diff. peak/hole / e Å ⁻³	1.35/-0.88

Table S1. Crystal data and	I structure refinement for 1.
----------------------------	-------------------------------

Table	e S2. Bo	nd Lengths for 1.			
Aton	n Atom	Length/Å	Aton	n Atom	Length/Å
Au1	C1	2.017(4)	C14	C15	1.378(6)
Au1	C7	2.078(4)	C14	F11	1.346(5)
Au1	C13	2.071(4)	C15	C16	1.374(6)
Au1	N1	2.113(4)	C15	F12	1.335(5)
C1	C2	1.377(6)	C16	C17	1.358(7)
C1	C6	1.360(5)	C16	F13	1.340(5)
C2	C3	1.380(6)	C17	C18	1.388(6)
C2	F1	1.343(5)	C17	F14	1.344(5)
C3	C4	1.366(6)	C18	F15	1.353(5)
C3	F2	1.352(5)	C19	C20	1.369(7)
C4	C5	1.374(6)	C19	N1	1.338(7)
C4	F3	1.332(5)	C20	C21	1.356(9)
C5	C6	1.374(6)	C21	C22	1.393(9)
C5	F4	1.344(5)	C22	C23	1.368(7)
C6	F5	1.351(4)	C23	C24	1.483(8)
C7	C8	1.381(6)	C23	N1	1.358(6)
C7	C12	1.359(6)	C24	C25	1.394(7)
C8	C9	1.384(7)	C24	C29	1.388(8)
C8	F6	1.352(5)	C25	C26	1.367(9)
C9	C10	1.368(7)	C25	F16	1.356(7)
C9	F7	1.340(5)	C26	C27	1.376(10)
C10	C11	1.371(7)	C27	C28	1.365(8)
C10	F8	1.340(5)	C27	F17	1.347(8)
C11	C12	1.375(6)	C28	C29	1.374(8)
C11	F9	1.340(5)	C30	Cl1	1.755(9)
C12	F10	1.355(5)	C30	CI2A	1.753(9)
C13	C14	1.371(6)	C30	CI2B	1.743(9)
C13	C18	1.391(6)	Cl1	Cl1 ¹	1.486(11)
¹ 1-X,	-Y,-Z				

Table S3. Bond Angles for 1.

Aton	1 Atom	n Atom	Angle/°	Aton	n Aton	1 Atom	Angle/°
C1	Au1	C7	88.89(16)	C14	C13	C18	116.3(4)
C1	Au1	C13	87.15(16)	C18	C13	Au1	119.2(3)
C1	Au1	N1	177.55(15)	C13	C14	C15	122.8(4)
C7	Au1	N1	92.59(16)	F11	C14	C13	119.2(4)
C13	Au1	C7	174.61(15)	F11	C14	C15	117.9(4)
C13	Au1	N1	91.24(15)	C16	C15	C14	119.1(4)
C2	C1	Au1	120.9(3)	F12	C15	C14	120.8(4)
C6	C1	Au1	121.3(3)	F12	C15	C16	120.1(4)
C6	C1	C2	117.7(4)	C17	C16	C15	120.5(4)
C1	C2	C3	120.7(4)	F13	C16	C15	119.4(4)
F1	C2	C1	120.9(4)	F13	C16	C17	120.0(4)
F1	C2	C3	118.4(4)	C16	C17	C18	119.4(4)
C4	C3	C2	120.5(4)	F14	C17	C16	120.9(4)
F2	C3	C2	120.5(4)	F14	C17	C18	119.7(4)
F2	C3	C4	119.0(4)	C17	C18	C13	121.9(4)
C3	C4	C5	119.2(4)	F15	C18	C13	120.1(4)
F3	C4	C3	120.7(4)	F15	C18	C17	118.1(4)
F3	C4	C5	120.0(4)	N1	C19	C20	122.9(6)
C6	C5	C4	119.4(4)	C21	C20	C19	119.3(7)
F4	C5	C4	119.4(4)	C20	C21	C22	118.6(6)
F4	C5	C6	121.2(4)	C23	C22	C21	120.2(6)
C1	C6	C5	122.4(4)	C22	C23	C24	120.8(5)

F5	C6	C1	119.8(4)	N1	C23	C22	120.6(6)
F5	C6	C5	117.8(4)	N1	C23	C24	118.6(4)
C8	C7	Au1	120.9(3)	C25	C24	C23	121.3(5)
C12	C7	Au1	124.7(3)	C29	C24	C23	122.5(5)
C12	C7	C8	114.4(4)	C29	C24	C25	116.1(6)
C7	C8	C9	123.4(5)	C26	C25	C24	123.7(6)
F6	C8	C7	120.1(4)	F16	C25	C24	117.3(6)
F6	C8	C9	116.5(4)	F16	C25	C26	119.0(6)
C10	C9	C8	119.4(4)	C25	C26	C27	117.1(6)
F7	C9	C8	120.8(5)	C28	C27	C26	122.3(7)
F7	C9	C10	119.8(5)	F17	C27	C26	118.6(6)
C9	C10	C11	119.2(5)	F17	C27	C28	119.1(7)
F8	C10	C9	121.0(5)	C27	C28	C29	119.0(7)
F8	C10	C11	119.9(5)	C28	C29	C24	121.8(5)
C10	C11	C12	119.0(4)	C19	N1	Au1	116.9(3)
F9	C11	C10	119.1(4)	C19	N1	C23	118.5(5)
F9	C11	C12	121.9(4)	C23	N1	Au1	124.3(4)
C7	C12	C11	124.7(4)	Cl2A	C30	Cl1	106.9(7)
F10	C12	C7	119.5(4)	CI2B	C30	Cl1	111.1(9)
F10	C12	C11	115.8(4)	$Cl1^1$	Cl1	C30	163.2(7)
C14	C13	Au1	124.4(3)				
¹ 1-X,-	-Y,-Z						

Crystal structure determination of 2.

Figure S2a. The molecular structure of **2**, with displacement ellipsoids drawn at the 30% probability level (only one of the two crystallographically independent molecules is presented). All H atoms are omitted for clarity.

Figure S2b. A view along the *b* axis of the crystal packing of **2** showing π ... π interactions as green dashed lines.

CCDC number	1024827
Empirical formula	$C_{119}H_{43}Au_4F_{60}N_4$
Formula weight	3456.44
Temperature/K	183(1)
Crystal system	triclinic
Space group	P-1
a/Å	13.4052(8)
b/Å	13.8638(6)
c/Å	16.8973(12)
α/°	83.044(4)
β/°	68.830(6)
γ/°	80.730(4)
Volume/Å ³	2883.4(3)
Z	1
$\rho_{calc}g/cm^3$	1.991
µ/mm⁻¹	5.222
F(000)	1641.0
Crystal size/mm ³	$0.27 \times 0.15 \times 0.03$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	5.562 to 50.7
Index ranges	$-16 \le h \le 17, -17 \le k \le 18, -22 \le l \le 22$
Reflections collected	33922
Independent reflections	10536 [R _{int} = 0.0665, R _{sigma} = 0.0990]
Data/restraints/parameters	10536/400/872
Goodness-of-fit on F ²	1.031
Final R indexes [I>=2σ (I)]	$R_1 = 0.0552$, $wR_2 = 0.1197$
Final R indexes [all data]	$R_1 = 0.0800, wR_2 = 0.1326$
Largest diff. peak/hole / e Å ⁻³	2.27/-1.08

Table S4. Crystal data and structure refinement for 2.

Table	S5. Bond	Lengths for 2.			
Atom	Atom	Length/Å	Atom	Atom	Length/Å
C1	C2	1.363(13)	C33	C34	1.334(14)
C1	N1	1.352(11)	C34	N2	1.335(11)
C2	C3	1.386(12)	C35A	C36A	1.3900
C3	C4	1.399(13)	C35A	C40A	1.3900
C3	C6	1.478(13)	C36A	C37A	1.3900
C4	C5	1.356(12)	C37A	C38A	1.3900
C5	N1	1.336(10)	C38A	C39A	1.3900
C6	C7	1.381(14)	C39A	C40A	1.3900
C6	C11	1.387(13)	C35B	C36B	1.3900
C7	C8	1.378(15)	C35B	C40B	1.3900
C8	C9	1.363(17)	C36B	C37B	1.3900
C9	C10	1.375(18)	C37B	C38B	1.3900
C10	C11	1.396(15)	C38B	C39B	1.3900
C12	C13	1.386(12)	C39B	C40B	1.3900
C12	C17	1.394(11)	C41	C42	1.411(12)
C12	Au1	1.990(8)	C41	C46	1.387(12)
C13	C14	1.370(13)	C41	Au2	2.050(9)
C13	F1	1.352(10)	C42	C43	1.396(14)
C14	C15	1.372(14)	C42	F16	1.353(10)
C14	F2	1 320(11)	C43	C44	1 336(13)
C15	C16	1 394(15)	C43	F17	1 309(11)
C15	F3	1 348(12)	C44	C45	1 369(13)
C16	C17	1 383(14)	C44	F18	1 355(11)
C16	E1,	1 349(11)	C45	C46	1 383(13)
C17	F5	1 331(10)	C45	E10	1 334(10)
C18	C19	1 380(12)	C16	F20	1.334(10)
C18	C73	1.380(12)	C40	C/18	1.342(10)
C18		2 065(9)	C47	C52	1.355(12)
C10	C20	1 375(13)	C47	Δ112	2 012(9)
C10	E20	1.362(10)	C49	C/Q	1 380(14)
C20	C21	1.302(10)	C48	E21	1.360(14) 1.354(11)
C20	C21 F7	1 319(10)	C40	C50	1.334(11)
C20	() ())	1.313(10) 1.272(14)	C49	E30	1.377(13)
C21	C22 E0	1.372(14) 1 220(11)	C50	C51	1.352(11)
C21	ro (22	1.339(11) 1.270(14)	C50	E33	1.307(13) 1.227(11)
C22	C25	1.370(14)	C50	FZ5	1.557(11)
C22	F9 F10	1.336(10)	C51	C52	1.309(14)
C23	C3E	1.309(10)	C51	F24 F25	1.540(12)
C24	C25	1.308(13)	C52	FZ5 CE4	1.555(11)
C24	01	1.371(13)	C55	C54	1.300(14)
C24	AUI	2.081(10)	C53	C28	1.378(14)
C25	C26	1.356(15)	C53	AUZ	2.040(9)
C25	F11 C27	1.349(11)	C54	55	1.382(17)
C26	C27	1.368(18)	C54	FZ6	1.383(14)
C26	F12	1.326(13)	C55	C56	1.33(2)
C27	C28	1.40(2)	C55	r2/	1.331(14)
C27	F13	1.345(13)	C56	C5/	1.349(19)
C28	C29	1.364(17)	C56	F28	1.38/(13)
C28	F14	1.353(14)	C57	C58	1.397(15)
C29	F15	1.340(13)	C57	F29	1.326(15)
C30	C31	1.365(15)	C58	F30	1.361(12)
C30	N2	1.328(12)	N1	Au1	2.068(7)
C31	C32	1.352(15)	N2	Au2	2.069(7)
C32	C33	1.426(16)	C59	C60	1.543(5)

C32	C35B	1.480(13) C61	C61 ¹	1.551(5)
C32	C35A	1.477(12) C60	C61	1.541(5)

¹-X,-Y,2-Z

Table S6. Bond Angles for 2.

Atom	1 Atom	n Atom	Angle/°	Atom	Atom	Atom	Angle/°
N1	C1	C2	122.8(8)	C40A	C39A	C38A	120.0
C1	C2	C3	120.6(9)	C39A	C40A	C35A	120.0
C2	C3	C4	115.7(8)	C36B	C35B	C32	123.9(16)
C2	C3	C6	121.4(8)	C36B	C35B	C40B	120.0
C4	C3	C6	122.9(8)	C40B	C35B	C32	116.0(15)
C5	C4	C3	120.8(8)	C37B	C36B	C35B	120.0
N1	C5	C4	123.0(8)	C36B	C37B	C38B	120.0
C7	C6	C3	121.0(8)	C39B	C38B	C37B	120.0
C7	C6	C11	118.6(9)	C38B	C39B	C40B	120.0
C11	C6	C3	120.4(9)	C39B	C40B	C35B	120.0
C8	C7	C6	120.3(11)	C42	C41	Au2	121.1(6)
C9	C8	C7	121.0(12)	C46	C41	C42	114.0(8)
C8	C9	C10	120.1(12)	C46	C41	Au2	124.8(6)
C9	C10	C11	119.2(11)	C43	C42	C41	124.0(8)
C6	C11	C10	120.8(10)	F16	C42	C41	117 1(8)
C13	C12	C17	114 6(8)	F16	C42	C43	118 8(8)
C13	C12		123 8(6)	C14	C42	C43	110.0(0) 117 //(9)
C17	C12	Au1	123.8(0)	E17	C43	C42	117. 4 (5)
C1/	C12	AU1	121.0(0)	E17	C43	C42	122 8(10)
C14	C13	C12	123.2(8)	C13	C45	C44	122.0(10)
Г1 Г1	C13	C12	117.2(8)	C43	C44	C45	122.0(9)
F1	C13	C14	117.5(8)	C43	C44	F10	118.2(9)
C13	C14	C15	118.1(9)	F18	C44	C45	118.9(9)
F2	C14	C13	122.0(9)	C44	C45	C46	118.7(9)
F2	C14	C15	119.9(9)	F19	C45	C44	120.3(9)
C14	C15	C16	120.1(10)	F19	C45	C46	121.0(9)
F3	C15	C14	120.0(10)	C45	C46	C41	123.1(9)
F3	C15	C16	119.9(10)	F20	C46	C41	119.5(8)
C17	C16	C15	119.4(9)	F20	C46	C45	117.5(8)
F4	C16	C15	119.3(10)	C48	C47	Au2	121.1(7)
F4	C16	C17	121.4(10)	C52	C47	C48	116.1(9)
C16	C17	C12	122.5(8)	C52	C47	Au2	122.8(7)
F5	C17	C12	120.5(8)	C49	C48	C47	122.1(9)
F5	C17	C16	116.9(8)	F21	C48	C47	120.3(8)
C19	C18	Au1	125.0(7)	F21	C48	C49	117.7(8)
C23	C18	C19	114.5(9)	C50	C49	C48	119.3(9)
C23	C18	Au1	120.4(7)	F22	C49	C48	119.9(10)
C20	C19	C18	123.9(9)	F22	C49	C50	120.7(10)
F6	C19	C18	118.8(9)	C51	C50	C49	119.6(10)
F6	C19	C20	117.3(8)	F23	C50	C49	118.7(10)
C21	C20	C19	118.5(9)	F23	C50	C51	121.8(10)
F7	C20	C19	120.7(9)	C50	C51	C52	118.9(10)
F7	C20	C21	120.8(9)	F24	C51	C50	118.7(10)
C20	C21	C22	120.5(9)	F24	C51	C52	122.3(10)
F8	C21	C20	119.8(9)	C47	C52	C51	124.1(10)
F8	C21	C22	119.7(9)	C47	C52	F25	119.7(9)
C23	C22	C21	118.5(9)	F25	C52	C51	116.3(9)
F9	C22	C21	120.4(10)	C54	C53	C58	112.5(10)

F9	C22	C23	121.0(9)	C54	C53	Au2	126.8(9)
C22	C23	C18	124.1(9)	C58	C53	Au2	120.6(7)
F10	C23	C18	118.8(9)	C53	C54	C55	124.5(13)
F10	C23	C22	117.1(8)	C53	C54	F26	116.2(10)
C25	C24	C29	117.5(10)	C55	C54	F26	119.3(11)
C25	C24	Au1	119.7(7)	C56	C55	C54	118.4(12)
C29	C24	Au1	122.7(8)	F27	C55	C54	118.6(15)
C26	C25	C24	124.0(10)	F27	C55	C56	123.0(14)
F11	C25	C24	119.8(9)	C55	C56	C57	122.9(12)
F11	C25	C26	116.3(9)	C55	C56	F28	118.4(16)
C25	C26	C27	118.3(11)	C57	C56	F28	118.6(16)
F12	C26	C25	122.1(12)	C56	C57	C58	115.7(13)
F12	C26	C27	119.6(12)	F29	C57	C56	121.6(13)
C26	C27	C28	119.2(11)	F29	C57	C58	122.8(13)
F13	C27	C26	121.4(15)	C53	C58	C57	125.9(11)
F13	C27	C28	119.4(15)	F30	C58	C53	119.8(9)
C29	C28	C27	120.6(12)	F30	C58	C57	114.3(10)
F14	C28	C27	118.6(13)	C1	N1	Au1	120.4(6)
F14	C28	C29	120.7(15)	C5	N1	C1	116.9(7)
C28	C29	C24	120.4(12)	C5	N1	Au1	121.9(5)
F15	C29	C24	120.7(10)	C30	N2	C34	116.2(8)
F15	C29	C28	118.9(11)	C30	N2	Au2	122.8(6)
N2	C30	C31	123.0(10)	C34	N2	Au2	120.7(6)
C32	C31	C30	122.1(11)	C12	Au1	C18	90.7(3)
C31	C32	C33	114.1(10)	C12	Au1	C24	89.0(4)
C31	C32	C35A	118.1(11)	C12	Au1	N1	177.7(3)
C31	C32	C35B	125.8(11)	C18	Au1	C24	175.0(3)
C33	C32	C35A	127.6(10)	C18	Au1	N1	88.3(3)
C33	C32	C35B	118.9(10)	N1	Au1	C24	92.1(3)
C34	C33	C32	120.7(9)	C41	Au2	N2	90.7(3)
C33	C34	N2	123.8(9)	C47	Au2	C41	89.3(4)
C36A	C35A	C32	119.5(8)	C47	Au2	C53	88.6(4)
C36A	C35A	C40A	120.0	C47	Au2	N2	177.4(3)
C40A	C35A	C32	120.4(8)	C53	Au2	C41	175.1(3)
C35A	C36A	C37A	120.0	C53	Au2	N2	91.6(3)
C38A	C37A	C36A	120.0	C61	C60	C59	109.9(7)
C37A	C38A	C39A	120.0	C60	C61	C61 ¹	108.8(7)

¹-X,-Y,2-Z

Crystal structure determination of 3.

Figure S3a. The molecular structure of 3, with displacement ellipsoids drawn at the 30% probability level. All H atoms are omitted for clarity.

Figure S3b. A view along the *a* axis of the crystal packing of **3** showing $\pi...\pi$ and C—F... π interactions as green dashed lines.

Tuble off elystal adta alla se	
CCDC number	1024828
Empirical formula	$C_{29}H_9AuF_{15}N$
Formula weight	853.34
Temperature/K	183(1)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	7.9254(4)
b/Å	18.503(4)
c/Å	18.4895(11)

Table S7. Crystal data and structure refinement for 3.

α/°	90
β/°	97.579(5)
γ/°	90
Volume/Å ³	2687.7(6)
Z	4
$\rho_{calc}g/cm^3$	2.109
µ/mm⁻¹	5.601
F(000)	1616.0
Crystal size/mm ³	$0.47 \times 0.31 \times 0.25$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	5.634 to 61.014
Index ranges	$-11 \leq h \leq 11, -26 \leq k \leq 26, -26 \leq l \leq 26$
Reflections collected	48393
Independent reflections	8205 [$R_{int} = 0.0501$, $R_{sigma} = 0.0318$]
Data/restraints/parameters	8205/0/415
Goodness-of-fit on F ²	1.036
Final R indexes [I>=2σ (I)]	$R_1 = 0.0246$, $wR_2 = 0.0568$
Final R indexes [all data]	$R_1 = 0.0310$, $wR_2 = 0.0597$
Largest diff. peak/hole / e Å $^{\text{-}3}$	1.85/-0.93

Table S8. Bond Lengths for 3.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Au1	C12	2.074(2)	C16	C17	1.372(4)
Au1	C18	2.011(2)	C16	F4	1.341(4)
Au1	C24	2.054(2)	C17	F5	1.341(3)
Au1	N1	2.109(2)	C18	C19	1.369(4)
C1	C2	1.369(4)	C18	C23	1.375(4)
C1	N1	1.353(3)	C19	C20	1.389(4)
C2	C3	1.372(4)	C19	F6	1.341(3)
C3	C4	1.365(4)	C20	C21	1.362(5)
C4	C5	1.383(4)	C20	F7	1.346(4)
C5	C6	1.476(4)	C21	C22	1.366(5)
C5	N1	1.348(3)	C21	F8	1.344(3)
C6	C7	1.390(4)	C22	C23	1.380(4)
C6	C11	1.388(4)	C22	F9	1.332(3)
C7	C8	1.375(4)	C23	F10	1.343(3)
C8	C9	1.354(6)	C24	C25	1.379(3)
C9	C10	1.363(7)	C24	C29	1.380(4)
C10	C11	1.381(5)	C25	C26	1.381(4)
C12	C13	1.372(4)	C25	F11	1.342(3)
C12	C17	1.373(4)	C26	C27	1.367(4)
C13	C14	1.377(4)	C26	F12	1.343(3)
C13	F1	1.347(4)	C27	C28	1.378(4)
C14	C15	1.365(5)	C27	F13	1.337(3)
C14	F2	1.342(4)	C28	C29	1.382(4)
C15	C16	1.371(5)	C28	F14	1.336(3)
C15	F3	1.340(3)	C29	F15	1.352(3)

Table S9. Bond Angles for 3.

Atom	Atom	n Atom	Angle/°	Atom	n Aton	n Atom	Angle/°
C12	Au1	N1	89.19(9)	C19	C18	Au1	123.0(2)
C18	Au1	C12	90.29(10)	C19	C18	C23	116.9(2)

C18	Au1	C24	89.19(10)	C23	C18	Au1	120.0(2)
C18	Au1	N1	179.43(10)	C18	C19	C20	121.7(3)
C24	Au1	C12	175.89(10)	F6	C19	C18	120.8(2)
C24	Au1	N1	91.35(9)	F6	C19	C20	117.5(3)
N1	C1	C2	122.3(3)	C21	C20	C19	119.6(3)
C1	C2	C3	118.7(3)	F7	C20	C19	119.9(3)
C4	C3	C2	119.1(3)	F7	C20	C21	120.6(3)
C3	C4	C5	121.0(3)	C20	C21	C22	120.4(3)
C4	C5	C6	121.0(3)	F8	C21	C20	119.5(3)
N1	C5	C4	119.6(3)	F8	C21	C22	120.1(3)
N1	C5	C6	119.4(2)	C21	C22	C23	118.8(3)
C7	C6	C5	122.0(3)	F9	C22	C21	120.2(3)
C11	C6	C5	119.4(3)	F9	C22	C23	121.0(3)
C11	C6	C7	118.6(3)	C18	C23	C22	122.6(3)
C8	C7	C6	120.2(3)	F10	C23	C18	120.6(2)
C9	C8	C7	120.6(4)	F10	C23	C22	116.8(3)
C8	C9	C10	120.1(4)	C25	C24	Au1	124.46(19)
C9	C10	C11	120.6(4)	C25	C24	C29	115.7(2)
C10	C11	C6	119.8(4)	C29	C24	Au1	119.81(17)
C13	C12	Au1	119.5(2)	C24	C25	C26	122.5(2)
C13	C12	C17	115.5(2)	F11	C25	C24	120.5(2)
C17	C12	Au1	124.6(2)	F11	C25	C26	117.0(2)
C12	C13	C14	123.1(3)	C27	C26	C25	120.0(2)
F1	C13	C12	119.4(3)	F12	C26	C25	120.4(3)
F1	C13	C14	117.5(3)	F12	C26	C27	119.6(2)
C15	C14	C13	119.4(3)	C26	C27	C28	119.8(2)
F2	C14	C13	120.5(4)	F13	C27	C26	120.7(2)
F2	C14	C15	120.1(3)	F13	C27	C28	119.5(3)
C14	C15	C16	119.3(3)	C27	C28	C29	118.6(3)
F3	C15	C14	120.6(3)	F14	C28	C27	120.2(3)
F3	C15	C16	120.0(4)	F14	C28	C29	121.1(2)
C15	C16	C17	119.5(3)	C24	C29	C28	123.4(2)
F4	C16	C15	119.8(3)	F15	C29	C24	120.0(2)
F4	C16	C17	120.6(3)	F15	C29	C28	116.5(2)
C16	C17	C12	123.1(3)	C1	N1	Au1	115.97(18)
F5	C17	C12	120.3(2)	C5	N1	Au1	124.63(17)
F5	C17	C16	116.6(3)	C5	N1	C1	119.3(2)

Crystal structure determination of 4.

Figure S4a. The molecular structure of 4, with displacement ellipsoids drawn at the 30% probability level. The solvent molecule and all H atoms are omitted for clarity.

Figure S4b. A view along the *b* axis of the crystal packing of 4 showing π ... π and C-F... π interactions as green dashed lines.

Table S10. Crystal data	and structure refinement for 4.
CCDC number	1024829
Empirical formula	$C_{70}H_{32}Au_2F_{30}N_2O$
Formula weight	1880.91
Temperature/K	183(1)
Crystal system	triclinic
Space group	P-1
a/Å	11.2092(3)
b/Å	12.1878(3)
c/Å	12.5527(3)
α/°	104.977(2)
β/°	106.125(2)

				-	-
Table S10	Crystal	data and	structure	refinemen	it for 4.

γ/°	98.915(2)
Volume/Å ³	1543.23(7)
Z	1
ρ _{calc} g/cm ³	2.024
µ/mm⁻¹	4.889
F(000)	902.0
Crystal size/mm ³	0.47 × 0.19 × 0.15
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/	' 5.716 to 61.012
Index ranges	$-16 \le h \le 16, -17 \le k \le 17, -17 \le l \le 17$
Reflections collected	27853
Independent reflections	9409 [R _{int} = 0.0378, R _{sigma} = 0.0367]
Data/restraints/parameters	9409/0/496
Goodness-of-fit on F ²	1.066
Final R indexes [I>=2σ (I)]	R ₁ = 0.0242, wR ₂ = 0.0571
Final R indexes [all data]	R ₁ = 0.0270, wR ₂ = 0.0587
Largest diff. peak/hole / e Å ⁻³	1.33/-0.93

Table S11. Bond Lengths for 4.

Atom	n Atom	Length/Å	Aton	n Atom	Length/Å
C1	C2	1.420(3)	C22	C23	1.383(3)
C1	C10	1.481(3)	C22	C27	1.379(3)
C1	N1	1.337(3)	C22	Au1	2.012(2)
C2	C3	1.424(4)	C23	C24	1.381(4)
C2	C6	1.418(3)	C23	F6	1.353(3)
C3	C4	1.400(4)	C24	C25	1.378(4)
C3	C9	1.416(4)	C24	F7	1.343(3)
C4	C5	1.355(4)	C25	C26	1.380(4)
C5	N1	1.371(3)	C25	F8	1.337(3)
C6	C7	1.359(4)	C26	C27	1.378(3)
C7	C8	1.412(5)	C26	F9	1.345(3)
C8	C9	1.356(5)	C27	F10	1.344(3)
C10	C11	1.399(3)	C28	C29	1.383(3)
C10	C15	1.392(4)	C28	C33	1.380(3)
C11	C12	1.378(4)	C28	Au1	2.059(2)
C12	C13	1.388(5)	C29	C30	1.378(3)
C13	C14	1.391(4)	C29	F11	1.351(3)
C14	C15	1.380(4)	C30	C31	1.376(4)
C16	C17	1.381(3)	C30	F12	1.343(3)
C16	C21	1.395(3)	C31	C32	1.379(4)
C16	Au1	2.077(2)	C31	F13	1.341(3)
C17	C18	1.374(4)	C32	C33	1.379(4)
C17	F1	1.352(3)	C32	F14	1.338(3)
C18	C19	1.375(4)	C33	F15	1.355(3)
C18	F2	1.349(3)	N1	Au1	2.101(2)
C19	C20	1.388(4)	01	C34	1.424(10)
C19	F3	1.333(3)	01	C36	1.429(12)
C20	C21	1.366(4)	C34	C35	1.482(12)
C20	F4	1.340(3)	C36	C37	1.477(12)
C21	F5	1.350(3)			

Table S12	. Bond	Angles	for 4.
-----------	--------	--------	--------

Aton	1 Atom	n Atom	Angle/°	Aton	n Aton	n Atom	Angle/°
C2	C1	C10	120.8(2)	F6	C23	C22	119.7(2)
N1	C1	C2	120.9(2)	F6	C23	C24	117.5(2)
N1	C1	C10	118.3(2)	C25	C24	C23	119.3(2)
C1	C2	C3	118.7(2)	F7	C24	C23	121.0(2)
C6	C2	C1	122.4(2)	F7	C24	C25	119.7(2)
C6	C2	C3	118.9(2)	C24	C25	C26	119.2(2)
C4	C3	C2	118.0(2)	F8	C25	C24	120.5(2)
C4	C3	C9	122.7(3)	F8	C25	C26	120.3(2)
C9	C3	C2	119.3(3)	C27	C26	C25	120.1(2)
C5	C4	C3	120.1(2)	F9	C26	C25	119.1(2)
C4	C5	N1	122.4(2)	F9	C26	C27	120.8(2)
C7	C6	C2	119.9(3)	C26	C27	C22	122.2(2)
C6	C7	C8	121.4(3)	F10	C27	C22	120.0(2)
C9	C8	C7	120.2(3)	F10	C27	C26	117.8(2)
C8	C9	C3	120.4(3)	C29	C28	Au1	118.98(18)
C11	C10	C1	121.2(2)	C33	C28	C29	115.3(2)
C15	C10	C1	119.4(2)	C33	C28	Au1	125.74(18)
C15	C10	C11	119.4(2)	C30	C29	C28	123.6(2)
C12	C11	C10	120.0(3)	F11	C29	C28	120.1(2)
C11	C12	C13	120.4(3)	F11	C29	C30	116.4(2)
C12	C13	C14	119.8(3)	C31	C30	C29	118.9(2)
C15	C14	C13	120.0(3)	F12	C30	C29	121.2(2)
C14	C15	C10	120.4(3)	F12	C30	C31	119.9(2)
C17	C16	C21	114.3(2)	C30	C31	C32	120.0(2)
C17	C16	Au1	120.18(17)	F13	C31	C30	119.9(2)
C21	C16	Au1	124.68(17)	F13	C31	C32	120.2(2)
C18	C17	C16	123.6(2)	C33	C32	C31	119.0(2)
F1	C17	C16	119.8(2)	F14	C32	C31	119.4(2)
F1	C17	C18	116.6(2)	F14	C32	C33	121.5(2)
C17	C18	C19	120.1(2)	C32	C33	C28	123.3(2)
F2	C18	C17	121.3(2)	F15	C33	C28	120.3(2)
F2	C18	C19	118.6(2)	F15	C33	C32	116.4(2)
C18	C19	C20	118.6(2)	C1	N1	C5	119.9(2)
F3	C19	C18	120.8(2)	C1	N1	Au1	123.45(17)
F3	C19	C20	120.6(2)	C5	N1	Au1	116.60(15)
C21	C20	C19	119.4(2)	C16	Au1	N1	89.64(8)
F4	C20	C19	118.9(2)	C22	Au1	C16	91.12(9)
F4	C20	C21	121.6(2)	C22	Au1	C28	88.55(9)
C20	C21	C16	124.0(2)	C22	Au1	N1	176.97(8)
F5	C21	C16	119.6(2)	C28	Au1	C16	171.30(9)
F5	C21	C20	116.4(2)	C28	Au1	N1	91.15(8)
C23	C22	Au1	119.73(17)	C34	01	C36	114.0(5)
C27	C22	C23	116.3(2)	01	C34	C35	110.1(7)
C27	C22	Au1	123.72(18)	01	C36	C37	109.9(7)
C24	C23	C22	122.8(2)				

Crystal structure determination of 5.

Figure S5a. The molecular structure of **5**, with displacement ellipsoids drawn at the 30% probability level. The solvent molecule, all H atoms and the minor component of the disordered thiophene are omitted.

Figure S5b. A view along the *a* axis of the crystal packing of **5** showing π ... π and C—F... π interactions as green dashed lines.

Figure S5c. A view along the *b* axis of the crystal packing of **5** showing C—H...F interactions as green dashed lines.

Table S13. Crystal data and structure refinement for 5.

Table 513. Crystal data and s	tructure refinement for 5.
CCDC number	1024830
Empirical formula	C ₂₇ H ₇ AuF ₁₅ NS
Formula weight	859.36
Temperature/K	183(1)
Crystal system	monoclinic
Space group	P21/c
a/Å	7.9119(2)
b/Å	18.0726(4)
c/Å	18.4278(4)
α/°	90
β/°	97.163(2)
γ/°	90
Volume/ų	2614.40(11)
Z	4
$\rho_{calc}g/cm^3$	2.183
µ/mm⁻¹	5.835
F(000)	1624.0
Crystal size/mm ³	$0.25 \times 0.15 \times 0.14$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	' 5.658 to 52.744
Index ranges	$-9 \leq h \leq 9, -22 \leq k \leq 22, -23 \leq l \leq 23$
Reflections collected	36456
Independent reflections	5337 [R _{int} = 0.0543, R _{sigma} = 0.0285]
Data/restraints/parameters	5337/2/407
Goodness-of-fit on F ²	1.039
Final R indexes [I>=2σ (I)]	$R_1 = 0.0218$, $wR_2 = 0.0536$
Final R indexes [all data]	$R_1 = 0.0241$, $wR_2 = 0.0549$
Largest diff. peak/hole / e Å-3	1.40/-0.68

Table S14. Bond Lengths for 5.

Atom	Atom	Length/Å	Atom	n Atom	Length/Å
Au1	C10	2.058(3)	C13	F3	1.344(4)
Au1	C16	2.016(3)	C14	C15	1.380(4)
Au1	C22	2.069(3)	C14	F4	1.341(4)
Au1	N1	2.115(2)	C15	F5	1.351(4)
C1	C2	1.369(4)	C16	C17	1.372(4)
C1	N1	1.343(4)	C16	C21	1.374(4)
C2	C3	1.380(5)	C17	C18	1.391(5)
C3	C4	1.378(5)	C17	F6	1.341(4)
C4	C5	1.381(4)	C18	C19	1.370(5)
C5	C6	1.465(4)	C18	F7	1.349(4)
C5	N1	1.363(4)	C19	C20	1.372(5)
C6	C7A	1.379(7)	C19	F8	1.343(4)
C6	C7B	1.381(9)	C20	C21	1.377(4)
C6	S1A	1.709(3)	C20	F9	1.342(4)
C6	S1B	1.702(4)	C21	F10	1.346(4)
C7A	C8	1.423(7)	C22	C23	1.381(4)
C7B	C9	1.67(4)	C22	C27	1.380(4)
C8	C9	1.336(5)	C23	C24	1.380(5)
C8	S1B	1.520(7)	C23	F11	1.344(4)
C9	S1A	1.676(4)	C24	C25	1.372(5)
C10	C11	1.377(4)	C24	F12	1.343(4)
C10	C15	1.378(4)	C25	C26	1.370(5)
C11	C12	1.380(4)	C25	F13	1.346(4)

C11	F1	1.357(4) C26	C27	1.377(5)
C12	C13	1.373(5) C26	F14	1.345(4)
C12	F2	1.342(4) C27	F15	1.348(4)
C13	C14	1.375(5)		

Table S15. Bond Angles for 5.

Aton	۱ Atom	n Atom	Angle/°	Aton	n Aton	n Atom	Angle/°
C10	Au1	C22	174.81(12)	F5	C15	C14	116.7(3)
C10	Au1	N1	90.28(10)	C17	C16	Au1	122.8(2)
C16	Au1	C10	89.09(12)	C17	C16	C21	117.5(3)
C16	Au1	C22	90.44(12)	C21	C16	Au1	119.7(2)
C16	Au1	N1	178.84(11)	C16	C17	C18	121.3(3)
C22	Au1	N1	90.28(11)	F6	C17	C16	121.3(3)
N1	C1	C2	122.7(3)	F6	C17	C18	117.4(3)
C1	C2	C3	118.8(3)	C19	C18	C17	119.6(3)
C4	C3	C2	119.0(3)	F7	C18	C17	120.0(3)
C3	C4	C5	120.5(3)	F7	C18	C19	120.3(3)
C4	C5	C6	120.3(3)	C18	C19	C20	120.0(3)
N1	C5	C4	119.8(3)	F8	C19	C18	119.9(3)
N1	C5	C6	119.9(3)	F8	C19	C20	120.1(3)
C5	C6	S1A	123.2(2)	C19	C20	C21	119.2(3)
C5	C6	S1B	120.5(3)	F9	C20	C19	120.0(3)
C7A	C6	C5	126.9(3)	F9	C20	C21	120.8(3)
C7A	C6	S1A	109.9(3)	C16	C21	C20	122.3(3)
C7B	C6	C5	125.3(16)	F10	C21	C16	120.6(3)
C7B	C6	S1B	113.8(16)	F10	C21	C20	117.1(3)
C6	C7A	C8	113.3(4)	C23	C22	Au1	120.4(2)
C6	C7B	C9	106(2)	C27	C22	Au1	124.1(2)
C9	C8	C7A	110.3(4)	C27	C22	C23	115.2(3)
C9	C8	S1B	124.0(4)	C24	C23	C22	123.2(3)
C8	C9	C7B	102.8(6)	F11	C23	C22	119.8(3)
C8	C9	S1A	114.7(3)	F11	C23	C24	117.0(3)
C11	C10	Au1	120.0(2)	C25	C24	C23	119.2(3)
C11	C10	C15	115.5(3)	F12	C24	C23	120.9(3)
C15	C10	Au1	124.5(2)	F12	C24	C25	119.9(3)
C10	C11	C12	123.4(3)	C26	C25	C24	119.9(3)
F1	C11	C10	119.9(3)	F13	C25	C24	120.4(3)
F1	C11	C12	116.7(3)	F13	C25	C26	119.7(3)
C13	C12	C11	118.9(3)	C25	C26	C27	119.2(3)
F2	C12	C11	121.1(3)	F14	C26	C25	120.2(3)
F2	C12	C13	119.9(3)	F14	C26	C27	120.6(3)
C12	C13	C14	119.9(3)	C26	C27	C22	123.4(3)
F3	C13	C12	119.6(3)	F15	C27	C22	119.5(3)
F3	C13	C14	120.5(3)	F15	C27	C26	117.1(3)
C13	C14	C15	119.3(3)	C1	N1	Au1	116.4(2)
F4	C14	C13	120.0(3)	C1	N1	C5	119.2(3)
F4	C14	C15	120.7(3)	C5	N1	Au1	124.2(2)
C10	C15	C14	123.0(3)	C9	S1A	C6	91.85(18)
F5	C15	C10	120.4(3)	C8	S1B	C6	93.0(3)

Crystal structure determinations: refinement details

In the crystal structure of **1**, solvent molecules of dichloromethane co-crystallized with the main Au species in a ratio 1:2. The solvent molecule is disordered over two sets of sites around a center of inversion with a site-occupancy factor of 0.5. One Cl atom is further disordered over two other positions with site-occupancy factor of 0.179(7) and 0.321(7). Some restraints/constraints had to be used to correct the geometry of the disordered components and the thermal parameters of the corresponding atoms. All non-H atoms were anisotropically refined. All hydrogen positions were calculated after each cycle of refinement using a riding model, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H atoms, and with C—H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for the methylene H atoms.

In the crystal structure of **2**, solvent molecules of hexane co-crystallized with the main Au species in a ratio 1:8. The solvent molecule lies on a center of inversion and the non-H atoms were isotropically refined with a site-occupancy factor of 0.5. Some restraints/constraints had to be used to correct the geometry of the disordered components and the thermal parameters of the corresponding atoms. All hydrogen positions were calculated after each cycle of refinement using a riding model, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H atoms, with C—H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for the methylene H atoms, and with C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for the methyl H atoms.

In the crystal structure of **3**, all non-H atoms were anisotropically refined and all hydrogen positions were calculated after each cycle of refinement using a riding model with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

In the crystal structure of **4**, solvent molecules of diethyl ether co-crystallized with the main species in a ratio 1:2. The solvent molecule lies around a center of inversion and is disordered over two sets of sites with a site-occupancy factor of 0.5. All non-H atoms were anisotropically refined. All hydrogen positions were calculated after each cycle of refinement using a riding model, with C—H = 0.93 Å and $U_{iso}(H) =$ $1.2U_{eq}(C)$ for aromatic H atoms, with C—H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for the methylene H atoms, and with C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for the methyl H atoms.

In the crystal structure of **5**, the thiophene ligand was partially disordered over two different positions (leading to two different orientations) with site-occupancy factors of 0.189(3) and 0.811(3). Some restraints/constraints had to be used to correct the geometry of the disordered components and the thermal parameters of the corresponding atoms. All non-H atoms were anisotropically refined. All hydrogen positions were calculated after each cycle of refinement using a riding model with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

D-H-A/°

129.0

125.2

164.3

130.8

d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	
0.93	2.49	3.161(6)	
0.93	2.62	3.250(6)	
0.93	2.27	3.180(6)	
0.97	2.46	3.178(12)	
	d(D-H)/Å 0.93 0.93 0.93 0.93 0.97	d(D-H)/Åd(H-A)/Å0.932.490.932.620.932.270.972.46	d(D-H)/Åd(H-A)/Åd(D-A)/Å0.932.493.161(6)0.932.623.250(6)0.932.273.180(6)0.972.463.178(12)

Table S16. Shortest intra- and intermolecular interactions for 1.

Y-X-Cg/°	d(X-Cg)/Å	Cg	х	Y
138.5(3)	3.242(4)	Cg1 ³	F2	C3
135.0(4)	3.244(4)	Cg2 ⁴	F17	C27
alpha/°	d(Cg-Cg)/Å		Cg	Cg

~5 ~5		alpha
Cg3 Cg4	4.124(3)	12.9(3)
Cg3 Cg4 ²	4.369(3)	12.9(3)

¹-1+X,-1+Y,+Z; ²-1+X,+Y,+Z; ³+X,1+Y,+Z; ⁴2-X,1-Y,1-Z

Cg1 = centroid of the 6-Membered Ring (1) N(1) --> C(19) --> C(20) --> C(21) --> C(22) --> C(23) Cg2 = centroid of the 6-Membered Ring (2) C(1) --> C(2) --> C(3) --> C(4) --> C(5) --> C(6) Cg3 = centroid of the 6-Membered Ring (3) C(13) --> C(14) --> C(15) --> C(16) --> C(17) --> C(18) Cg4 = centroid of the 6-Membered Ring (4) C(24) --> C(25) --> C(26) --> C(27) --> C(28) --> C(29) --> C(29)

Table S17. Shortest intra- and intermolecular interactions for 2.

D	н	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
C1	H1	$F11^1$	0.93	2.34	3.145(10)	144.3
C8	H8	F15 ²	0.93	2.52	3.251(14)	136.2
C30	H30	F30 ³	0.93	2.37	3.249(12)	157.1
C31	H31	F21 ³	0.93	2.38	3.169(12)	142.9
C33	H33	F19 ⁴	0.93	2.55	3.236(13)	130.6
C36A	H36A	F22 ³	0.93	2.52	3.197(12)	130.3
C37A	H37A	F18 ²	0.93	2.62	3.219(11)	122.4
C38A	H38A	F10	0.93	2.41	3.207(10)	143.6
Y	х	Cg	d(X-Cg)/Å	Y-X-Cg/°		
C28	F14	Cg1 ⁵	3.114(9)	151.0(8)		
C55	F27	Cg4 ⁶	3.224(10)	147.3(9)		
C15	F3	Cg6⁵	3.314(9)	147.4(7)		
Cg	Cg		d(Cg-Cg)/Å	alpha	/°	
Cg6	Cg2⁵		4.223(7)	26.5	(6)	
Cg5	Cg3 ⁶		4.329(7)	29.7	6)	

¹-X,1-Y,1-Z; ²-1+X,+Y,+Z; ³1-X,-Y,2-Z; ⁴1-X,1-Y,2-Z; ⁵1-X,1-Y,1-Z; ⁶-X,1-Y,2-Z.

Cg1 = centroid of the 6-membered ring (1)	N(2)>	C(30)>	C(31)>	C(32)>	C(33)>	C(34)
Cg2 = centroid of the 6-membered ring (2)	C(41)>	C(42)>	C(43)>	C(44)>	C(45)>	C(46)
Cg3 = centroid of the 6-membered ring (3)	C(53)>	C(54)>	C(55)>	C(56)>	C(57)>	C(58)
		- / - >	a (a)	- / - > -		- `
Cg4 = centroid of the 6-membered ring (4)	N(1)>	C(1)>	C(2)> (C(3)> C	(4)> C(5)
Cg4 = centroid of the 6-membered ring (4) Cg5 = centroid of the 6-membered ring (5)	N(1)> C(18)>	C(1)> C(19)>	C(2)> (C(20)>	C(3)> C C(21)>	(4)> C(C(22)>	5) C(23)

D	н	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
C2	H2	$F5^1$	0.93	2.46	3.265(3)	144.3
C2	H2	F12 ²	0.93	2.57	3.240(3)	129.7
C7	H7	F5	0.93	2.31	3.241(4)	176.7
Y	х	Cg	d(X-Cg)/Å	Y-X-Cg/°		
C27	' F13	Cg1 ³	2.992(2)	131.98(17)		
C21	. F8	Cg4 ⁴	3.479(3)	145.83(19)		

Table S18. Shortest intra-	and intermolecular	interactions for 3.
----------------------------	--------------------	---------------------

Cg Cg	d(Cg-Cg)/Å	alpha/°
Cg2 Cg4	3.888(2)	17.12(16)
Cg2 Cg3⁵	4.108(2)	20.32(16)

¹1+X,+Y,+Z; ²1+X,1/2-Y,1/2+Z; ³X,1/2-Y,-1/2+Z; ⁴-X,-Y,-Z; ⁵-X,1/2+Y,1/2-Z

Cg1 = centroid of the 6-membered ring (1)	N(1)>	C(1)>	→ C(2)>	C(3)>	C(4)>	C(5)
Cg2 = centroid of the 6-membered ring (2)	C(6)>	C(7)>	C(8)>	C(9)>	C(10)>	C(11)
Cg3 = centroid of the 6-membered ring (3)	C(18)>	• C(19)	-> C(20) -	-> C(21) -	-> C(22) -	-> C(23)
Cg4 = centroid of the 6-membered ring (4)	C(24)>	• C(25)	-> C(26) -	-> C(27) -	-> C(28) -	-> C(29)

Table S19. Shortest intra- and intermolecular interactions for 4.

D	н	Α	d(D	-H)/Å	d(I	H-A)/Å	d(D-A)/Å	D-H-A/°
C9	H9	$F13^1$		0.93		2.50	3	.192(4)	131.2
C11	H11	F5		0.93		2.40	3	.251(3)	152.2
C12	H12	F14 ²		0.93		2.55	3	.218(4)	129.6
Y	х	Cg			d(X-Cg)/Å		Y-X-Cg/°		
C21	F5	Cg3 ³			3.482(2)		133.63(14)		
C25	F8	Cg4			3.407(2)		150.83(18)		
Cg	Cg		d(Cg-Cg)/Å		alpha/°				
Cg1	Cg1	1	3.7820(18)		0				
Cg3	Cg2		4.0573(16)		14.61(13)				

¹+X,1+Y,+Z; ²2-X,-Y,1-Z; ³2-X,1-Y,1-Z; ⁴1-X,1-Y,1-Z

Table S20. Shortest intra- and intermolecular interactions for 5.

D	н	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
C2	H2	F4 ¹	0.93	2.60	3.279(4)	130.1
C2	H2	F15 ²	0.93	2.43	3.263(4)	149.2
C7B	H7B	F15	0.93	2.46	3.32(3)	154.2
Y	х	Cg	d(X-Cg)/Å	Y-X-Cg/°		
C13	F3	Cg3 ³	2.983(3)	136.1(2)		
Cg	Cg	d(Cg-Cg)/Å	alpha/°			
Cg2	Cg5	4 3.916(7)	12.1(7)			
Cg2	Cg4	3.930(7)	13.7(7)			

Cg1 Cg5 ⁴	3.932(2)	15.21(19)
Cg1 Cg4	3.966(2)	17.35(19)

¹1+X,1/2-Y,1/2+Z; ²1+X,+Y,+Z; ³X,1/2-Y,-1/2+Z; ⁴1-X,-1/2+Y,3/2-Z

Cg1 = centroid of the 5-membered ring (1) S(1A) --> C(6) --> C(7A) --> C(8) --> C(9)

Cg2 = centroid of the 5-membered ring (2) C(6) \rightarrow S(1B) \rightarrow C(8) \rightarrow C(9) \rightarrow C(7B)

Cg3 = centroid of the 6-membered ring (3) N(1) --> C(1) --> C(2) --> C(3) --> C(4) --> C(5)

Cg4 = centroid of the 6-membered ring (4) C(10) --> C(11) --> C(12) --> C(13) --> C(14) --> C(15)

Cg5 = centroid of the 6-membered ring (5) C(16) --> C(17) --> C(18) --> C(19) --> C(20) --> C(21)

Figure S6. UV/Vis absorption spectra of the free pyridine ligands in CH_2CI_2 .

DFT calculations

Energies and cartesian coordinates of the DFT optimized ground-state structure of 1

С 0.	20236900	-2.72537200	-1.86448600	
н 1.	.04391900	-2.17961000	-2.27730300	
с –0.	22681900	-3,91276400	-2.43060000	
н	28968200	-4.31125000	-3.29739300	
C -1	32323600	-4.55675900	-1.86530600	
н –1	69247000	-5 49201100	-2 27662700	
C -1	93432100	-3 98990800	-0 75736500	
ч _2	77951100	-4 47355500	-0.27929400	
п —	45797600	2 79642000	-0.27829400	
C -1.	43787800	-2.70042000	-0.22020400	
C =2.	.08910900	-2.205/3200	0.9/380/00	
	4/29/900	-2.02182200	1.04443800	
C -4	.10934100	-1.51531200	2.16404000	
н –5.	.18315900	-1.36442000	2.17759500	
C -3.	.31778500	-1.19708800	3.25884600	
C -1.	.94079400	-1.36458000	3.25586800	
н –1.	.35738400	-1.10226500	4.13183800	
C -1.	.33979600	-1.86577100	2.10816100	
н – О.	.26561700	-2.01577300	2.09791200	
C 2.	.24681700	-0.90447800	-0.05548800	
С 3.	.17289000	-0.70989900	-1.07288800	
С 4.	49698800	-1.12500500	-0.98822700	
С 4.	93198900	-1.76367300	0.16686600	
C 4.	03811000	-1,97984100	1,20848700	
C 2	72229900	-1.54890700	1.07746600	
C –1	57297500	0 59701000	-0 64628000	
C -2	28836200	1 31997900	0.29838800	
C -3	54497000	1 85612600	0.03874500	
C _1	11567000	1 67043000	-1 21629700	
C -4.	42516000	1.07943900	-1.21020700	
C -3.	17050000	0.9/100100	-2.19190700	
-2.	.1/259300	0.44933100	-1.88991200	
C 0.	.98158800	1.64935300	0.061/9500	
C 1.	.3//66900	2.035/4800	1.33502/00	
C 1.	.84646900	3.31652700	1.60288500	
C 1.	.92758000	4.24384500	0.57070200	
C 1.	.53887600	3.88277100	-0.71353600	
C 1.	.07059800	2.59470200	-0.95138100	
N -0.	.39860700	-2.16837800	-0.79735500	
F 2.	.79364500	-0.10441600	-2.21398500	
F 5.	.34664300	-0.92248800	-1.99488400	
F 6.	.19312900	-2.17241300	0.27172900	
F 4.	.44838800	-2.59973300	2.31481800	
F 1.	90426200	-1.79593000	2.11747200	
F -1.	.78274900	1.51858800	1.52559600	
F -4.	20930800	2.53108400	0.97785400	
F -5.	31850300	2.18317100	-1,48057100	
Г Э	96807600	0.79984900	-3.39760500	
F -1	53898900	-0 22599700	-2 86679400	
F 1	31/18200	1 16858200	2 35295900	
г <u>г</u>	21752000	3 66062000	2 93512700	
F 2.	27575400	5.00002000	2.03312700	
Г 2. Г 1	61/00000	J.472J2000	1 70242200	
F 1.	.01409900	4.77034300	-1.70342200	
F U.	. 69975900	2.28818900	-2.19942800	
Au 0.	.30248600	-0.20581400	-0.29829300	
£' -4.	.23059200	-2.32036500	-0.02577100	
F -3.	.91522300	-0.71382900	4.35419100	
Zero-point correction-	=		0.307842	(Hartree/Particle)
Thermal correction to	Energy=		0.350257	
Thermal correction to	Enthalpy=		0.351201	
Thermal correction to	Gibbs Free	Energy=	0.228040	
Sum of electronic and	zero-point	Energies=	-2993.	832902
Sum of electronic and	thermal Ene	ergies=	-2993.	790487
Sum of electronic and	thermal Ent	halpies=	-2993.	789543

Sum of electronic and thermal Free Energies=-2993.789543-2993.912705

С	-0.41262300	-2.06723000	0.05062300
С	-0.87697000	-2.79337000	1.13781200
С	-0.87231500	-4.18422900	1.16854900

С	-0	.38820600	-4.88542200	0.07044200)
С	0 .	.08769300	-4.19200600	-1.03684400	1
С	0 .	.06674800	-2.80245900	-1.02448900	
С	-0.	41265700	2.06723900	-0.05061200	
С	-0.	.87701500	2.79339500	-1.13778500	1
C	-0.	.87237600	4.18425600	-1.16849000	
С	-0.	.38827300	4.88543300	-0.07037200	
C	0.	.08763800	4.19200000	1.03690000	
C	0.	.066/0800	2.80245300	1.02451400	
C	-2	12421700	-0.00001600	-0.00002100	
C	= 3	52470100	-0.45138000	-1.11253500	
C	-4.	22175800	-0.43393300	-0.00004400	
C	- 4	52473000	0.45587800	1 11245800	
C	-3	13434500	0.45133600	1.09749100	
F	-1	.34510300	-2.15555200	2.22370700	1
F	-1	.32032000	-4.84952500	2.23360100	1
F	-0	.37304000	-6.21603400	0.08148300	1
F	0 .	.55985600	-4.86463000	-2.08698700	1
F	0 .	.54579000	-2.16819700	-2.11012100	1
F	-1.	.34514300	2.15559700	-2.22369300	1
F	-1.	.32039100	4.84956800	-2.23352800	1
F	-0.	.37312200	6.21604500	-0.08138600	1
F	0 .	.55979500	4.86460800	2.08705400	1
F	0.	.54575800	2.16817200	2.11013200	1
F	-2	.49775300	-0.90063600	-2.18569900	1
F	-5	.19148100	-0.89370500	-2.17957700	
F.	-6.	.55199300	-0.00006400	-0.00005500	
E'	-5.	.19153700	0.89361500	2.17948800	
E'	-2.	49/80900	0.90060900	2.18565200	
Au	-0.	30150300	0.00000400	-1 05675200	
C	2	39160700	-0.46805800	1 05676200	
C	2.3	77469900	0.47761800	-1 09402100	
C	3	77471400	-0.47758900	1.09400900	
H	1.	79993600	-0.83104900	1.89093000	
C	4	.50957200	0.00001500	-0.00001000	1
Н	4 .	.27451500	-0.83500200	1.98865300	1
Ν	1.	.70978300	0.00001900	0.00001000	1
Н	1.	.79991200	0.83109000	-1.89091100	1
Н	4 .	.27448900	0.83502700	-1.98866800	1
С	5.	.98421200	0.00001600	-0.00002200	1
С	6.	.69681800	-1.04552800	0.60359000	1
С	6.	.69680400	1.04556500	-0.60364400	1
С	8.	.08795300	-1.04718500	0.59870300	1
H	6.	.16024000	-1.87874400	1.05071600	
C	8.	.08/93900	1.04/23200	-0.59877300	
H	6.	.16021400	1.8/8//500	-1.050/6600	
U U	0.	62716400	-1 97132200	1 05794200	
н	8	62713900	1 87137200	-1 05792100	
н	9	87363200	0 00003100	-0 00004300	
		.07303200	0.00000100	0.00001000	
Zero-poi	nt correction=	=		0.324385	(Hartree/Particle)
Thermal o	correction to	Energy=		0.365200	
Thermal o	correction to	Enthalpy=		0.366144	
Thermal o	correction to	Gibbs Free	Energy=	0.244787	
Sum of e	lectronic and	zero-point	Energies=	-2795.	517460
Sum of e	lectronic and	thermal Ene	ergies=	-2795.	476646
Sum of e	lectronic and	thermal Ent	chalpies=	-2795.	475701
Sum of e.	⊥ectronic and	thermal Fre	ee Energies=	-2795.	597058

С	0.20105000	-2.83112600	-1.65927100
Н	0.97089600	-2.23061700	-2.13151100
С	-0.14163000	-4.07306400	-2.16290300
Н	0.37206500	-4.45803500	-3.03741400
С	-1.14856600	-4.78979100	-1.52282400
Н	-1.44534100	-5.77227200	-1.87942800
С	-1.75944400	-4.23381500	-0.40975700
Н	-2.52459500	-4.77594100	0.13610700
С	-1.37650400	-2.96903000	0.05389300
С	-2.04258800	-2.39709500	1.24127600
С	-3.44093300	-2.44054200	1.32758400
Н	-4.02171600	-2.84212200	0.50028000

С	-4.09083600	-1.92873200	2.44578300	
Н	-5.17643100	-1.94592500	2.49314600	
С	-3.35116100	-1.38712000	3.49718400	
Н	-3.85947600	-0.98635400	4.36999700	
С	-1.96044500	-1.35676900	3.42367500	
Н	-1.37767300	-0.93921300	4.23991200	
С	-1.30569400	-1.85595800	2.30102500	
Н	-0.22098500	-1.84764700	2.26423600	
С	2.16263000	-0.78805800	-0.06558900	
С	3.01961100	-0.54889300	-1.13249800	
С	4.37357500	-0.86372200	-1.10718400	
С	4.91091000	-1.44275500	0.03610200	
С	4.08798800	-1.70121300	1.12562300	
С	2.73888100	-1.37120900	1.05380700	
С	-1.79654500	0.38701500	-0.43166500	
С	-2.47695600	1.11538500	0.53502000	
С	-3.79959300	1.51575600	0.37992800	
С	-4.47756800	1.19218600	-0.78881600	
С	-3.82524700	0.47694800	-1.78566000	
С	-2.50329400	0.09449500	-1.59007100	
С	0.71571300	1.66715700	0.01352300	
С	1.19137300	2.15184900	1.22426500	
С	1.58160500	3.47627900	1.38409800	
С	1.50092800	4.34774300	0.30447800	
С	1.03001900	3.88833000	-0.91934700	
С	0.64346400	2.55843700	-1.04889800	
Ν	-0.39980900	-2.28591800	-0.58539100	
F	2.54043500	0.00011700	-2.26451000	
F	5.15564400	-0.62225400	-2.15944700	
F	6.20290300	-1.75563500	0.08447400	
F	4.59791000	-2.26548600	2.22044700	
F	1.99181400	-1.65546700	2.13556600	
F	-1.87029500	1.45564000	1.68170100	
F	-4.42536100	2.20013000	1.33880700	
F	-5.74563100	1.56387300	-0.95240400	
F	-4.47138500	0.16709800	-2.91151100	
F	-1.91391800	-0.59504200	-2.58554700	
F	1.28480000	1.34225600	2.28600500	
F	2.03133200	3.91546400	2.55893800	
F	1.87299100	5.61727600	0.44282500	
F	0.95088300	4.72256400	-1.95498300	
F	0.18992300	2.15603300	-2.24155300	
Au	0.15935500	-0.25032500	-0.20637400	
Zero-po	int correction=		0.324368	(Hartree/Particle)
Thermal	correction to Energy=		0.365022	
Thermal	correction to Enthalny=		0 365966	

Thermal correction to Energy=0.365022Thermal correction to Enthalpy=0.365966Thermal correction to Gibbs Free Energy=0.247348Sum of electronic and zero-point Energies=-2795.514455Sum of electronic and thermal Energies=-2795.473801Sum of electronic and thermal Enthalpies=-2795.472857Sum of electronic and thermal Free Energies=-2795.591475

С	2.64986900	0.22533500	1.43974100
С	3.59643600	-0.80791500	1.47055100
Н	4.28762400	-0.93216100	0.64012800
С	3.63117900	-1.69187400	2.54419700
Н	4.35459000	-2.50299600	2.55058400
С	2.73575900	-1.54224300	3.60381100
Н	2.76349500	-2.23510300	4.44047900
С	1.80034900	-0.51098500	3.58150300
Н	1.09659200	-0.39139700	4.40051100
С	1.75211400	0.36873700	2.50234500
Н	1.02604800	1.17492100	2.49453200
С	-1.40207200	1.83602100	-0.02417500
С	-2.10681600	2.29287000	-1.13076000
С	-2.89831200	3.43543900	-1.11331400
С	-3.00428800	4.16568800	0.06408400
С	-2.31558600	3.74465800	1.19473500
С	-1.53358300	2.59624300	1.12914000
С	0.74818300	-1.68569900	-0.43600400
С	0.73870600	-2.71722200	0.49272800
С	1.43768800	-3.90413500	0.30224600
С	2.17103100	-4.08462700	-0.86395300

С	2.19360600	-3.07975900	-1.82337900	
С	1.48115900	-1.90839300	-1.59345700	
С	-1.98144600	-0.95656200	-0.05028100	
С	-2.69835400	-1.04793300	1.13533400	
С	-3.88142400	-1.77211400	1.22641700	
С	-4.37272200	-2.42454700	0.10203300	
С	-3.67680100	-2.34804900	-1.09797400	
С	-2.49373300	-1.61911900	-1.15815400	
F	-2.02598600	1.62470000	-2.29740400	
F	-3.54910100	3.83812300	-2.20515000	
F	-3.75402600	5.26408700	0.10639900	
F	-2.40741000	4.44626800	2.32494600	
F	-0.88651200	2.24796800	2.25566800	
F	0.04941200	-2.59504200	1.63676500	
F	1.41977800	-4.86652600	1.22654900	
F	2.85000200	-5.21343300	-1.06020000	
F	2.89298600	-3.25014400	-2.94714300	
F	1.52887100	-0.96693500	-2.55415800	
F	-2.26093300	-0.43134100	2.23970500	
F	-4.54680700	-1.84446100	2.37882200	
F	-5.50518900	-3.11897100	0.17453400	
F	-4.14494900	-2.97315900	-2.17742800	
F	-1.85134400	-1.57543500	-2.33109200	
Au	-0.27287900	0.09450700	-0.17476900	
С	2.61850600	1.16142500	0.29136800	
С	1.47169200	2.06190300	-1.54206200	
С	3.76322800	1.96243900	-0.01897300	
С	2.53745700	2.81409200	-1.93831400	
H	0.54169800	2.06039000	-2.09839600	
С	4.92187000	1.98179900	0.80075900	
С	3.72728100	2.79481600	-1.17508100	
H	2.46182000	3.42907800	-2.83013700	
С	6.00183600	2.76167700	0.45985900	
H	4.94586600	1.38683800	1.70743100	
С	4.85706000	3.57919200	-1.50714800	
С	5.97494900	3.55690300	-0.70734700	
H	6.88135500	2.77262300	1.09749900	
H	4.82184600	4.20259900	-2.39697100	
H	6.83927100	4.16338300	-0.96443600	
N	1.51274000	1.24373700	-0.44781000	
			0 051000	
Zero-point cori	rection=		0.3/1398	(Hartree/Particle)
Thermal correct	Lion to Energy=		0.414824	
Thermal correct	ion to Enthalpy=	Energy-	U.415/69	
inermai correct	LION LO GIDDS F'ree	: Energy=	U.29U103	22022
Sum of electron	iic and zero-point	_ Lnergles=	-2948.9	200507
Sum of electron	iic and thermal Er	iergres=	-2948.8	
Sum of clocter	iic and thermal Er	ichalpies=	-2948.0) 15170
Sum OI electror	iic and chermal Fi	tee Energres=	-2949.0	113113
Enorgies and cartesia	n coordinator of the DET	ontimized ground a	tato structuro of F	

0.25769100	-2.77329100	-1.72775700
0.99091200	-2.13569900	-2.21004000
-0.05631200	-4.01762400	-2.24385600
0.43950200	-4.36732200	-3.14306000
-1.01094500	-4.78461600	-1.58094600
-1.28382100	-5.77089400	-1.94594000
-1.59217400	-4.28037600	-0.42895100
-2.30352700	-4.86682600	0.14255200
-1.24365400	-3.00668300	0.04234400
2.16441000	-0.68271500	-0.16458200
3.04912800	-0.19669600	-1.11959900
4.40886200	-0.49013400	-1.11043800
4.92015100	-1.30459000	-0.10742800
4.06718500	-1.81653200	0.86304500
2.71443700	-1.49910100	0.81431900
-1.84785600	0.33681900	-0.41127500
-2.54796200	1.03757100	0.56213400
-3.88922900	1.37921900	0.42417300
-4.56824100	1.02516200	-0.73482500
-3.89759300	0.33867400	-1.73960100
-2.55808900	0.01489700	-1.56019500
0.61574100	1.71726500	0.04166800
1.12120000	2.16170300	1.25586200
1.45169200	3.49455500	1.47115900
	0.25769100 0.99091200 -0.05631200 0.43950200 -1.01094500 -1.28382100 -1.59217400 -2.30352700 -1.24365400 2.16441000 3.04912800 4.40886200 4.92015100 4.06718500 2.71443700 -1.84785600 -2.54796200 -3.88922900 -4.56824100 -3.89759300 -2.55808900 0.61574100 1.12120000 1.45169200	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

C	1 27014500	4 41564000	0 44510000	
C	1.27014300	4.41364000	0.44510000	
C	0.//569600	3.9966/800	-0.78082200	
С	0.45058300	2.65723300	-0.96646300	
N	-0.32640400	-2.26855100	-0.62615300	
F	2.60155100	0.58032600	-2.12055600	
F	5.22142900	-0.00752100	-2.05072500	
ੱਜ	6.21693600	-1.60019700	-0.08124800	
r F	4 55233900	-2 60719500	1 92094000	
r T	4.33233000	-2.00/10300	1.82094000	
E	1.93116400	-2.03328200	1.76668900	
F	-1.94422600	1.41284600	1.70038200	
F	-4.53046400	2.03835800	1.39060400	
F	-5.85298600	1.34183300	-0.88237800	
ੱਜ	-4.54313100	0.00040100	-2.85752400	
- -	-1 95251400	-0 64624300	-2 56577100	
r P	1 20020400	1 20202000	2.30377100	
E	1.29929400	1.30382000	2.26835100	
F	1.93120200	3.89463900	2.64841900	
F	1.59227000	5.69410600	0.63585300	
F	0.60965100	4.87861100	-1.76552100	
ੱਜ	-0.03234100	2,29390000	-2.15986600	
2	0 1/307200	-0 21428400	-0 23559800	
Au	1 00504400	0.21420400	1.24526200	
C	-1.89594400	-2.4952/100	1.24536300	
C	-3.23927800	-2.60885500	1.53488400	
S	-1.05107600	-1.70776800	2.53641400	
С	-3.58562700	-2.03410300	2.78222500	
H	-3 95565000	-3 05055100	0 84907100	
	2 40607200	1 51001200	3 42057000	
	-2.49097200	-1.31091300	3.43037900	
Н	-4.59385100	-2.00183100	3.18041800	
Н	-2.46599800	-1.01753200	4.39412800	
Zero-point correct	tion=		0.290460 (Hartree/Part	icle)
Thermal correction	to Energy=		0 330759	/
Thermal correction	to Enthalarr-		0.221702	
	i to Enthalpy-	-	0.331703	
Thermal correction	n to Gibbs Free	e Energy=	0.213/94	
Sum of electronic	and zero-point	: Energies=	-3116.244773	
Sum of electronic	and thermal Er	nergies=	-3116.204474	
Sum of electronic	and thermal Er	nthalpies=	-3116.203530	
Sum of electronic	and thermal Fr	ree Energies=	-3116.321440	
		<u>-</u>		
Fuercies and contacion as	andinates of the DET	outinized trialet at	ata atmusture of 1	
Energies and cartesian co	ordinates of the DFT	optimized triplet-st	ate structure of 1	
Energies and cartesian co	ordinates of the DFT	optimized triplet-st	ate structure of 1	
Energies and cartesian co	ordinates of the DFT	optimized triplet-st	ate structure of 1 -1.97748200	
Energies and cartesian co C H	ordinates of the DFT -0.10355200 0.97337400	optimized triplet-st -2.58249900 -2.46328100	ate structure of 1 -1.97748200 -2.07484800	
Energies and cartesian co C H C	ordinates of the DFT -0.10355200 0.97337400 -0.81532300	optimized triplet-st -2.58249900 -2.46328100 -3.32860100	ate structure of 1 -1.97748200 -2.07484800 -2.93930500	
Energies and cartesian co C H C H	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100	optimized triplet-st -2.58249900 -2.46328100 -3.32860100 -3.86793900	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200	
Energies and cartesian co C H C H C	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200	optimized triplet-st -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600	
Energies and cartesian co C H C H C H U	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 2.75822600	optimized triplet-st. -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 2.58807600	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -2.97640600	
Energies and cartesian co C H C H C H C H	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600	optimized triplet-st. -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.58807600	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300	
Energies and cartesian co C H C H C H C H C	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400	optimized triplet-st -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.58807600 -2.57766000	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300	
Energies and cartesian co C H C H C H C H H	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -3.93451800	optimized triplet-st -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.58807600 -2.57766000 -2.46801200	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600	
Energies and cartesian co C H C H C H C H C C	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -3.93451800 -2.08154100	optimized triplet-st. -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.58807600 -2.57766000 -2.46801200 -2.12536500	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400	
Energies and cartesian co C H C H C H C H C C C	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -3.93451800 -2.08154100 -2.57604400	optimized triplet-st. -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.58807600 -2.57766000 -2.46801200 -2.12536500 -2.06344200	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600	
Energies and cartesian co C H C H C H C H C H C C C C	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -3.93451800 -2.08154100 -2.57604400 -3.97486500	optimized triplet-st. -2.58249900 -2.46328100 -3.32860100 -3.20743500 -3.58807600 -2.57766000 -2.46801200 -2.12536500 -2.06344200 -2.04872700	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600 0.86749900	
Energies and cartesian co C H C H C H C H C C H C C C C C C	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -3.93451800 -2.08154100 -2.57604400 -3.97486500 -4.43929800	optimized triplet-st -2.58249900 -2.46328100 -3.32860100 -3.20743500 -3.58807600 -2.57766000 -2.46801200 -2.12536500 -2.06344200 -2.04872700 -1.97073100	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600 0.86749900 2.15481200	
Energies and cartesian co C H C H C H C H C C C C C C C C C C C	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -3.93451800 -2.08154100 -2.57604400 -3.97486500 -4.43929800 -5.5760400	optimized triplet-st. -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.58807600 -2.57766000 -2.46801200 -2.12536500 -2.06344200 -2.04872700 -1.97073100	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600 0.86749900 2.15481200 -1.5480200	
Energies and cartesian co C H C H C H C C H C C C C C C H	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -3.93451800 -2.08154100 -2.57604400 -3.97486500 -4.43929800 -5.50469600	optimized triplet-st -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.58807600 -2.57766000 -2.46801200 -2.12536500 -2.06344200 -2.04872700 -1.97073100 -1.93772900	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600 0.86749900 2.15481200 2.35489800	
Energies and cartesian co C H C H C H C C C C C C C C C C C C C	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -3.93451800 -2.08154100 -2.57604400 -3.97486500 -4.43929800 -5.50469600 -3.50554800	optimized triplet-st. -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.58807600 -2.57766000 -2.46801200 -2.06344200 -2.06344200 -2.04872700 -1.97073100 -1.93772900 -1.91228300	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600 0.86749900 2.15481200 2.35489800 3.19178800	
Energies and cartesian co C H C H C H C C H C C C C H C C C C C	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -3.93451800 -2.08154100 -2.57604400 -3.97486500 -4.43929800 -5.50469600 -3.50554800 -2.12794300	optimized triplet-st -2.58249900 -2.46328100 -3.32860100 -3.20743500 -3.58807600 -2.57766000 -2.46801200 -2.12536500 -2.06344200 -2.04872700 -1.97073100 -1.93772900 -1.91228300 -1.92787300	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600 0.86749900 2.15481200 2.35489800 3.19178800 2.94826400	
Energies and cartesian co C H C H C H C H C C C C C H C C C H C C H C C H C C H C C H C C H C C H C H C H C H C C H C C H C C H C C H C C H C C H C C H C C H C C H C	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -3.93451800 -2.08154100 -2.57604400 -3.97486500 -4.43929800 -5.50469600 -3.50554800 -2.12794300 -1.43127500	optimized triplet-st -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.58807600 -2.57766000 -2.46801200 -2.12536500 -2.06344200 -2.04872700 -1.97073100 -1.93772900 -1.91228300 -1.92787300 -1.88338500	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600 0.86749900 2.15481200 2.35489800 3.19178800 2.94826400 3.77907900	
Energies and cartesian co	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -3.93451800 -2.08154100 -2.08154100 -2.57604400 -3.97486500 -4.43929800 -5.50469600 -3.50554800 -2.12794300 -1.43127500 -1.68372800	optimized triplet-st -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.58807600 -2.57766000 -2.46801200 -2.12536500 -2.06344200 -2.04872700 -1.97073100 -1.93772900 -1.91228300 -1.92787300 -1.88338500 -1.99992900	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600 0.86749900 2.15481200 2.35489800 3.19178800 2.94826400 3.77907900 1.65085700	
Energies and cartesian co	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -3.93451800 -2.08154100 -2.57604400 -3.97486500 -4.43929800 -5.50469600 -3.50554800 -2.12794300 -1.43127500 -1.68372800 -0.61776000	optimized triplet-st -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.58807600 -2.57766000 -2.12536500 -2.06344200 -2.06344200 -1.97073100 -1.93772900 -1.91228300 -1.92787300 -1.88338500 -1.99992900 -2.04408900	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600 0.86749900 2.15481200 2.35489800 3.19178800 2.94826400 3.77907900 1.65085700 1.47001100	
Energies and cartesian co	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -3.93451800 -2.08154100 -2.57604400 -3.97486500 -4.43929800 -5.50469600 -3.50554800 -2.12794300 -1.43127500 -1.68372800 -0.61776000 2.15502000	optimized triplet-st. -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.58807600 -2.57766000 -2.46801200 -2.06344200 -2.06344200 -2.06344200 -2.04872700 -1.97073100 -1.97073100 -1.92787300 -1.88338500 -1.99992900 -2.04408900 -1.1232000	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600 0.86749900 2.15481200 2.35489800 3.19178800 2.94826400 3.77907900 1.65085700 1.47001100 0.18274800	
Energies and cartesian co C H C H C H C C H C C C C C H C C C H C C C H C C C H C C H C C H C C H C C H C H C C H C C H C C H C C H C C H C C H C C C H C C C H C C C C H C C C C H C	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -3.93451800 -2.08154100 -2.57604400 -3.97486500 -4.43929800 -5.50469600 -3.50554800 -2.12794300 -1.43127500 -1.68372800 -0.61776000 2.15522000	optimized triplet-st. -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.58807600 -2.57766000 -2.46801200 -2.12536500 -2.06344200 -2.04872700 -1.97073100 -1.93772900 -1.91228300 -1.92787300 -1.88338500 -1.99992900 -2.04408900 -1.13133900	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600 0.86749900 2.15481200 2.35489800 3.19178800 2.94826400 3.77907900 1.65085700 1.47001100 -0.18274800	
Energies and cartesian co	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -3.93451800 -2.08154100 -2.08154100 -2.57604400 -3.97486500 -4.43929800 -5.50469600 -3.50554800 -2.12794300 -1.43127500 -1.68372800 -0.61776000 2.15522000 3.15620400	optimized triplet-st -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.58807600 -2.57766000 -2.46801200 -2.06344200 -2.06344200 -2.04872700 -1.97073100 -1.93772900 -1.91228300 -1.92787300 -1.88338500 -1.99922900 -2.04408900 -1.13133900 -0.90740700	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600 0.86749900 2.15481200 2.35489800 3.19178800 2.94826400 3.77907900 1.65085700 1.47001100 -0.18274800 -1.12058000	
Energies and cartesian co	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -2.85813400 -2.08154100 -2.08154100 -2.57604400 -3.97486500 -4.43929800 -5.50469600 -3.50554800 -2.12794300 -1.43127500 -1.68372800 -0.61776000 2.15522000 3.15620400 4.40423500	optimized triplet-st -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.58807600 -2.57766000 -2.12536500 -2.06344200 -2.06344200 -2.04872700 -1.97073100 -1.93772900 -1.91228300 -1.92787300 -1.88338500 -1.99992900 -2.04408900 -1.13133900 -0.90740700 -1.51813600	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600 0.86749900 2.15481200 2.35489800 3.19178800 2.94826400 3.77907900 1.65085700 1.47001100 -0.18274800 -1.12058000 -1.05718000	
Energies and cartesian co	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -2.85813400 -2.08154100 -2.57604400 -3.97486500 -4.43929800 -5.50469600 -3.50554800 -2.12794300 -1.43127500 -1.68372800 -0.61776000 2.15522000 3.15620400 4.40423500 4.67910600	optimized triplet-st. -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.58807600 -2.57766000 -2.46801200 -2.06344200 -2.06344200 -2.04872700 -1.97073100 -1.93772900 -1.91228300 -1.92787300 -1.88338500 -1.99992900 -2.04408900 -2.04408900 -1.51813600 -2.39035000	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600 0.86749900 2.15481200 2.35489800 3.19178800 2.94826400 3.77907900 1.65085700 1.47001100 -0.18274800 -1.12058000 -0.01038600	
Energies and cartesian co	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -3.93451800 -2.08154100 -2.08154100 -2.57604400 -3.97486500 -4.43929800 -5.50469600 -3.50554800 -2.12794300 -1.68372800 -0.61776000 2.15522000 3.15620400 4.40423500 4.67910600 3.70542200	optimized triplet-st. -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.58807600 -2.57766000 -2.46801200 -2.12536500 -2.06344200 -2.04872700 -1.97073100 -1.92787300 -1.92787300 -1.92787300 -1.99992900 -2.04408900 -1.13133900 -0.90740700 -1.51813600 -2.39035000 -2.64071500	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600 0.86749900 2.15481200 2.35489800 3.19178800 2.94826400 3.77907900 1.65085700 1.47001100 -0.18274800 -1.12058000 -1.05718000 -0.01038600 0.94932300	
Energies and cartesian co	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -3.93451800 -2.08154100 -2.08154100 -2.57604400 -3.97486500 -4.43929800 -5.50469600 -3.50554800 -2.12794300 -1.43127500 -1.68372800 -0.61776000 2.15522000 3.15620400 4.67910600 3.70542200 2.47110300	optimized triplet-st -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.58807600 -2.57766000 -2.46801200 -2.06344200 -2.04872700 -1.97073100 -1.93772900 -1.92787300 -1.92787300 -1.92787300 -1.9338500 -2.04408900 -1.13133900 -0.90740700 -1.51813600 -2.39035000 -2.64071500 -2.00929000	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600 0.86749900 2.15481200 2.35489800 3.19178800 2.94826400 3.77907900 1.65085700 1.47001100 -0.18274800 -1.12058000 -1.05718000 -0.01038600 0.94932300 0.84462500	
Energies and cartesian co	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -3.93451800 -2.08154100 -2.08154100 -2.08154100 -2.57604400 -3.97486500 -4.43929800 -5.50469600 -3.50554800 -2.12794300 -1.43127500 -1.68372800 -0.61776000 2.15522000 3.15620400 4.40423500 4.67910600 3.70542200 2.47110300 -1.42598400	optimized triplet-st -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.58807600 -2.57766000 -2.46801200 -2.06344200 -2.06344200 -2.06344200 -1.97073100 -1.9777300 -1.93772900 -1.92787300 -1.99992900 -2.04408900 -1.13133900 -0.90740700 -1.51813600 -2.39035000 -2.64071500 -2.00929000 0.92122300	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600 0.86749900 2.15481200 2.35489800 3.19178800 2.94826400 3.77907900 1.65085700 1.47001100 -0.18274800 -1.12058000 -1.05718000 -0.01038600 0.94932300 0.84462500 -0.51298800	
Energies and cartesian co	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -2.85813400 -2.85813400 -2.08154100 -2.57604400 -3.97486500 -4.43929800 -5.50469600 -3.50554800 -2.12794300 -1.43127500 -1.68372800 -0.61776000 2.15522000 3.15620400 4.40423500 4.67910600 3.70542200 2.47110300 -1.42598400 -2.9767200	optimized triplet-st -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.58807600 -2.57766000 -2.12536500 -2.06344200 -2.06344200 -2.04872700 -1.97073100 -1.93772900 -1.91228300 -1.92787300 -1.88338500 -1.99992900 -2.04408900 -1.13133900 -0.90740700 -1.51813600 -2.39035000 -2.64071500 -2.00929000 0.92122300	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600 0.86749900 2.15481200 2.35489800 3.19178800 2.94826400 3.77907900 1.65085700 1.47001100 -0.18274800 -1.12058000 -1.05718000 -0.01038600 0.94932300 0.84462500 -0.51298800	
Energies and cartesian co	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -3.93451800 -2.08154100 -2.08154100 -2.57604400 -3.97486500 -4.43929800 -5.50469600 -3.50554800 -2.12794300 -1.43127500 -1.68372800 -0.61776000 2.15522000 3.15522000 3.15522000 3.15620400 4.67910600 3.70542200 2.47110300 -1.42598400 -2.07597900	optimized triplet-st -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.20743500 -2.57766000 -2.46801200 -2.12536500 -2.06344200 -2.04872700 -1.97073100 -1.92787300 -1.92787300 -1.92787300 -1.92787300 -1.92787300 -1.99992900 -2.04408900 -1.13133900 -0.90740700 -1.51813600 -2.39035000 -2.64071500 -2.00929000 0.92122300 1.50645700	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600 0.86749900 2.15481200 2.35489800 3.19178800 2.94826400 3.77907900 1.65085700 1.47001100 -0.18274800 -1.12058000 -1.05718000 0.94932300 0.84462500 -0.51298800 0.56382400	
Energies and cartesian co	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -3.93451800 -2.08154100 -2.08154100 -2.57604400 -3.97486500 -4.43929800 -5.50469600 -3.50554800 -2.12794300 -1.43127500 -1.68372800 -0.61776000 2.15522000 3.15620400 4.40423500 4.67910600 3.70542200 2.47110300 -1.42598400 -2.07597900 -3.27654200	optimized triplet-st -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.58807600 -2.57766000 -2.46801200 -2.12536500 -2.06344200 -2.04872700 -1.97073100 -1.93772900 -1.92787300 -1.92787300 -1.92787300 -1.99992900 -2.04408900 -1.13133900 -0.90740700 -1.51813600 -2.39035000 -2.64071500 -2.00929000 0.92122300 1.50645700 2.19751300	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600 0.86749900 2.15481200 2.35489800 3.19178800 2.94826400 3.77907900 1.65085700 1.47001100 -0.18274800 -1.12058000 -1.12058000 -1.05718000 0.94932300 0.84462500 -0.51298800 0.56382400 0.42920900	
Energies and cartesian co	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -3.93451800 -2.08154100 -2.08154100 -2.08154100 -2.57604400 -3.97486500 -4.43929800 -5.50469600 -3.50554800 -2.12794300 -1.43127500 -1.68372800 -0.61776000 2.15522000 3.15620400 4.40423500 4.67910600 3.70542200 2.47110300 -1.42598400 -2.07597900 -3.27654200 -3.85246000	optimized triplet-st -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.58807600 -2.57766000 -2.46801200 -2.12536500 -2.06344200 -2.04872700 -1.97073100 -1.93772900 -1.91228300 -1.92787300 -1.9992900 -2.04408900 -1.13133900 -0.90740700 -1.51813600 -2.39035000 -2.64071500 -2.00929000 0.92122300 1.50645700 2.19751300 2.32326900	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600 0.86749900 2.15481200 2.35489800 3.19178800 2.94826400 3.77907900 1.65085700 1.47001100 -0.18274800 -1.12058000 -1.05718000 -0.01038600 0.94932300 0.84462500 -0.51298800 0.56382400 0.42920900 -0.82946500	
Energies and cartesian co	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -2.85813400 -2.08154100 -2.08154100 -2.08154100 -2.57604400 -3.97486500 -4.43929800 -5.50469600 -3.50554800 -2.12794300 -1.43127500 -1.68372800 -0.61776000 2.15522000 3.15620400 4.40423500 4.67910600 3.70542200 2.47110300 -1.42598400 -2.07597900 -3.27654200 -3.22486800	optimized triplet-st -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.58807600 -2.57766000 -2.12536500 -2.06344200 -2.04872700 -1.97073100 -1.93772900 -1.91228300 -1.92787300 -1.99992900 -2.04408900 -1.13133900 -0.90740700 -1.51813600 -2.39035000 -2.64071500 -2.00929000 0.92122300 1.50645700 2.19751300 2.32326900 1.75736400	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600 0.86749900 2.15481200 2.35489800 3.19178800 2.94826400 3.77907900 1.65085700 1.47001100 -0.18274800 -1.12058000 -1.9718000 -0.01038600 0.94932300 0.84462500 -0.51298800 0.56382400 0.42920900 -0.82946500 -1.93326900	
Energies and cartesian co	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -3.93451800 -2.08154100 -2.08154100 -2.57604400 -3.97486500 -4.43929800 -5.50469600 -3.50554800 -2.12794300 -1.43127500 -1.68372800 -0.61776000 2.15522000 3.15622000 3.15622000 3.70542200 2.47110300 -1.42598400 -2.07597900 -3.27654200 -3.22486800 -2.02819100	optimized triplet-st -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.20743500 -2.57766000 -2.46801200 -2.12536500 -2.06344200 -2.04872700 -1.97073100 -1.93772900 -1.92787300 -1.92787300 -1.92787300 -1.92787300 -1.92787300 -1.93838500 -1.99992900 -2.04408900 -1.13133900 -0.90740700 -1.51813600 -2.39035000 -2.0929000 0.92122300 1.50645700 2.19751300 2.3226900 1.75736400 1.07210100	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600 0.86749900 2.15481200 2.35489800 3.19178800 2.94826400 3.77907900 1.65085700 1.47001100 -0.18274800 -1.12058000 -1.12058000 0.84462500 -0.51298800 0.56382400 0.42920900 -0.82946500 -1.93326900 -1.75456400	
Energies and cartesian co	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -3.93451800 -2.08154100 -2.57604400 -3.97486500 -4.43929800 -5.50469600 -3.50554800 -2.12794300 -1.43127500 -1.68372800 -0.61776000 2.15522000 3.15620400 4.40423500 4.67910600 3.70542200 2.47110300 -1.42598400 -2.07597900 -3.27654200 -3.85246000 -3.22486800 -2.02819100 1.26029800	optimized triplet-st -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.58807600 -2.57766000 -2.46801200 -2.12536500 -2.06344200 -2.04872700 -1.97073100 -1.93772900 -1.92787300 -1.92787300 -1.92787300 -1.92787300 -1.92787300 -1.9338500 -2.04408900 -1.13133900 -0.90740700 -1.51813600 -2.39035000 -2.64071500 -2.00929000 0.92122300 1.50645700 2.19751300 2.32326900 1.75736400 1.07210100 1.54931200	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600 0.86749900 2.15481200 2.35489800 3.19178800 2.94826400 3.77907900 1.65085700 1.47001100 -0.18274800 -1.12058000 -1.12058000 -0.01038600 0.94932300 0.84462500 -0.51298800 0.56382400 0.42920900 -0.82946500 -1.93326900 -1.75456400 0.22770500	
Energies and cartesian co	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -3.93451800 -2.08154100 -2.08154100 -2.57604400 -3.97486500 -4.43929800 -5.50469600 -3.50554800 -2.12794300 -1.43127500 -1.68372800 -0.61776000 2.15522000 3.15620400 4.40423500 4.67910600 3.70542200 2.47110300 -1.42598400 -2.07597900 -3.27654200 -3.85246000 -3.22486800 -2.02819100 1.260796400	optimized triplet-st -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.58807600 -2.57766000 -2.46801200 -2.46801200 -2.06344200 -2.06344200 -2.04872700 -1.97073100 -1.93772900 -1.91228300 -1.92787300 -1.99922900 -2.04408900 -1.13133900 -0.90740700 -1.51813600 -2.39035000 -2.64071500 -2.00929000 0.92122300 1.50645700 2.32326900 1.75736400 1.07210100 1.54931200	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600 0.86749900 2.15481200 2.35489800 3.19178800 2.94826400 3.77907900 1.65085700 1.47001100 -0.18274800 -1.12058000 -1.05718000 -0.01038600 0.94932300 0.84462500 -0.51298800 0.56382400 0.42920900 -0.82946500 -1.93326900 -1.75456400 0.22770500 1.52387600	
Energies and cartesian co	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -2.85813400 -2.08154100 -2.08154100 -2.08154100 -2.57604400 -3.97486500 -4.43929800 -5.50469600 -3.50554800 -2.12794300 -1.43127500 -1.68372800 -0.61776000 2.15522000 3.15620400 4.40423500 4.67910600 3.70542200 2.47110300 -1.42598400 -2.07597900 -3.22654200 -3.85246000 -3.22486800 -2.02819100 1.26029800 1.72476400	optimized triplet-st -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.58807600 -2.57766000 -2.12536500 -2.06344200 -2.04872700 -1.97073100 -1.93772900 -1.91228300 -1.92787300 -1.99992900 -2.04408900 -1.13133900 -0.90740700 -1.51813600 -2.39035000 -2.64071500 -2.00929000 0.92122300 1.50645700 2.32326900 1.75736400 1.07210100 1.54931200 1.72579000	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600 0.86749900 2.15481200 2.35489800 3.19178800 2.94826400 3.77907900 1.65085700 1.47001100 -0.18274800 -1.12058000 -1.05718000 -0.01038600 0.94932300 0.84462500 -0.51298800 0.56382400 0.42920900 -0.82946500 -1.75456400 0.22770500 1.52387600	
Energies and cartesian co	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -3.93451800 -2.08154100 -2.57604400 -3.97486500 -4.43929800 -3.50554800 -2.12794300 -1.43127500 -1.68372800 -0.61776000 2.15522000 3.15622000 3.15624000 4.40423500 4.67910600 3.70542200 2.47110300 -1.42598400 -2.07597900 -3.85246000 -3.22486800 -2.02819100 1.26029800 1.72476400 2.3652600	optimized triplet-st -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.20743500 -2.57766000 -2.46801200 -2.12536500 -2.06344200 -2.04872700 -1.97073100 -1.92787300 -1.92787300 -1.92787300 -1.92787300 -1.92787300 -1.93772900 -2.04408900 -1.13133900 -0.90740700 -1.51813600 -2.39035000 -2.0929000 0.92122300 1.50645700 2.19751300 2.3226900 1.75736400 1.75736400 1.72579000 2.89306900	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600 0.86749900 2.15481200 2.35489800 3.19178800 2.94826400 3.77907900 1.65085700 1.47001100 -0.18274800 -1.12058000 -1.05718000 -0.01038600 0.94932300 0.84462500 -0.51298800 0.56382400 0.42920900 -0.82946500 -1.75456400 0.22770500 1.52387600 1.92392200	
Energies and cartesian co	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -3.93451800 -2.08154100 -2.08154100 -2.57604400 -3.97486500 -4.43929800 -5.50469600 -3.50554800 -2.12794300 -1.43127500 -1.68372800 -0.61776000 2.15522000 3.15620400 4.40423500 4.67910600 3.70542200 2.47110300 -1.42598400 -2.07597900 -3.27654200 -3.85246000 -3.22486800 -2.02819100 1.26029800 1.72476400 2.36525600 2.55250000	optimized triplet-st -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.58807600 -2.57766000 -2.46801200 -2.12536500 -2.06344200 -2.04872700 -1.97073100 -1.93772900 -1.92787300 -1.92787300 -1.92787300 -1.92787300 -1.99992900 -2.04408900 -1.13133900 -0.90740700 -1.51813600 -2.39035000 -2.64071500 -2.00929000 0.92122300 1.50645700 2.19751300 2.32326900 1.75736400 1.54931200 1.72579000 2.89306900 3.91864800	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600 0.86749900 2.15481200 2.35489800 3.19178800 2.94826400 3.77907900 1.65085700 1.47001100 -0.18274800 -1.12058000 -1.12058000 -1.05718000 -0.01038600 0.94932300 0.84462500 -0.51298800 0.56382400 0.42920900 -0.82946500 -1.93326900 -1.75456400 0.22770500 1.52387600 1.92392200 1.00490100	
Energies and cartesian co	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -3.93451800 -2.08154100 -2.08154100 -2.57604400 -3.97486500 -4.43929800 -5.50469600 -3.50554800 -2.12794300 -1.43127500 -1.68372800 -0.61776000 2.15522000 3.15620400 4.40423500 4.67910600 3.70542200 2.47110300 -1.42598400 -2.07597900 -3.27654200 -3.85246000 -3.22486800 -2.02819100 1.26029800 1.72476400 2.365256000 2.09726900	optimized triplet-st -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.58807600 -2.57766000 -2.46801200 -2.06344200 -2.06344200 -2.06344200 -2.04872700 -1.97073100 -1.93772900 -1.92787300 -1.99922900 -2.04408900 -1.13133900 -0.90740700 -1.51813600 -2.39035000 -2.64071500 -2.00929000 0.92122300 1.50645700 2.19751300 2.32326900 1.75736400 1.72579000 2.89306900 3.76827300	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600 0.86749900 2.15481200 2.35489800 3.19178800 2.94826400 3.77907900 1.65085700 1.47001100 -0.18274800 -1.12058000 -1.05718000 -0.01038600 0.94932300 0.84462500 -0.51298800 0.56382400 0.42920900 -0.82946500 -1.93326900 -1.75456400 0.22770500 1.52387600 1.92392200 1.00490100 -0.29942200	
Energies and cartesian co	ordinates of the DFT -0.10355200 0.97337400 -0.81532300 -0.26504100 -2.23137200 -2.79582600 -2.85813400 -3.93451800 -2.08154100 -2.08154100 -2.57604400 -3.97486500 -4.43929800 -5.50469600 -3.50554800 -2.12794300 -1.43127500 -1.68372800 -0.61776000 2.15522000 3.15620400 4.40423500 4.67910600 3.70542200 2.47110300 -1.42598400 -2.07597900 -3.22486800 -2.02819100 1.26029800 1.72476400 2.55250000 2.55250000 2.09726900 1.45753400	optimized triplet-st -2.58249900 -2.46328100 -3.32860100 -3.86793900 -3.20743500 -3.58807600 -2.57766000 -2.12536500 -2.06344200 -2.04872700 -1.97073100 -1.93772900 -1.91228300 -1.92787300 -1.99992900 -2.04408900 -1.13133900 -0.90740700 -1.51813600 -2.39035000 -2.64071500 -2.00929000 0.92122300 1.50645700 2.32326900 1.75736400 1.75736400 1.72579000 2.89306900 3.91864800 3.76827300 2.59011500	ate structure of 1 -1.97748200 -2.07484800 -2.93930500 -3.70249200 -2.97640600 -3.82179300 -1.94331300 -1.93582600 -0.79014400 0.52072600 0.86749900 2.15481200 2.35489800 3.19178800 2.94826400 3.77907900 1.65085700 1.47001100 -0.18274800 -1.12058000 -1.05718000 -0.01038600 0.94932300 0.84462500 -0.51298800 0.56382400 0.42920900 -0.82946500 -1.75456400 0.22770500 1.52387600 1.92392200 1.00490100 -0.29942200 -0.66987800	

Ν	-0.67553700	-1.92550500	-0.98899700	
F	2.93295200	-0.07621800	-2.15254300	
F	5.33307800	-1.28128600	-1.98312700	
F	5.86493400	-2.98718800	0.06911200	
F	3.96347200	-3.48137200	1.95102400	
F	1.56467300	-2.29245900	1.79894000	
F	-1.56116000	1.41177400	1.80014400	
F	-3.87996600	2.73635300	1.48924700	
F	-5.00040600	2.97999400	-0.97686800	
F	-3.77711200	1.87355400	-3.14150400	
F	-1.46169500	0.52995600	-2.84705100	
F	1.56520600	0.75906700	2.43690000	
F	2.80045500	3.03565300	3.17515600	
F	3.16495300	5.04055300	1.37284100	
F	2.27425400	4.75147900	-1.18063500	
F	1.02768400	2.48635100	-1.93248700	
Au	0.33094000	-0.15002300	-0.32813100	
F	-4.89726800	-2.06347200	-0.10855600	
F	-3.95016200	-1.83443700	4.44619800	
Zero-point	correction=		0.303257	(Hartree/Particle)

Zero-point correction=0.303257 (Hartree/Particle)Thermal correction to Energy=0.346436Thermal correction to Enthalpy=0.347380Thermal correction to Gibbs Free Energy=0.220610Sum of electronic and zero-point Energies=-2993.726005Sum of electronic and thermal Energies=-2993.682825Sum of electronic and thermal Enthalpies=-2993.681881Sum of electronic and thermal Free Energies=-2993.808651

С	0.41214000	2.06808100	0.04974100
С	0.85564400	2.79157600	1.14702100
С	0.84908100	4.18231900	1.18118200
С	0.38378900	4.88562500	0.07646200
С	-0.07131500	4.19441400	-1.04069200
С	-0.04975200	2.80468900	-1.03180400
С	0.41194200	-2.06808400	-0.04954500
С	0.85815600	-2.79160900	-1.14569900
С	0.85145700	-4.18234900	-1.17992800
С	0.38317100	-4.88561600	-0.07644800
С	-0.07474400	-4.19436800	1.03953500
С	-0.05291200	-2.80464600	1.03076100
С	2.41585400	-0.00011800	0.00028600
С	3.13819000	0.44553300	-1.09868900
С	4.52861300	0.45006200	-1.11413400
С	5.22565600	-0.00025100	0.00050300
С	4.52839700	-0.45050200	1.11503100
С	3.13797700	-0.44584300	1.09937300
F	1.30425700	2.15113900	2.23977600
F	1.27689800	4.84589500	2.25611700
F	0.36708500	6.21662700	0.09042800
F	-0.52554200	4.86984400	-2.09744800
F	-0.50956500	2.17341000	-2.12674200
F	1.30973800	-2.15118500	-2.23724300
F	1.28196200	-4.84595600	-2.25377100
F	0.36626500	-6.21661500	-0.09051400
F	-0.53188900	-4.86976000	2.09505500
F	-0.51560800	-2.17332300	2.12445600
F	2.50233700	0.89024400	-2.18948800
F	5.19607600	0.88242900	-2.18348700
F	6.55630400	-0.00031500	0.00060600
F	5.19565500	-0.88292600	2.18448800
F	2.50192300	-0.89048500	2.19007900
Au	0.40500100	-0.00000500	0.00010000
С	-2.38849700	-0.46000800	-1.07470800
С	-2.38871700	0.46018500	1.07425600
С	-3.75470100	-0.47423000	-1.11841800
С	-3.75493100	0.47450000	1.11764700
Н	-1.79487700	0.81726300	1.90896900
С	-4.54097500	0.00016500	-0.00047900
Н	-4.22363100	0.85343100	2.01721300
N	-1.69198300	0.00007100	-0.00014700
Н	-1.79448800	-0.81712500	-1.90928400
Н	-4.22321600	-0.85312900	-2.01809400
С	-5.93641500	0.00021600	-0.00064600

С	-6.71723900	0.48389900	1.14523900	
С	-6.71699700	-0.48341000	-1.14672000	
С	-8.07936700	0.47746300	1.12987600	
Н	-6.20298700	0.85381600	2.02387300	
С	-8.07912900	-0.47687200	-1.13168700	
Н	-6.20255900	-0.85336100	-2.02523000	
С	-8.79991600	0.00032100	-0.00099300	
Н	-8.62732400	0.84207400	1.99454400	
Н	-8.62690200	-0.84144100	-1.99648900	
Н	-9.88500700	0.00036200	-0.00112400	
Zero-point correct	ion=		0.319348 (Hartree/Pa	article)
Thermal correction	to Energy=		0.361021	
Thermal correction	to Enthalpy=		0.361965	
Thermal correction	to Gibbs Free	e Energy=	0.236186	
Sum of electronic	and zero-point	t Energies=	-2795.413316	
Sum of electronic	and thermal En	nergies=	-2795.371643	
Sum of electronic	and thermal En	nthalpies=	-2795.370698	
Sum of electronic	and thermal F:	ree Energies=	-2795.496478	

С	-0.08627400	-2.80389000	-1.66028000
н	0 95152200	-2 55347400	-1 86847600
	0.76402000	2 71652400	2 40570000
	-0.76492900	-3.71653400	-2.493/9900
H	-0.21068800	-4.23698800	-3.26907400
C	-2.17982800	-3.78797700	-2.40835400
H	-2.75509400	-4.30589600	-3.16954500
С	-2.79391100	-3.16174700	-1.36447900
н	-3 87462100	-3 18021000	-1 27734100
C	-1 00550300	-2 51667400	-0 32644600
C	-1.99556500	-2.5100/400	-0.32044000
C	-2.43621900	-2.39820400	0.99460800
С	-3.80813700	-2.67169300	1.36037600
H	-4.52118000	-2.98225100	0.60546900
С	-4.24162900	-2.51423100	2.65485000
Н	-5.28361300	-2.70613500	2.89640300
С	-3 35454000	-2 10203800	3 66832900
с ц	-3 70995700	-1 073/0300	4 69667100
п С	-3.70883700	-1.97349300	9.0000/100
C	-2.00442400	-1.86005200	3.34880300
H	-1.31006800	-1.55613700	4.12727400
С	-1.54867200	-2.00396500	2.06082600
Н	-0.49887200	-1.84345900	1.84926500
С	2.10072200	-0.98277100	-0.14018900
C	3 01107700	-0 73870400	-1 16124500
C	1 32019700	-1 20795900	-1 13705200
C C	4.752010700	1 05007000	1.13703200
C	4.75293200	-1.9508/000	-0.04502900
С	3.87358300	-2.21593400	0.99822000
C	2.57293400	-1.72885000	0.93085800
С	-1.70739000	0.62885000	-0.36402600
С	-2.33117600	1.26160400	0.70174300
С	-3.61051400	1.80122200	0.60862000
C	-4 29760700	1 71996700	-0 59638100
6	2.2000000	1 1000000	1 COODE400
	-3.70022800	1.10226000	-1.00903400
C	-2.421/1300	0.5/3/4600	-1.55280600
С	0.93524500	1.61249300	0.10150900
С	1.46709400	1.96173800	1.33524000
С	1.99598000	3.22424800	1.57835900
С	1.99901800	4.17104500	0.56106800
С	1,47301900	3.84794600	-0.68384900
C	0 94829300	2 57755900	-0 89665200
N	-0 65750000	-2 14037100	-0.67016200
	-0.03730000	-2.14937100	-0.07010200
E.	2.63461100	-0.03003200	-2.23955400
F'	5.15892300	-0.95803400	-2.14269400
F	6.00018400	-2.41141300	-0.00126800
F	4.28473900	-2.93303700	2.04413400
F	1.76380900	-2.01822500	1.96546800
Я	-1.70988000	1.36740800	1.88642300
- T	-4 18/12300	2 3013/700	1 65810300
- 	5 52204200	2 22050500	0 70206500
£	-J.JZZ94300	2.22930300	-0./0390300
F.	-4.35944600	1.02036900	-2.84647500
F	-1.88679100	-0.02460600	-2.63259300
F'	1.48441400	1.07606100	2.33949900
F	2.49926300	3.53261300	2.77318000
F	2.50325600	5.38275600	0.77870800
Я	1,47356600	4.75542700	-1.65938900
- T	0 44556000	2 20744200	-2 10691600
Ľ	0.44000000	2.30/44300	2.10001000

Zero-point correction=0.319539 (Hartree/Particle)Thermal correction to Energy=0.360974Thermal correction to Enthalpy=0.361918Thermal correction to Gibbs Free Energy=0.239677Sum of electronic and zero-point Energies=-2795.409273Sum of electronic and thermal Energies=-2795.367838Sum of electronic and thermal Enthalpies=-2795.366894Sum of electronic and thermal Free Energies=-2795.489135

Energies and cartesian coordinates of the DFT optimized triplet-state structure of 4

Au

С	2.64213100	0.36449600	1.50983200
	2.01210100		1.00000200
С	3.70947200	-0.54278900	1.67489500
11	4 40000400		0 01 00 000
н	4.48692400	-0.59505600	0.91080900
C	3 74248200	-1 40950500	2 75952900
C	5.74240200	1.4000000	2.13332300
Н	4.55919900	-2.12040700	2.85527900
	1.000220000	2.22010/00	2.0002/900
С	2.72079600	-1.38422500	3.71126500
H	2.74565500	-2.06647100	4.55658900
a	1 (5000500	0 40057000	2 5 6 0 0 6 4 0 0
C	1.02998200	-0.4905/000	3.36206400
н	0 85901700	-0 46478600	1 29583400
11	0.03301700	0.404/0000	4.2000400
С	1.61378400	0.36906500	2.47157400
0	1.010/0100	0.0000000	2.1/20/100
Н	0.79492900	1.07545900	2.38353400
-	4 554 65 66 6		
C	-1.57197600	L.76563900	0.01833900
0	2 27576600	2 20001700	1 00510200
C	-2.2/3/0000	2.20001/00	-1.09219300
C	-3 14456300	3 29107500	-1 06852800
C	3.14430300	5.2510/500	1.00052000
С	-3.33226100	3.97585200	0.12583900
С	-2.64685300	3.56905300	1.26415300
a	1 705(1700	0 47047400	1 10010200
C	-1./8561/00	2.4/94/400	1.18918300
C	0 84964200	-1 57313600	-0 41086400
C	0.04004200	1.57515000	0.41000400
С	0.88908200	-2.62252600	0.49739300
	0.0000200		
С	1.69382000	-3.74233400	0.31626000
â	0 40710600	2 02507400	0 00006400
C	2.48/12600	-3.8358/400	-0.82026400
C	2 46107700	2 91220000	1 76054200
C	2.4019//00	-2.01329900	-1./0034200
C	1 64396400	-1 71111400	-1 54084600
0	1.01000100	1./111100	1.01001000
С	-1.94164700	-1.06271800	-0.11425600
~	0 60077100	1 04600600	1 0 4 1 0 0 0 0
C	-2.688//100	-1.24629600	1.04133800
C	_3 01650000	_2 05040200	1 06702100
C	-2.01000000	-2.03040200	1.00/92100
C	-4 21870400	-2 70844000	-0 09276200
0	1.210,0100	2.00011000	0.00200
С	-3.48998300	-2.54182700	-1.26388200
~	0 0 0 0 0 1 0 0	1 20504000	1 05006700
C	-2.36388100	-1.72534900	-1.25936700
F	2 11602200	1 57010200	2 27720000
£	-2.11002300	1.3/910200	-2.2//30900
F	-3 79193400	3 68158200	-2 16696500
T.	5.75155400	5.00150200	2.10090500
F	-4.15653100	5.01902600	0.17755700
1			
F	-2.81784600	4.22921800	2.40975800
-	1 14500100	0 14106700	0 20014000
E.	-1.14522100	2.14126/00	2.32214900
5	0 1/151100	-2 59725600	1 61033700
E	0.14131100	-2.30723000	1.01033/00
7	1.71752500	-4.72289000	1.22084200
-	1.11.02000	1.12209000	1.22001200
F	3.26712900	-4.89903600	-1.00759500
P	2 21007000	2 00000000	0 0 5 C 0 4 1 0 0
£	3.2180/900	-2.90080600	-2.85694100
F	1 65042500	-0 75121800	-2 18569800
Ľ	1.03042300	0.75121000	2.40505000
7	-2.33437300	-0.63657000	2.17882900
-	2.0010,000		
F	-4.51330000	-2.21791100	2.19272000
P	E 20740000	2 40704000	0 00007000
Ľ	-5.29/48800	-3.48/04000	-0.08237000
F	-3 87283400	-3 16506600	-2 37764400
T	5.07205400	3.10300000	2.57701100
F	-1.68598100	-1.59660000	-2.40606600
-	0 01460500	0 11745400	0 1 4 2 7 4 6 6 6
AU	-0.31469500	U.II/45400	-0.14374200
C	2 61154200	1 27267200	0 37005000
C	2.01134200	1.2/20/200	0.3/223000
C	1 35426800	2 15117600	-1 41601000
0	1.00120000	2.1011/000	1.11001000
С	3.75149500	2.04986100	-0.01812100
~	0 4661 7100	0 07461500	1 01 500000
C	2.4661/100	2.8/461500	-1.91208900
ц	0 11205000	2 19300400	-1 95560900
11	0.41203900	2.19300400	-1.90000000
C	4 92110900	2 13635100	0 74576900
<u> </u>		2.10000100	0.11010000
С	3.69321400	2.83603200	-1.22059900
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.47000000	0 01150000
Н	2.34408300	3.4/383800	-2.81153000
C	6 05200400	2 00112500	0 20520200
C	0.03209400	2.00112300	0.29328200
н	4 97138400	1 64607500	1 71206300
**		1.0100/000	1.71200500
С	4.81070000	3.57005200	-1.63959500
~			
C	6.01067800	3.58100300	-0.88295300
п	6 01072000	2 00701500	0 00007700
п	0.948/3800	2.00/UIJUU	0.9090//00
Н	4,74360500	4.14399400	-2.56067200
		1.11000	2.00007200
Н	6.86887200	4.14607900	-1.23272400
	1 00740400	1 20005000	0.04000100
IN	1.38/40400	T.3AA82800	-U.343U9100

Zero-point correction=

0.367062 (Hartree/Particle)

Thermal correction to	Energy=	0.411020
Thermal correction to	Enthalpy=	0.411965
Thermal correction to	Gibbs Free Energy=	0.283416
Sum of electronic and	zero-point Energies=	-2948.844544
Sum of electronic and	thermal Energies=	-2948.800586
Sum of electronic and	thermal Enthalpies=	-2948.799642
Sum of electronic and	thermal Free Energies=	-2948.928190

C	-0.01497100	-2.75236100	-1.71640300
Н	0.93410700	-2.32835900	-2.03092500
C	-0 62801600	-3 73863300	-2 48747400
	0 12624000	4 11106600	2 27260700
п Э	-0.12024900	-4.11100000	-5.57500700
C	-1.91855500	-4.16808800	-2.12499100
H	-2.46156200	-4.87758100	-2.74208600
С	-2.47836900	-3.67691700	-0.97262800
Н	-3,45759000	-4.01624300	-0.65533400
C	-1 75131700	-2 76522000	-0 13680700
e	2 11000200	2.70322000	0.13000700
	2.11900200	-0.86603800	-0.14066600
C	2.97840100	-0.57206200	-1.19220600
C	4.31434900	-0.95810600	-1.21110700
С	4.82821600	-1.66763400	-0.13258100
С	4.00139100	-1.98194700	0.93923000
С	2.67044800	-1.57849200	0.91591500
C	-1 79200000	0 10010100	-0.33/30/00
e	2 422220000	1 21002000	0.0000
	-2.42332900	1.21003000	0.6/386500
C	-3.72388400	1.69701000	0.55533000
C	-4.42993000	1.47232800	-0.61962300
С	-3.82754300	0.77219100	-1.65789600
С	-2.52783400	0.30687100	-1,49671800
C	0 79474000	1 64943600	0.05622000
C	1 221/7500	2 07240000	1 26424600
C	1.3314/300	2.07349000	1.20424000
C	1./8512600	3.3/411000	1.45154600
C	1.70594400	4.28321100	0.40342000
С	1.17350600	3.88479900	-0.81657000
С	0.72464100	2.57771900	-0.97395800
Ν	-0.54137700	-2.23765000	-0.60598500
F	2 52285500	0 10370800	-2 26230800
F	5 10121000	0.66140000	2.20230000
r T	5.10121000	-0.00149000	-2.24000700
E.	6.102/5800	-2.049/3900	-0.12891/00
F	4.49079800	-2.66882200	1.97212600
E,	1.91706900	-1.91566300	1.97324700
F	-1.79049000	1.47349000	1.82953100
ੱਜ	-4.29957300	2.36778900	1.55501800
- -	-5 67564600	1 92350400	-0 7/987200
- -	4 50001000	1.52550400	2 70000100
E	-4.50091900	0.55395600	-2.78902100
E.	-1.98995000	-0.36396400	-2.53144200
F	1.42437900	1.22716600	2.29723900
E,	2.29358600	3.75497000	2.62315000
F	2.13781500	5.53077900	0.56803400
ੱਜ	1.09524200	4.75576800	-1.82187300
F	0 21203600	2 23562100	-2 16192100
£	0.2120000	2.23302100	0 10107400
AU	0.1000000	-U.23/39100	
C	-2.18602000	-2.49982700	1.15544300
C	-3.50431900	-2.82113300	1.72316500
S	-1.17732900	-1.72670000	2.37487200
С	-3.65281700	-2.36627300	3.00669300
Н	-4.28600200	-3.30875700	1.15488000
C	-2 50540800	-1 72699500	3 51065900
6	2.50540000	2 4 4 5 0 1 4 0 0	2 5057000
н	-4.56485500	-2.46591400	3.58578200
Н	-2.38394300	-1.25451600	4.4//1/100
Zero-point correct	ion=		0.286101 (Hartree/Particle)
Thermal correction	to Energy=		0.327206
Thermal correction	to Enthalpv=		0.328150
Thermal correction	to Gibbs Free	Enerav=	0.206401
Sum of electropic	and zero-noin+	Energies=	-3116 156417
Cum of oloctronic	and thermal T-	orgiog=	_3116 115310
Sum of electronic	and the mal Ell	erdres-	- 3110 . 114267
Sum of electronic	and thermal En	unaipies=	-3110.11436/
Sum of electronic	and thermal Fr	ee Energies=	-3116.236117

Figure S7. Spatial plots of selected frontier orbitals of the optimized ground state of **1**.

Figure S8. Spatial plots of selected frontier orbitals of the optimized ground state of **2**.

Figure S9. Spatial plots of selected frontier orbitals of the optimized ground state of **3**.

Figure S10. Spatial plots of selected frontier orbitals of the optimized ground state of 4.

Figure S11. Spatial plots of selected frontier orbitals of the optimized ground state of 5.

	мо		1	2	3	4	5
		-) (2.14	2.20	2.05	2 20	2.42
ground-state		ev	-2.14	-2.20	-2.05	-2.30	-2.13
		ev	-7.31	-7.39	-7.24	-7.02	-0.92
	∆E(H-L)	ev	5.17	5.19	5.19	4.72	4.79
		nm	240	239	239	203	259
exp. abs., λmax^a		nm	277	279	281	335	317
triplet-state	SOMO ^b	eV	-2.67	-2.63	-2.60	-2.48	-2.51
	SOMO-1	eV	-4.61	-4.81	-4.51	-4.42	-4.39

Table S21. Energy levels of a selection of frontier orbitals of the DFT optimized ground state S_0 and triplet state T_1 structures of 1 - 5.

^arecorded at room temperature in CH₂Cl₂^brestricted open-shell single point calculations on the optimized triplet state geometries.

Figure S12. Overlay plots of the DFT optimized ground state (light grey) and triplet state (black) structures of 1 – 5.