Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Electronic supporting information

Solid state and solution studies of *n*-butyllithium magnesiates stabilised by Lewis donors.

Silvia Zaragoza-Calero, Javier Francos, Alan R. Kennedy and Charles T. O'Hara*

WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street, Glasgow, G1 1XL, Scotland, UK

INDEX

Crystal data and structure refinement details		
NMR spectra of 1, $[TMPDA \cdot Li(\mu - "Bu)_2Mg(\mu - "Bu)]_2$	S4	
NMR spectra of 2 , $[(PMDETA)Li(\mu - ^nBu)Mg(\mu - ^nBu)(^nBu)]_2$	S5	
NMR spectra of 3 , $[(R,R)$ -TMCDA·Li(μ -Bu) ₂ Mg(μ -Bu)] ₂	S8	
NMR spectra of 4 , $[(TMEDA) \cdot LiMg^nBu_3]_x$	S11	
NMR spectra of 5 , [TMEDA·Li(μ - <i>n</i> Bu)(μ -O <i>n</i> Bu)Mg(<i>n</i> Bu)]	S12	
NMR spectra of 6 , $[(\text{dioxane}) \cdot \text{Li}(\mu - {^n\text{Bu}})_2 \text{Mg}({^n\text{Bu}})]_{\infty}$	S13	
NMR spectra of free Lewis bases	S15	

Lithium magnesiate	1	2	3	5	6
Formula	$C_{38}\overline{H_{90}Li_2Mg_2N_4}$	$C_{42}\overline{H_{100}Li_2Mg_2N_6}$	$C_{44}\overline{H_{98}Li_2Mg_2N_4}$	$C_{36}H_{86}Li_2Mg_2N_4O_2$	$C_{19}H_{38}LiMgO_2$
Formula weight	665.64	751.78	745.76	669.59	329.74
Crystal system	Orthorhombic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P bca	P 2 ₁ /n	P 2 ₁	$P 2_1/c$	C 2/c
<i>a</i> [Å]	13.8489(4)	12.0911(7)	9.9060(12)	10.0718(2)	10.5458(8)
$b[\text{\AA}]$	17.5351(6)	15.5710(7)	14.5510(13)	13.5833(2)	22.265(2)
c[Å]	19.0192(7)	13.7974(7)	17.7804(17)	16.9469(3)	18.0116(12)
β[°]	90	101.390(6)	96.405(11)	95.751(2)	93.437(7)
V [Å ³]	4618.7(3)	2546.5(2)	2546.9(5)	2306.81(7)	4221.6(6)
Z	4	2	2	2	8
$\rho_{\text{calcd.}}[\text{g cm}^{-3}]$	0.957	0.980	0.972	0.964	1.038
Absorption coefficient [mm ⁻¹]	0.641	0.078	0.077	0.678	0.090
<i>T</i> [K]	123(2)	123(2)	123(2)	123(2)	123(2)
Radiation type, wavelength [Å]	CuKa, 1.54180	ΜοΚα, 0.71073	ΜοΚα, 0.71073	CuKa, 1.54180	ΜοΚα, 0.71073
θ range for data collection [°]	6.39 to 73.34	3.42 to 26.00	2.92 to 26.00	6.18 to 73.59	3.03 to 26.00
Reflections collected	14556	13451	see experimental	17305	11951
Reflections unique	4547	4986	7794	4601	4082
Data/restraints/parameters	3327	3167	4128	4029	2704
Goodness-of-fit on F ²	253	275	484	231	228
Final <i>R</i> indexes $[I \ge 2\sigma (I)]$	1.023	1.035	0.940	1.042	1.103
Final <i>R</i> indexes (all data)	$R_1 = 0.0501$ $wR_2 = 0.1387$	$R_1 = 0.0706$ $wR_2 = 0.1839$	$R_1 = 0.0714$ $wR_2 = 0.1625$	$R_1 = 0.0508$ $wR_2 = 0.1450$	$R_1 = 0.0924$ $wR_2 = 0.2420$
Largest diff. peak/hole [e.Å ⁻³]	$R_1 = 0.0709$ $wR_2 = 0.1596$	$R_1 = 0.1148$ $wR_2 = 0.2114$	$R_1 = 0.1355$ $wR_2 = 0.1895$	$R_1 = 0.0565$ $wR_2 = 0.1521$	$R_1 = 0.1318$ $wR_2 = 0.2721$

Table 1. Crystal data and structure refinement details.

Fig. S1. ¹H NMR Spectrum of 1 in cyc-C₆D₁₂ solution.

Fig. S2. ⁷Li NMR Spectrum of **1** in *cyc*- C_6D_{12} solution.

Fig. S3. ¹³C NMR Spectrum of **1** in *cyc*-C₆D₁₂ solution.

Fig S4. ¹H NMR Spectrum of **2** in *cyc*-C₆D₁₂ solution.

Fig. S5. ⁷Li NMR Spectrum of **2** in *cyc*-C₆D₁₂ solution.

Fig. S6. ¹H-DOSY spectrum of 2 in D⁸-toluene solution.

Fig. S7. log D – log FW representation from the ¹H-DOSY data obtained for the mixture of **2**, TPhN, PhN and TMS in D⁸-toluene

Fig. S8. Variable temperature experiments of 2 in D⁸-toluene.

Fig. S9. ¹H NMR Spectrum of 3 in *cyc*-C₆D₁₂ solution.

Fig. S10. ⁷Li NMR Spectrum of 3 in cyc-C₆D₁₂ solution.

Fig. S12. ¹³C DEPT spectrum of **3** in *cyc*-C₆D₁₂ solution.

Fig. S13. COSY spectrum of 3 in *cyc*-C₆D₁₂ solution.

Fig. S12. ¹H NMR Spectrum of 4 in *cyc*-C₆D₁₂ solution.

Fig. S13. ⁷Li NMR Spectrum of 4 in cyc-C₆D₁₂ solution.

Fig. S16. ⁷Li NMR Spectrum of compound 5 in *cyc*-C₆D₁₂ solution.

Fig. S17. ¹H NMR Spectrum of 6 in D⁸-tol solution at 343K.

Fig. S18. ⁷Li NMR Spectrum of compound 6 in D⁸-toluene solution at 343K.

Fig. S19. ¹³C NMR Spectrum of compound 6 in D⁸-toluene solution at 343K.

Fig. S21. 13 C NMR Spectrum of TMPDA in *cyc*-C₆D₁₂ solution.

Fig. S22. ¹H NMR Spectrum of PMDETA in *cyc*- C_6D_{12} solution.

Fig. S23. ¹³C NMR Spectrum of PMDETA in *cyc*-C₆D₁₂ solution.

Fig. S25. ¹³C NMR Spectrum of (R,R)-TMCDA in *cyc*-C₆D₁₂ solution.

