An Exhibition of the Brønsted Acid-Base Character by a Schiff Base in Palladium(II) Complex Formation: Lithium Complex, Fluxional Property and Catalysis of Suzuki Reactions in Water

Rajnish Kumar and Ganesan Mani*

Department of Chemistry, Indian Institute of Technology – Kharagpur, Kharagpur, West Bengal,

India 721 302, Fax: +91 3222 282252, E-mail: gmani@chem.iitkgp.ernet.in.

Figure S1. ¹H-NMR spectrum of bis(iminopyrrolylmethyl)amine H₂L in CDCl₃.

Figure S2. ¹H-NMR spectrum of bis(iminopyrrolylmethyl)amine H_2L in toluene- d_8 . The broad peak round δ 4.25 ppm is probably due to water.

Figure S3. ¹³C{¹H}-NMR spectrum of bis(iminopyrrolylmethyl)amine H₂L in CDCl₃.

Figure S4. DEPT¹H-135 NMR spectrum of bis(iminopyrrolylmethyl)amine H₂L in CDCl₃.

Figure S5: FTIR spectrum of bis(iminopyrrolylmethyl)amine H₂L recorded as a KBr disc.

Figure S6. ¹H-NMR spectrum of the monoimino compound H₂L'in CDCl₃.

Figure S8. DEPT{¹H}-135 NMR spectrum of the monoimino compound H₂L' in CDCl₃.

Figure S9: FTIR spectrum of the monoimino compound H_2L' recorded as a KBr disc.

Figure S10: FTIR spectrum of the dimeric lithium complex 2 recorded as a Nujol mull.

Figure S11. ¹H-NMR spectrum of the cationic Pd(II) complex 3 in CDCl₃.

Figure S12. ¹H-NMR spectrum of the cationic Pd(II) complex 3 in methanol- d_4 .

Figure S13. ¹³C{¹H}-NMR spectrum of the cationic Pd(II) complex 3 in methanol- d_4 .

Figure S14: FTIR spectrum of the cationic Pd(II) complex 3 recorded as a KBr disc.

Figure S15. ¹H-NMR spectrum of the neutral Pd(II) complex 4 in CDCl₃ at 23 °C.

Figure S16. ¹H-NMR spectrum of the neutral Pd(II) complex 4 in CDCl₃ at 0 °C.

Figure S17. ¹³C{¹H}-NMR spectrum of the neutral Pd(II) complex 4 in CDCl₃.

Figure S18: FTIR spectrum of the neutral Pd(II) complex 4 recorded as a KBr disc.

Figure S19. ¹H-NMR spectrum of the zwitterionic Pd(II) complex 5 in CDCl₃.

Figure S20. ¹³C{¹H}-NMR spectrum of the zwitterionic Pd(II) complex 5 in dmso- d_6 .

Figure S21: FTIR spectrum of the zwitterionic Pd(II) complex 5 recorded as a KBr disc.

Figure S22. Plot of time vs yield for the Suzuki-Miyaura coupling between 4bromoacetophenone and phenylboronic acid. A round bottom flask containing 4bromoacetophenone (1 mmol), phenylboronic acid (1.5 mmol), K_2CO_3 (2 mmol), catalyst **3** (0.01 mol%), and H₂O (1.5 mL) was placed in a oil bath which is already preheated to 100 °C. The reaction was stopped for every 30 minutes, and the product was separated and the yield was calculated as mentioned in the general procedure of the Suzuki reaction.

X-ray structures

Table 1 Crystallographic data for H ₂	$_{2}L\cdot H_{2}O$ and $H_{2}L'$.
--	-------------------------------------

	H_2L · H_2O	H_2L'
Empirical formula	$C_{37}H_{51}N_5O$	$C_{25}H_{32}N_4O$
Formula weight	581.83	404.55
Wavelength (Å)	0.71073	0.71073
Temperature (K)	293(2)	293(2)
Crystal system	Triclinic	Triclinic
Space group	рl	pl
$a/{ m \AA}$	10.429(4)	9.0287(16)
b/Å	13.208(5)	9.7736(18)
$c/{ m \AA}$	14.228(5)	14.728(3)
a/degree	71.233(11)	95.194(6)
β/degree	84.201(12)	91.309(6)
γ/degree	76.698(11)	113.379(5)
Volume (Å ³)	1805.1(11)	1185.6(4)
Ζ	2	2
$D_{ m calcd}$, g cm ⁻³	1.070	1.133
μ/mm^{-1}	0.065	0.071
<i>F</i> (000)	632	436
θ range (degree)	1.51 to 24.87	2.28 to 25.00
Limiting indices	-11<=h<=12, -14<=k<=15, -16<=l<=16	-9<=h<=10, -11<=k<=11, -17<=l<=17
Total/ unique no. of reflns.	21315 / 6222	14316 / 4163
R_{int}	0.0955	0.0529
Data / restr./ params.	6222 / 2 / 401	4163 / 0 / 278
GOF (F^2)	1.004	1.002
R1, wR2	0.0724, 0.1610	0.0606, 0.1568
R indices (all data) R1, wR2	0.1863, 0.2117	0.1195, 0.1938
Largest different peak and hole (e Å-3)	0.221 and -0.161	0.526 and -0.273

Figure S23. The X-ray structure of $H_2L \cdot H_2O$ (a) and the hydrolyzed monoimino compound H_2L' which forms the intermolecular hydrogen bonds in the crystal lattice (b). Dotted lines indicate hydrogen bonds. Most hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°] for H_2L : N2···O1 2.998(4), H1N2···O1 2.16(4), N2–H1N2···O1 159(3), N4···O1 2.870(4), H1N4···O1 2.00(4), N4–H1N4···O1 166(3), O1···N1 2.842(4), H1W···N1 2.05(2), O1–H1W···N1 163(4), O1···N5 2.859(4), H2W···N5 2.06(2), O1–H2W···N5 160(4). For H_2L' : N1···O1ⁱ 2.988(3), H1N1···O1ⁱ 2.16(3), N1–H1N1···O1ⁱ 162(3), N3···O1ⁱ 3.161(3), H1N3···O1ⁱ 2.30(3), N3–H1N3···O1ⁱ 176(3). The symmetry operation used to generate equivalent atoms: -x+2, -y, -z+1.