Supporting information for

P,O-Phosphinophenolate Zinc(II) Species: Synthesis, Structure and Use in the Ring-Opening Polymerization (ROP) of Lactide, ε-Caprolactone and Trimethylene carbonate.

Christophe Fliedel,^{†‡} Vitor Rosa,^{†‡} Filipa M. Alves,[#] Ana. M. Martins,[#] Teresa Avilés^{†*} and Samuel Dagorne^{‡*}

Institut de Chimie de Strasbourg (UMR 7177), CNRS-Université de Strasbourg, 1 rue
 Blaise Pascal, 67000 Strasbourg, France. Email: dagorne@unistra.fr

† LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Caparica, 2829-516, Portugal.

Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.

Table S1.	. Crystallog	raphic data	for compo	unds $2 \cdot H, 3$	6' and 7.

Compound	2 ∙H	3	6'	7
CCDC number	1046464	1046465	1046466	1046467
Chemical formula	C ₂₃ H ₂₅ OP	$C_{44}H_{46}O_2P_2Zn$	$C_{76}H_{79}O_4P_3Zn_2$	$C_{80}H_{72}O_4P_4Zn_2$
Formula mass	348.40	799.49	1280.04	1351.99
Crystal system	Monoclinic	Triclinic	Monoclinic	Triclinic
a/Å	13.3231(8)	9.528(9)	13.6142(6)	12.2606(9)
b/Å	13.0236(8)	9.803(9)	19.6861(8)	13.4731(9)
$c/{ m \AA}$	11.3086(7)	11.432(11)	27.5279(9)	25.2245(18)
$lpha/^{\circ}$	90.00	73.14(2)	90.00	100.950(2)
$eta\!/^{\circ}$	95.911(2)	89.54(2)	116.169(2)	91.257(2)
$\gamma^{\prime \circ}$	90.00	74.29(2)	90.00	114.8770(10)
Unit cell volume/Å ³	1951.8(2)	980.8(16)	6621.5(5)	3687.0(5)
Temperature/K	173(2)	173(2)	173(2)	173(2)
Space group	Cc	<i>P-1</i>	$P2_{1}/c$	P-1
Ζ	4	1	4	2
Absorption coef. μ /mm ⁻¹	0.148	1.340	0.846	0.784
No. refl. meas.	8582	11885	51511	67283
No. indep. refl.	5080	4650	17480	17771
R _{int}	0.0250	0.1282	0.0295	0.0649
$R_{I}(I > 2\sigma(I))$	0.0401	0.0855	0.0560	0.0427
$wR(F^2) (I > 2\sigma(I))$	0.0803	0.1796	0.1121	0.0843
R_I (all data)	0.0581	0.1903	0.0872	0.0810
$wR(F^2)$ (all data)	0.0871	0.2212	0.1288	0.0931
S on F^2	1.028	0.950	1.123	0.948

Figure S1. ¹H NMR (400 MHz, CDCl₃, RT, top) and ³¹P{¹H} NMR (162 MHz, CDCl₃, RT, bottom) spectra of complex **3**. * Residual CH_2Cl_2 .

Figure S2. ¹H NMR (400 MHz, CDCl₃, RT, top) and ³¹P{¹H} NMR (162 MHz, CDCl₃, RT, bottom) spectra of complex **4**. * Residual CH_2Cl_2 .

Figure S3A. ¹H NMR (400 MHz, CD_2Cl_2 , RT, top) and ¹³C{¹H} NMR (75 MHz, CD_2Cl_2 , RT, bottom) spectra of complex **5**. * CD_2Cl_2 .

Figure S3B. ${}^{31}P{}^{1}H$ NMR (162 MHz, CD₂Cl₂, RT) spectrum of complex 5.

Figure S4A. [7.7-6.5 ppm] and [5.2-1.0 ppm] regions of the ¹H NMR (400 MHz, CDCl₃, RT) spectrum of complex **6**.

Figure S4B. ³¹P{¹H} NMR (162 MHz, CDCl₃, RT, bottom) spectrum of complex 6.

Figure S5A. [8.0-6.0 ppm] and [5.0-0.5 ppm] regions of the ¹H NMR (400 MHz, CD₂Cl₂, RT) spectrum of complex **6'**.

Figure S5B. ${}^{31}P{}^{1}H$ NMR (162 MHz, CD₂Cl₂, RT) spectrum of complex 6'.

Figure S5C. Zoom-in of the ${}^{31}P{}^{1}H$ NMR (162 MHz, CD₂Cl₂, RT) spectrum of complex 6'.

Figures S6A and S6B. ¹H NMR (400 MHz, CD_2Cl_2 , RT; top) and ³¹P{¹H} NMR (162 MHz, CD_2Cl_2 , RT, bottom) spectra of complex 7.

Figures S7A and S7B. ¹H NMR (500 MHz, CD_2Cl_2 , RT; top) and ¹³C{¹H} NMR (125 MHz, CD_2Cl_2 , RT; bottom) spectra of complex 8. * Residual CH_2Cl_2 .

Figure S8A. ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, RT) monitoring of the slow decomposition of the heteroleptic species **6** to homoleptic **8** *via* the formation of species **6'**. Conditions: $[6]_0 = 10 \text{ mM}$, CD₂Cl₂, RT. For comparison, the ³¹P{¹H} NMR spectrum of analytically pure **8** (bottom spectrum) as prepared from the reaction of ZnEt₂ and 2 equiv. of ligand **2**·H.

Figure S8B. ¹H NMR (162 MHz, CD_2Cl_2 , RT) monitoring of the slow decomposition of the heteroleptic species **6** to homoleptic **8** *via* the formation of species **6'**. Conditions: $[6]_0 = 10$ mM, CD_2Cl_2 , RT. For comparison, the ³¹P{¹H} NMR spectrum of analytically pure **8** (bottom spectrum) as prepared from the reaction of ZnEt₂ and 2 equiv. of ligand **2**·H.

Based on the above data, 50% of complex **6** is converted in **6'** after 2 days at RT (orange spectrum above; for the ¹H NMR spectrum of pure **6'**, see Fig. S5A). After 4 days, complex **6** is completely consumed with the formation of compounds **6'** and **8** (in a 1/2 **6'**/**8** ratio, black spectrum above). Complex **6'** is thus an intermediate species that progressively converts to homoleptic **8** (blue spectrum above). For comparison, the ¹H NMR spectrum of isolated complex **8** in CD₂Cl₂ is also provided (red spectrum).

Figures S9 and S10. Diffusion-ordered NMR (DOSY) spectra of complexes 3 and 5 recorded in CDCl₃ at room temperature.

Figures S11 and S12. Diffusion-ordered NMR (DOSY) spectra of complexes 6 and 7 recorded in $CDCl_3$ for 6 and in CD_2Cl_2 for 7. Both NMR analysis were run at room temperature.

Figure S13. Diffusion-ordered NMR (DOSY) spectra of complex 8 recorded in CD_2Cl_2 at room temperature.

Table S2. Details of the data used for the	determination of	the hydrodynamic	radius (H R in
Å) and molecular volume (V_{DOSY} in Å ³).			

Comp.	Temp. (K)	Diff. (m ² /s)	Visc.	Gamma ^a	H. R. (Å) ^b	V_{DOSY} (Å ³) ^c
			CDCl ₃			
3	298	6.85 e ⁻¹⁰	5.300 e ⁻⁰⁴	1.13 e ⁻⁰⁸	6.01	909
5	298	6.86 e ⁻¹⁰	5.300 e ⁻⁰⁴	1.13 e ⁻⁰⁸	6.00	905
6	298	6.82 e ⁻¹⁰	5.300 e ⁻⁰⁴	1.14 e ⁻⁰⁸	6.04	921
			CD_2Cl_2			
7	298	6.90 e ⁻¹⁰	4.603 e ⁻⁰⁴	1.29 e ⁻⁰⁸	6.87	1358
8	298	7.85 e ⁻¹⁰	4.603 e ⁻⁰⁴	1.14 e ⁻⁰⁸	6.04	922

Notes: Visc. = Viscosity of the NMR solvent; Diff. = Diffusion; H. R. = hydrodynamic radius; ^{*a*} Gamma = $(1.38 \text{ e}^{-23*}\text{Temp.})/(\text{Diff.*Visc.})$; ^{*b*} H. R. = Gamma/(6* π); ^{*c*} V_{DOSY} = (4/3) π (H. R.)³

Figure S14. Geometrical parameters (L = 14.7, l = 13.5; H = 9.0 Å) used for the volume estimation of species **3** based on its solid state structure. An ellipsoidal model [V = 4/3 π (L x l x H)] was used. V_{X-ray} = (4/3) π [(14.7/2) x (13.5/2) x (9.0/2)] = 936 Å³.

Figure S15. Optimized molecular geometry for complex **5** with Chem3D using the MM2 method. For a listing of MM2 parameters, see page 31.

17.3 A

Figure S16. Geometrical parameters (L = 17.3, l = 10.7; H = 9.8 Å) used for the volume estimation of a model compound of species **5** (optimized geometry with Chem3D using the MM2 method, see Fig. S14). An ellipsoidal model [V = $(4/3)\pi(L \times 1 \times H)$] was used for volume calculation. V = $4/3 \pi [(17.3/2) \times (10.4/2) \times (9.8/2)] = 923 \text{ Å}^3$.

Figure S17. Geometrical parameters used for the estimation used for the volume estimation of species 7 based on its solid state structure. A spherical model was used for volume calculation. Note: an average of the two diameters (along two different axis) was done. $V_{X-ray} = (4/3)\pi\{[(13.33+13.78)/2]/2\}^3 = 1303 \text{ Å}^3$.

Figure S18. Optimized molecular geometry for complex 8 using Chem3D using the MM2 method. For a listing of MM2 parameters, see page 38.

13.9 A

Figure S19. Geometrical parameters (L = 13.9, l = 11.4; H = 11.9 Å) used for the volume estimation of a model compound of species 8 (optimized geometry in the gas phase with Chem3D using the MM2 method, see Fig. S17). An ellipsoidal model $[V = (4/3)\pi(L \times 1 \times H)]$ was used for volume calculation. $V = 4/3 \pi [(13.9/2) \times (11.9/2) \times (11.4/2)] = 987 \text{ Å}^3$.

Figure S20. SEC traces of isolated PLA prepared *via* ROP of *rac*-lactide with complex **5**. Conditions: 100 equiv. *rac*-LA, room temp., CH_2Cl_2 , 97% conversion, 120 min. (Table 1 – Run 1 in the main text)

Figure S21. SEC traces of isolated PCL prepared *via* ROP of ε -caprolactone with complex **5**. Conditions: 100 equiv. ε -CL, room temp., CH₂Cl₂, 99% conversion, 120 min. (Table 1 – Run 6 in the main text)

Figure S22. SEC traces of isolated PTMC prepared *via* ROP of trimethylene carbonate with complex **5**. Conditions: 100 equiv. TMC, room temp., CH_2Cl_2 , 87% conversion, 120 min. (Table 1 – Run 9 in the main text)

Figure S23. SEC traces of isolated PLA prepared *via* ROP of *rac*-lactide with complex **5**. Conditions: 500 equiv. *rac*-LA, 4 equiv. BnOH, room temp., CH_2Cl_2 , 99% conversion, 450 min. (Table 1 – Run 3 in the main text).

Figure S24. MALDI-TOF spectrum of a PLA sample prepared by ROP of *rac*-LA initiated by complex **5** (top), and zoom in the region of the most intense peaks (bottom). Conditions: 100 equiv. *rac*-LA, $[LA]_0 = 1$ M, CH_2Cl_2 , room temp., polymer isolated at 42% conversion.

Figure S25. Zoom of the MALDI-TOF spectrum, in the region of the most intense peaks, of a PCL sample prepared by ROP of ε -CL initiated by complex **5**. Conditions: 100 equiv. ε -CL, $[CL]_0 = 1$ M, CH_2Cl_2 , room temp., polymer isolated at 39% conversion. Note: the small peaks correspond to the K⁺ ion instead of the Na⁺ one.

Figure S26. Zoom of the MALDI-TOF spectrum, in the region of the most intense peaks, of a PTMC sample prepared by ROP of TMC initiated by complex **5**. Conditions: 100 equiv. TMC, $[TMC]_0 = 1 \text{ M}$, CH_2Cl_2 , room temp., polymer isolated at 36% conversion.

Figure S27. Zoom of the MALDI-TOF spectrum, in the region of the most intense peaks, of a PLA sample prepared by ROP of *rac*-LA initiated by complex 7 in the presence of BnOH. Conditions: 100 equiv. *rac*-LA, 1 equiv. BnOH, $[LA]_0 = 1$ M, CH_2Cl_2 , room temp., polymer isolated at 51% conversion.

Figure S28. Linear dependence of M_n and PDI $[M_w/M_n]$ values of PCL versus monomer (ε -CL) conversion with **5** as a catalyst. Reaction conditions: $[Zn]/[CL]_0 = 100$, $[CL]_0 = 1$ M, CH₂Cl₂, room temp.

Figure S29. Linear dependence of M_n and nearly constant PDI $[M_w/M_n]$ of PTMC versus monomer (TMC) conversion with **5** as a catalyst. Reaction conditions: $[Zn]/[TMC]_0 = 100$, $[TMC]_0 = 1$ M, CH_2Cl_2 , room temp.

Figure S30. Semilogarithmic plots of *rac*-LA conversion versus time for complexes 7 (blue) and 8 (red) in the presence of BnOH. Reaction conditions: Zn/rac-LA/BnOH = 1/100/1, [*rac*-LA]₀ = 1 M, CH₂Cl₂, room temp.

Figure S31. SEC traces of isolated PTMC/PLLA block-copolymer prepared *via* sequential ROP of trimethylene carbonate and L-lactide by the complex **5**. Conditions: 100 equiv. TMC, 100 equiv. L-LA, room temp., CH_2Cl_2 , 91% and 97% conversion, respectively, 6 h. (Table 2 – Run 1 in the main text).

Figure S32. SEC traces of isolated PCL/PLLA block-copolymer prepared *via* sequential ROP of ε -caprolactone and L-lactide by the complex **5**. Conditions: 100 equiv. ε -CL, 100 equiv. L-LA, room temp., CH₂Cl₂, 75% and 99% conversion, respectively, 6h30. (Table 2 – Run 2 in the main text).

Figure S33. SEC traces of isolated PTMC/PCL/PLLA block-terpolymer prepared *via* sequential ROP of trimethylene carbonate, ε -caprolactone and L-lactide by the complex **5**. Conditions: 100 equiv. TMC, 100 equiv. ε -CL, 100 equiv. L-LA, room temp., CH₂Cl₂, 99%, 95% and 98% conversion, respectively, 9h30. (Table 2 – Run 5 in the main text).

Figure S34. ¹H NMR spectrum of a TMC/ ε -CL/L-LA block *ter*-polymerisation run *via* sequential ROP of trimethylene carbonate, ε -caprolactone and L-lactide by the complex **5** after 9 hours. Conditions: 100 equiv. TMC, 100 equiv. ε -CL, 100 equiv. L-LA, room temp., CH₂Cl₂, 99%, 95% and 95% conversion, respectively, 9 h.

Notes: 1) the conversions of TMC and ε -CL were precisely determined before addition of the next monomer, *i.e.* ε -CL and L-LA, respectively; 2) 3% L-LA were consumed between the acquisition of this spectrum and the stopping of the run and the analysis of the isolated polymer. (Table 2 – Run 7 in the main text).

MM2 parameters used for Complex 5

MM2 Constant Value Quality Cubic stretch constant-2.000 4 Quartic stretch constant2.333 4 X-B,C,N,O-Y Stretch-Bend interaction force constant0.120 4 X-B,C,N,O-H Stretch-Bend interaction force constant0.090 4 X-Si,P-Y Stretch-Bend force constant0.200 4 X-Ga,Ge,As,Se,Br-Y Stretch-Bend force constant0.250 3 Sextic bending constant (* 10**8)7.000 4 Dielectric constant for dipoles1.500 4 Cutoff distance for charge/charge interactions35.000 4 Cutoff distance for charge/dipole interactions25.000 4 Cutoff distance for charge/dipole interactions18.000 4 Cutoff distance for van der Waals interactions10.000 4

MM2	c3dAtor	nRadius	Eps	Weight	Reduct	Lone Pairs Quality
2	1.940	0.044	12.000	0.000	0	4
1	1.900	0.044	12.000	0.000	0	4
41	1.740	0.050	15.995	0.000	1	3
25	2.180	0.168	30.974	0.000	0	4
303	2.268	0.200	63.929	9 0.000	0	1
6	1.740	0.050	15.995	0.000	2	4
5	1.500	0.047	1.008	0.915	0 4	4

Bond	KS	Bond Length	Dipole	Quality

- 2-2 9.600 1.337 0.000 4
- 2-5 4.600 1.100 0.000 4
- 2-25 2.910 1.828 1.040 4
- 2-41 10.000 1.225 0.950 3
- 1-2 4.400 1.497 0.300 4

1-5	4.600	1.113	0.000 4	
20-41	4.600	0.600	-0.750 3	
1-6	5.360	1.402	0.440 4	
6-20	4.600	0.600	0.900 4	

Angle	КВ	XR2	XRH	XH2	Quality
2-2-5	0.360	120.0	120.5	0.0	4
2-2-2	0.430	120.0	0.0	0.0	4
2-2-25	0.380	120.0	0.0	0.0	4
2-2-41	0.600	120.0	118.1	0.0	3
1-2-2	0.550	121.4	122.0	120.0) 4
5-1-5	0.320	109.4	109.0	109.5	54
2-1-5	0.360	109.4	109.4	110.0) 4
2-41-20	0.350	122.2	? 0.0	0.0	3
2-25-2	0.480	93.2	0.0	0.0	4
5-1-6	0.540	106.7	106.7	106.2	74
2-1-6	0.700	109.5	0.0	0.0	4

Atoms	Force Co	nstant	Quality
2-2	0.050	4	
2-5	0.050	4	
2-25	0.500	3	
2-41	0.050	3	
1-2	0.050	4	
0-0	0.050	1	
20-41	0.050	3	

Torsional	V1	V2 I	/3 Q	uality
5-2-2-25	0.000	16.250	0.000) 4
2-2-2-5	0.000	9.000	-1.060	4

2-2-2-25	0.000	16.250	0.000	4	
2-2-2-2	-0.930	8.000	0.000	4	
1-2-2-5	0.000	12.500	0.000	4	
1-2-2-2	-0.270	10.000	0.000	4	
0-0-0-0	0.000	10.000	0.000	1	
2-2-2-41	0.000	15.000	0.000	3	
2-2-25-2	0.000	0.000	0.330	4	
1-2-2-41	0.000	15.000	0.000	2	
2-2-41-20	0.000	0.000	0.250	3	
2-2-1-5	0.000	0.000	-0.240	4	
5-1-6-20	0.000	0.000	0.000	4	
2-1-6-20	0.000	0.000	0.000	3	
2-2-1-6	0.000	0.000	0.000	3	
5-2-2-5	0.000	15.000	0.000	4	

 Torsional
 V1
 V2
 V3
 Quality

 0-0-0-0
 0.000
 0.000
 0.000
 1

 PiAtom
 Electron
 Ionization
 Repulsion
 Quality

 2
 1
 -11.160
 11.134
 4

 41
 2
 -17.600
 19.342
 4

 PiBond
 DForce
 DLength
 Quality

 2-2
 4.600
 0.166
 4

 2-41
 5.440
 0.196
 3

VDW Interaction Radius Eps Quality 1-5 3.340 0.046 4

Atoms DLength Quality

5-1-6 -0.002 4

Bond lengths and angles

Atom	Bond atom	Bond length (Å)	Angle atom	Angle (°)
C(2)	C(1)	1.337		
C(3)	C(2)	1.337	C(1)	120.000
C(4)	C(3)	1.337	C(2)	119.999
C(6)	C(1)	1.337	C(2)	120.000
O(9)	C(3)	2.492	C(2)	126.851
Zn(11)	O(9)	1.830	C(3)	120.187
P(10)	C(2)	1.828	C(1)	128.998
C(5)	C(4)	1.337	C(3)	120.001
O(12)	Zn(11)	1.890	O(9)	120.000
Zn(25)	O(12)	1.949	Zn(11)	85.604
O(26)	Zn(11)	1.890	O(9)	120.000
O(23)	Zn(25)	1.890	O(12)	120.000
C(17)	O(23)	1.225	Zn(25)	104.000
C(16)	C(17)	1.388	O(23)	120.529
C(18)	C(17)	1.337	C(16)	119.998
C(15)	C(16)	1.343	C(17)	115.026
P(24)	Zn(25)	2.344	O(12)	120.000
C(19)	C(18)	1.337	C(17)	120.000
C(20)	C(15)	1.337	C(16)	120.000
C(29)	P(10)	2.022	C(2)	98.742
C(39)	P(10)	1.856	C(2)	109.500
C(51)	P(24)	1.828	C(16)	148.747
C(52)	P(24)	1.856	C(16)	109.500
C(31)	C(29)	1.395	P(10)	119.999
C(35)	C(29)	1.395	P(10)	119.999
C(32)	C(31)	1.395	C(29)	119.997
C(33)	C(32)	1.395	C(31)	120.000

C(34)	C(35)	1.395	C(29)	120.000
C(53)	C(51)	1.395	P(24)	119.999
C(57)	C(51)	1.395	P(24)	119.999
C(54)	C(53)	1.395	C(51)	119.997
C(55)	C(54)	1.395	C(53)	120.000
C(56)	C(57)	1.395	C(51)	120.000
C(60)	C(52)	1.337	P(24)	120.000
C(112)	C(52)	2.083	P(24)	122.574
C(61)	C(60)	1.497	C(52)	122.000
C(88)	C(61)	1.337	C(60)	120.000
C(110)	C(112)	1.337	C(52)	107.911
C(89)	C(39)	1.337	P(10)	120.000
C(116)	C(39)	5.333	P(10)	78.401
C(91)	C(89)	1.497	C(39)	122.000
C(92)	C(91)	1.337	C(89)	120.000
C(114)	C(116)	1.337	C(39)	66.710
C(7)	C(6)	1.497	C(1)	120.000
C(8)	C(4)	1.497	C(3)	120.000
C(21)	C(20)	1.497	C(15)	121.782
C(22)	C(18)	1.497	C(17)	120.000
C(13)	O(12)	1.637	Zn(11)	140.016
C(14)	C(13)	1.497	O(12)	109.500
C(41)	C(14)	1.395	C(13)	119.998
C(45)	C(14)	1.395	C(13)	119.998
C(42)	C(41)	1.395	C(14)	119.997
C(43)	C(42)	1.395	C(41)	120.001
C(44)	C(45)	1.395	C(14)	119.999
C(27)	O(26)	1.402	Zn(11)	131.266
C(28)	C(27)	1.497	O(26)	109.500
C(46)	C(28)	1.395	C(27)	119.998

C(50)	C(28)	1.395	C(27)	119.999
C(47)	C(46)	1.395	C(28)	119.997
C(48)	C(47)	1.395	C(46)	120.000
C(49)	C(50)	1.395	C(28)	120.000
Lp(59)	O(9)	0.600	C(3)	114.698
Lp(108)	O(12)	0.600	Zn(11)	135.000
Lp(119)	O(12)	0.600	Zn(11)	100.810
Lp(120)	O(23)	0.600	C(17)	110.797
Lp(121)	O(26)	0.684	Zn(11)	84.603
Lp(122)	O(26)	0.706	Zn(11)	96.778
H(40)	C(91)	1.127	C(89)	118.805
H(58)	C(61)	1.087	C(60)	112.712
H(62)	C(60)	1.100	C(52)	119.949
H(64)	C(5)	1.100	C(4)	120.000
H(73)	C(15)	1.100	C(16)	120.000
H(74)	C(19)	1.100	C(18)	121.782
H(83)	C(31)	1.100	C(29)	120.001
H(84)	C(32)	1.100	C(31)	120.000
H(85)	C(33)	1.100	C(32)	119.998
H(86)	C(34)	1.100	C(33)	120.001
H(87)	C(35)	1.100	C(29)	120.000
H(90)	C(89)	1.123	C(39)	119.348
H(93)	C(41)	1.100	C(14)	120.002
H(94)	C(42)	1.100	C(41)	120.000
H(95)	C(43)	1.100	C(42)	119.999
H(96)	C(44)	1.100	C(43)	120.001
H(97)	C(45)	1.100	C(14)	120.000
H(98)	C(46)	1.100	C(28)	120.002
H(99)	C(47)	1.100	C(46)	120.000
H(100)	C(48)	1.100	C(47)	119.998

H(101)	C(49)	1.100	C(48)	120.002
H(102)	C(50)	1.100	C(28)	120.000
H(103)	C(53)	1.100	C(51)	120.002
H(104)	C(54)	1.100	C(53)	120.000
H(105)	C(55)	1.100	C(54)	119.998
H(106)	C(56)	1.100	C(55)	120.002
H(107)	C(57)	1.100	C(51)	120.000
H(109)	C(88)	1.106	C(61)	121.248
H(111)	C(110)	1.113	C(88)	119.999
H(113)	C(114)	1.113	C(92)	119.999
H(115)	C(92)	1.100	C(91)	119.899
H(117)	C(112)	1.100	C(52)	126.043
H(118)	C(116)	1.100	C(39)	146.642
H(63)	C(1)	1.100	C(2)	120.000
H(71)	C(13)	1.113	O(12)	109.442
H(72)	C(13)	1.113	O(12)	109.461
H(81)	C(27)	1.113	0(26)	109.442
H(82)	C(27)	1.113	0(26)	109.462
H(65)	C(7)	1.113	C(6)	109.500
H(66)	C(7)	1.111	C(6)	111.973
H(67)	C(7)	1.111	C(6)	112.318
H(68)	C(8)	1.113	C(4)	109.500
H(69)	C(8)	1.121	C(4)	109.159
H(70)	C(8)	1.116	C(4)	111.294
H(75)	C(21)	1.113	C(20)	109.500
H(76)	C(21)	1.105	C(20)	110.429
H(77)	C(21)	1.115	C(20)	99.851
H(78)	C(22)	1.113	C(18)	109.500
H(79)	C(22)	1.078	C(18)	129.277
H(80)	C(22)	1.131	C(18)	125.000

MM2 parameters used for complex 7

MM2 Constant Value Quality Cubic stretch constant-2.000 4 Quartic stretch constant2.333 4 X-B,C,N,O-Y Stretch-Bend interaction force constant0.120 4 X-B,C,N,O-H Stretch-Bend interaction force constant0.090 4 X-Si,P-Y Stretch-Bend force constant0.200 4 X-Ga,Ge,As,Se,Br-Y Stretch-Bend force constant0.250 3 Sextic bending constant (* 10**8)7.000 4 Dielectric constant for dipoles1.500 4 Cutoff distance for charge/charge interactions35.000 4 Cutoff distance for charge/dipole interactions25.000 4 Cutoff distance for charge/dipole interactions18.000 4 Cutoff distance for van der Waals interactions10.000 4

MM2	c3dAtor	nRadius	Eps	Weight	Reduc	t Lone Pairs Quality
2	1.940	0.044	12.000	0.000	0	4
41	1.740	0.050	15.995	0.000	1	3
1	1.900	0.044	12.000	0.000	0	4
303	2.268	0.200	63.929	0.000	0	1
25	2.180	0.168	30.974	0.000	0	4
5	1.500	0.047	1.008	0.915	0	4

Bond	KS	Bond Length	Dipole	Quality
------	----	-------------	--------	---------

- 2-2 9.600 1.337 0.000 4
- 1-2 4.400 1.497 0.300 4
- 2-5 4.600 1.100 0.000 4
- 2-25 2.910 1.828 1.040 4

2-4110.0001.2250.950320-414.6000.600-0.75031-54.6001.1130.00041-14.4001.5230.0004

Angle	KB	XR2	XRH	XH2	Quality
1-2-2	0.550	121.4	122.0	120.0	4
2-2-2	0.430	120.0	0.0	0.0	4
2-2-5	0.360	120.0	120.5	0.0	4
2-2-25	0.380	120.0	0.0	0.0	4
2-2-41	0.600	120.0	118.1	0.0	3
2-41-20	0.350	122.2	2 0.0	0.0	3
5-1-5	0.320	109.4	109.0	109.5	4
2-1-5	0.360	109.4	109.4	110.0	4
1-1-1	0.450	109.5	109.5	109.5	4
1-1-2	0.450	109.5	109.5	109.5	4
1-1-5	0.360	109.4	109.4	110.0	4
2-25-2	0.480	93.2	0.0	0.0	4

Atoms	Force	Constant Quality
2-2	0.050	4
1-2	0.050	4
2-5	0.050	4
2-25	0.500	3
2-41	0.050	3
0-0	0.050	1
20-41	0.050	3

Torsional	V1	V2 V	'3 Q	uality
1-2-2-5	0.000	12.500	0.000	4
1-2-2-2	-0.270	10.000	0.000	4
2-2-2-5	0.000	9.000	-1.060	4
2-2-2-2	-0.930	8.000	0.000	4
1-2-2-41	0.000	15.000	0.000	2
2-2-2-41	0.000	15.000	0.000	3
1-1-2-2	-0.440	0.240	0.060	4
2-2-1-5	0.000	0.000	-0.240	4
5-2-2-25	0.000	16.250	0.000	4
2-2-2-25	0.000	16.250	0.000	4
0-0-0-0	0.000	10.000	0.000	1
2-2-25-2	0.000	0.000	0.330	4
2-2-41-20	0.000	0.000	0.250	3
1-1-1-5	0.000	0.000	0.267	4
2-1-1-5	0.000	0.000	0.500	4
5-2-2-5	0.000	15.000	0.000	4

PiAtom Electron Ionization Repulsion Quality

2 1 -11.160 11.134 4

41 2 -17.600 19.342 4

PiBond DForce DLength Quality

2-2 4.600 0.166 4

2-41 5.440 0.196 3

1-5 3.340 0.046 4

Bond lengths and angles

Atom	Bond atom	Bond length (Å)	Angle atom	Angle (°)
C(2)	C(1)	1.349		
C(3)	C(2)	1.341	C(1)	124.249
H(52)	C(2)	1.101	C(1)	120.303
C(4)	C(3)	1.339	C(2)	117.704
C(8)	C(3)	1.510	C(2)	120.652
C(5)	C(4)	1.341	C(3)	120.112
H(53)	C(4)	1.102	C(3)	119.255
C(6)	C(1)	1.356	C(2)	117.150
O(7)	C(6)	1.237	C(1)	118.641
C(18)	C(1)	1.548	C(2)	116.985
P(22)	C(5)	1.873	C(4)	116.123
C(23)	P(22)	1.824	C(5)	111.780
Zn(9)	O(7)	1.895	C(6)	117.503
O(16)	Zn(9)	1.896	O(7)	118.837
C(29)	P(22)	1.827	C(5)	114.955
P(39)	Zn(9)	2.345	O(7)	119.682
C(14)	P(39)	1.874	Zn(9)	85.539
C(40)	P(39)	1.827	C(14)	109.911
C(46)	P(39)	1.825	C(14)	113.217
C(13)	C(14)	1.341	P(39)	116.500
C(15)	C(14)	1.359	C(13)	121.694
C(10)	C(15)	1.355	C(14)	119.258

C(11)	C(10)	1.349	C(15)	117.094
C(35)	C(10)	1.547	C(11)	117.326
C(12)	C(13)	1.339	C(14)	119.918
C(17)	C(12)	1.510	C(11)	120.637
H(57)	C(11)	1.101	C(10)	120.182
H(58)	C(13)	1.102	C(12)	119.555
C(24)	C(23)	1.344	P(22)	120.800
C(28)	C(23)	1.344	P(22)	119.984
C(25)	C(24)	1.342	C(23)	120.425
H(71)	C(24)	1.102	C(23)	120.879
C(26)	C(25)	1.342	C(24)	120.090
H(72)	C(25)	1.103	C(24)	120.023
C(27)	C(28)	1.342	C(23)	120.443
H(73)	C(26)	1.103	C(25)	120.133
H(74)	C(27)	1.103	C(26)	119.918
H(75)	C(28)	1.103	C(23)	120.837
C(30)	C(29)	1.344	P(22)	121.470
C(34)	C(29)	1.345	P(22)	119.316
C(31)	C(30)	1.342	C(29)	120.403
H(76)	C(30)	1.102	C(29)	120.923
C(32)	C(31)	1.342	C(30)	120.123
H(77)	C(31)	1.103	C(30)	119.996
C(33)	C(34)	1.342	C(29)	120.465
H(78)	C(32)	1.103	C(31)	120.140
H(79)	C(33)	1.103	C(32)	119.884
H(80)	C(34)	1.103	C(29)	120.732
C(41)	C(40)	1.344	P(39)	120.708

C(45)	C(40)	1.344	P(39)	120.242
C(42)	C(41)	1.342	C(40)	120.612
H(90)	C(41)	1.102	C(40)	120.907
C(43)	C(42)	1.342	C(41)	120.019
H(91)	C(42)	1.103	C(41)	119.985
C(44)	C(45)	1.342	C(40)	120.512
H(92)	C(43)	1.103	C(42)	120.126
H(93)	C(44)	1.103	C(43)	119.893
H(94)	C(45)	1.103	C(40)	120.752
C(47)	C(46)	1.344	P(39)	120.260
C(51)	C(46)	1.344	P(39)	120.512
C(48)	C(47)	1.342	C(46)	120.435
H(95)	C(47)	1.103	C(46)	120.725
C(49)	C(48)	1.342	C(47)	120.064
H(96)	C(48)	1.103	C(47)	120.023
C(50)	C(51)	1.342	C(46)	120.429
H(97)	C(49)	1.103	C(48)	120.116
H(98)	C(50)	1.103	C(49)	119.909
H(99)	C(51)	1.102	C(46)	120.891
C(19)	C(18)	1.546	C(1)	108.651
C(20)	C(18)	1.550	C(1)	109.267
C(21)	C(18)	1.548	C(1)	117.756
C(36)	C(35)	1.549	C(10)	108.493
C(37)	C(35)	1.548	C(10)	117.679
C(38)	C(35)	1.547	C(10)	109.230
H(54)	C(8)	1.114	C(3)	110.374
H(55)	C(8)	1.113	C(3)	112.698

H(56)	C(8)	1.114	C(3)	110.209
H(59)	C(17)	1.114	C(12)	110.522
H(60)	C(17)	1.114	C(12)	110.094
H(61)	C(17)	1.113	C(12)	112.659
H(62)	C(19)	1.114	C(18)	111.518
H(63)	C(19)	1.112	C(18)	113.027
H(64)	C(19)	1.114	C(18)	110.711
H(65)	C(20)	1.111	C(18)	113.869
H(66)	C(20)	1.113	C(18)	111.750
H(67)	C(20)	1.114	C(18)	110.674
H(68)	C(21)	1.113	C(18)	111.604
H(69)	C(21)	1.113	C(18)	112.736
H(70)	C(21)	1.113	C(18)	111.644
H(81)	C(36)	1.111	C(35)	113.419
H(82)	C(36)	1.113	C(35)	111.756
H(83)	C(36)	1.114	C(35)	110.633
H(84)	C(37)	1.113	C(35)	112.332
H(85)	C(37)	1.113	C(35)	112.328
H(86)	C(37)	1.114	C(35)	111.437
H(87)	C(38)	1.111	C(35)	113.403
H(88)	C(38)	1.114	C(35)	110.689
H(89)	C(38)	1.113	C(35)	111.541
Lp(100)	O(7)	0.594	C(6)	127.634
Lp(101)	O(16)	0.596	Zn(9)	111.744