## **Supporting Information**

## Inducing Magnetic Communication in Caged Dinuclear Co(II) Systems

Judith Caballero-Jiménez,<sup>a</sup> Fatemah Habib,<sup>b</sup> Daniel Ramírez-Rosales,<sup>c</sup> Rafael Grande-Aztatzi,<sup>d</sup> Gabriel Merino,<sup>d</sup> Ilia Korobkov,<sup>b</sup> Mukesh Kumar Singh,<sup>e</sup> Gopalan Rajaraman,<sup>e</sup> Yasmi Reyes-Ortega<sup>a</sup> and Muralee Murugesu<sup>b\*</sup>.

Table S1. Crystallographic Data for L1 and complex 6.

| -         | Formula                                   | Bond Distance       | $c_{44.5}H_{60}Cl_{10.5}Co_{3}N_{13.5}O_{3}O_{3}O_{13.5}O_{3}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}O_{10.5}$ | 5S <sub>4.5</sub> |
|-----------|-------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|           | FW, g.mol <sup>-1</sup>                   | 1 <sup>849.24</sup> | <b>3</b> 24 <b>4</b> 5.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                 |
|           | Crystal system                            | Triclinic           | Monoclinic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| Centro de | Space group                               | P-1                 | Pn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Química,          |
| Instituto | <i>a</i> , Å                              | 10.7107(2)          | 11.2372(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | de                |
| Ciencias, | <i>b</i> , Å                              | 14.7465(3)          | 14.5050(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
|           | c,Å                                       | 15.1857(3)          | 16.5974(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
|           | α, °                                      | 108.500(1)          | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
|           | $eta$ , $^\circ$                          | 93.433(1)           | 92.909(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
|           | γ,°                                       | 94.351(1)           | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
|           | V, Å <sup>3</sup>                         | 2259.05(8)          | 2701.8(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
|           | Z                                         | 2                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
|           | $ ho_{ m calcd}, { m g.cm^{-3}}$          | 1.248               | 1.479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
|           | $\mu$ (Mo, K $\alpha$ ), mm <sup>-1</sup> | 0.364               | 1.165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
|           | <i>F</i> (000)                            | 908.0               | 1246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
|           | measd/indep                               | 32786 / 11133       | 30852/6606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
|           | $R1(I > 2 \sigma(I))$                     | 0.0654              | 0.0562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
|           | $wR2 (I > 2 \sigma (I))$                  | 0.2065              | 0.1163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
|           | GOF on $F^2$                              | 1.046               | 1.051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |

R1 =  $\Sigma ||Fo| - |Fc|| / \Sigma ||Fo||$ ; wR2 = { $\Sigma w [(Fo)^2 - (Fc)^2]^2 / \Sigma w [(Fo)^2]^2$ }<sup>1/2</sup>

Universidad Autónoma de Puebla, A.P. 1613, 72000 Puebla, Pue., México.

<sup>b</sup> Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Canada K1N6N5.

<sup>c</sup> Departamento de Física, Escuela Superior de Física y Matemáticas, I.P.N., , Av. Instituto Politécnico Nacional s/n San Pedro Zacatenco, D. F., México, 07738.

<sup>d</sup> Departamento de Física Aplicada, Centro de Investigación de Estudios Avanzados Unidad Mérida. km 6 Antigua carretera a Progreso. Apdo. Postal 73, Cordemex, 97310, Mérida, Yuc., México.

<sup>e</sup> Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Powai- 400076, India.

| Co(1)-O(1)      | 1.946(4)   | 1.985(4)   |          |            |            |
|-----------------|------------|------------|----------|------------|------------|
| Co(1)-N(1)      | 2.201(5)   | 2.106(4)   | 2.216(8) | 2.236(3)   | 2.209(4)   |
| Co(1)-N(2)      | 2.125(5)   | 2.123(5)   | 2.108(7) | 2.116(4)   | 2.113(5)   |
| Co(1)-N(3)      | 2.113(5)   | 2.111(5)   | 2.123(7) | 2.111(4)   | 2.113(5)   |
| Co(1)-N(4)      | 2.151(5)   | 2.215(4)   | 2.106(8) | 2.109(4)   | 2.128(5)   |
| Co(1)-N(5)      |            |            | 1.989(7) |            |            |
| Co(1)-Cl(1)     |            |            |          | 2.364(5)   |            |
| Co(1)-Br(1)     |            |            |          |            | 2.4432(6)  |
| Co(2)-O(2)      | 1.950(5)   |            |          |            |            |
| Co(2)-N(5)      | 2.198(5)   | 2.224(4)   |          |            |            |
| Co(2)-N(6)      | 2.127(5)   | 2.113(5)   |          |            |            |
| Co(2)-N(7)      | 2.118(5)   | 2.116(5)   |          |            |            |
| Co(2)-N(8)      | 2.201(8)   | 2.089(5)   |          |            |            |
| Co(2)-N(9)      |            | 1.998(4)   |          |            |            |
|                 |            | Angles (°) |          |            |            |
|                 | 1          | 2          | 3        | 4          | 5          |
| O(1)-Co(1)-N(1) | 177.75(17) | 177.05(17) |          |            |            |
| O(1)-Co(1)-N(2) | 99.09(16)  | 101.18(17) |          |            |            |
| O(1)-Co(1)-N(3) |            | 99.95(18)  |          |            |            |
| O(1)-Co(1)-N(4) | 95.9(2)    | 96.07(17)  |          |            |            |
| N(4)-Co(1)-N(1) | 82.0(2)    | 81.21(17)  | 79.8(3)  | 80.65(17)  | 82.32(17)  |
| N(3)-Co(1)-N(1) | 81.4(2)    | 80.58(17)  | 81.1(3)  | 80.86(15)  | 81.70(18)  |
| N(2)-Co(1)-N(1) | 81.5(2)    | 81.19(16)  | 80.5(3)  | 80.69(19)  | 81.7(2)    |
| N(3)-Co(1)-N(2) | 108.60(18) | 113.53(18) | 112.3(3) | 116.21(15) | 118.10(18) |
| N(2)-Co(1)-N(4) | 128.1(2)   | 118.7(2)   | 125.8(3) | 117.48(16) | 116.56(18) |
| N(3)-Co(1)-N(4) | 117.0(2)   | 120.6(2)   | 113.7(3) | 118.69(16) | 119.48(19) |
| N(5)-Co(1)-N(3) |            |            | 102.2(3) |            |            |
| N(5)-Co(1)-N(4) |            |            | 97.7(3)  |            |            |
| N(5)-Co(1)-N(2) |            |            | 99.2(3)  |            |            |
| N(5)-Co(1)-N(1) |            |            | 176.5(3) |            |            |
| O(2)-Co(2)-N(5) | 177.37(18) |            |          |            |            |
| O(2)-Co(2)-N(6) | 98.54(17)  |            |          |            |            |
| O(2)-Co(2)-N(7) | 101.1(2)   |            |          |            |            |
| O(2)-Co(2)-N(8) | 100.2(3)   |            |          |            |            |
| N(6)-Co(2)-N(5) | 81.83(18)  | 80.95(17)  |          |            |            |
| N(7)-Co(2)-N(5) | 81.2(2)    | 80.60(17)  |          |            |            |
| N(6)-Co(2)-N(8) | 138.4(3)   | 118.3(2)   |          |            |            |
| N(9)-Co(2)-N(8) |            | 96.13(18)  |          |            |            |
| N(9)-Co(2)-N(7) |            | 101.05(18) |          |            |            |
| N(8)-Co(2)-N(7) |            | 120.2(2)   |          |            |            |
| N(9)-Co(2)-N(6) |            | 99.91(17)  |          |            |            |
| N(8)-Co(2)-N(6) |            | 118.3(2)   |          |            |            |
| N(7)-Co(2)-N(6) |            | 114.3(2)   |          |            |            |
| N(9)-Co(2)-N(5) |            | 177.55(18) |          |            |            |
| <pre></pre>     |            |            |          |            |            |

| N(8)-Co(2)-N(5)        | 81.45(18) |            |            |
|------------------------|-----------|------------|------------|
| N(4)-Co(1)-Cl(1)/Br(1) |           | 99.04(12)  | 98.66(12)  |
| N(3)-Co(1)-Cl(1)/Br(1) |           | 100.01(12) | 97.62(12)  |
| N(2)-Co(1)-Cl(1)/Br(1) |           | 98.74(12)  | 98.04(13)  |
| N(1)-Co(1)-Cl(1)/Br(1) |           | 179.11(14) | 179.01(11) |
| Co(1)-Cl(1)-Co(1')     |           | 179.66(12) |            |
| Co(1)-Br(1)-Co(1')     |           |            | 179.06(5)  |

|     | к <sub>О-Н st</sub><br>х 10 <sup>5</sup> | <i>к</i> <sub>N-H st</sub><br>х 10 <sup>5</sup> | <i>к</i> <sub>С-Н st</sub><br>х 10 <sup>5</sup> | K <sub>C=O st</sub> | κ <sub>C=N st</sub><br>x 10 <sup>6</sup> | κ <sub>N=N st</sub><br>x 10 <sup>6</sup> | к <sub>С=С st</sub><br>х 10 <sup>5</sup> | к <sub>Cl-O st</sub><br>х 10 <sup>5</sup> | к <sub>С-н б</sub><br>х 10 <sup>4</sup> | <i>к</i> <sub>С-Н б аг</sub><br>х 10 <sup>4</sup> |
|-----|------------------------------------------|-------------------------------------------------|-------------------------------------------------|---------------------|------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|-----------------------------------------|---------------------------------------------------|
| L1  |                                          | 5.9                                             | 4.3                                             |                     |                                          |                                          | 7.4                                      |                                           | 3.0/2.6/2.3                             | 1.9                                               |
| 1   |                                          | 5.8                                             | 4.5                                             | 9.9x10 <sup>5</sup> |                                          |                                          | 7.4                                      | 7.4                                       | 3.4/3.1/2.7                             | 2.1                                               |
| 2   |                                          | 5.8                                             | 4.5                                             |                     | 2.0                                      |                                          | 7.5                                      | 7.2                                       | 3.4/3.1/2.6                             | 2.1                                               |
| 3   |                                          | 5.7                                             | 4.5                                             |                     |                                          | 2.0/1.7                                  | 7.3                                      | 7.3                                       | 3.4/3.1/2.7                             | 2.2                                               |
| 4/5 |                                          | 5.9                                             | 4.7                                             |                     |                                          |                                          | 7.7                                      | 7.2                                       | 3.6/3.2/2.7                             | 2.1                                               |

**Table S4.** Wavelengths ( $\lambda$ ) and molar absorptivities ( $\varepsilon$ ) for the electronic transitions in 1-5.

|   | <i>λ (</i> nm)                                       | $\lambda$ (nm)                                       | $\lambda$ (nm)                                       | $\lambda$ (nm)                                       | $\lambda$ (nm)                                       |
|---|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
|   | $\varepsilon$ (Lmol <sup>-1</sup> cm <sup>-1</sup> ) |
| 1 | 460.0                                                | 476.5                                                | 602                                                  |                                                      | 705.0                                                |
| 1 | 259.4                                                | 267.47                                               | 256.4                                                | -                                                    | 95.6                                                 |
| 2 | 466                                                  | 466.0                                                | 601.5                                                | 656                                                  | 658                                                  |
| 2 | 231.9                                                | 224.4                                                | 234.8                                                | 173.5                                                | 82.3                                                 |
| 3 | 460.0                                                | 486.0                                                | 599.6                                                |                                                      | 708.0                                                |
| 5 | 187.42                                               | 181.4                                                | 290.2                                                | -                                                    | 80.6                                                 |
| 4 |                                                      | 509.0                                                | 609.0                                                | 683.0                                                | 796.0                                                |
| 4 | -                                                    | 112.1                                                | 161.7                                                | 54.1                                                 | 26.7                                                 |
| 5 |                                                      | 479.5                                                | 606.0                                                | 685.0                                                | 844.0                                                |
| 5 | -                                                    | 132.6                                                | 173.4                                                | 126.5                                                | 16.0                                                 |

 Table S5. Overlap integrals calculations for complexes 1-5.

| Co2-OAc | α/β        | $dx^2-y^2$ | dxy   | dz <sup>2</sup> |
|---------|------------|------------|-------|-----------------|
|         | $dx^2-y^2$ | 0.023      | 0.006 | 0.080           |
|         | dxy        | 0.007      | 0.015 | 0.005           |
|         | $dz^2$     | 0.004      | 0.013 | 0.074           |

| Co2-OCN | α/β             | $dx^2-y^2$ | dxy   | dz <sup>2</sup> |
|---------|-----------------|------------|-------|-----------------|
|         | $dx^2-y^2$      | 0.001      | 0.001 | 0.001           |
|         | dxy             | 0.002      | 0.001 | 0.003           |
|         | dz <sup>2</sup> | 0.000      | 0.018 | 0.029           |

| Co2-N3 | α/β             | $dx^2-y^2$ | dxy   | $dz^2$ |
|--------|-----------------|------------|-------|--------|
|        | $dx^2-y^2$      | 0.004      | 0.005 | 0.004  |
|        | dxy             | 0.001      | 0.023 | 0.001  |
|        | dz <sup>2</sup> | 0.011      | 0.004 | 0.027  |

| Co2-Cl | α/β             | $dx^2-y^2$ | dxy   | $dz^2$ |
|--------|-----------------|------------|-------|--------|
|        | $dx^2-y^2$      | 0.003      | 0.064 | 0.034  |
|        | dxy             | 0.064      | 0.017 | 0.078  |
|        | dz <sup>2</sup> | 0.034      | 0.078 | 0.157  |

| Co2-Br | α/β        | $dx^2-y^2$ | dxy   | $dz^2$ |
|--------|------------|------------|-------|--------|
|        | $dx^2-y^2$ | 0.036      | 0     | 0.001  |
|        | dxy        | 0          | 0.034 | 0.014  |
|        | $dz^2$     | 0.001      | 0.001 | 0.299  |

| Table S6. Co  | ontribution to $D$ | from differ | ent spin states  | for com   | plexes 1. | 2 and 3.  |
|---------------|--------------------|-------------|------------------|-----------|-----------|-----------|
| 1 4010 001 00 |                    |             | ente opni otateo | 101 00111 | prenes 1, | - 4114 0. |

D = -16.370916 cm-1 D = 3.598602 cm-1 E/D = 0.309882 E/D = 0.218828 Individual contributions to D-tensor: Individual contributions to D-tensor: Block Mult Root D E Block Mult Root D E 0 4 0 0.000 0.000 0 4 0 0.000 -0.000 1 -35.816 1 12.125 0 4 0.076 0 4 9.689 0 4 2 -1.140 -0.001 0 4 2 3.290 -2.953 7.218 -7.169 0 4 3 10.274 -7.870 0 4 3 0 4 4 7.189 7.363 0 4 4 -17.147 0.003 0 5 0.595 -0.621 0 4 5 0.400 -0.253 4 0 6 0.369 0.372 0 4 6 -0.647 0.001 4 0 4 7 0.000 -0.000 0 4 7 -0.000 -0.000 0.071 0 4 8 -0.128 -0.000 0 4 8 0.069 0 4 9 0.061 -0.035 9 0 4 0.059 -0.063 1 2 0 -0.977 -1.277 1 2 0 1.619 -0.000 0.580 1 0.157 1 2 1 -0.571 2 1 -0.475 2 2 -0.134 -0.056 -0.011 1 2 2 0.554 1 0.048 1 2 3 0.002 -0.000 1 2 3 -0.085 4 -0.003 2 4 0.027 1 2 0.000 0.000 1 2.289 -0.166 1.420 -0.012 5 1 2 5 1 2 -0.103 -0.102 6 1.5 7 -1.634 -3.053 2 2 6 1 1 -3.0450.007 0.897 2 2 7 3.511 2 8 -2.751 3.511 1 ī 8 1.563 -0.373 1.879 1 2 9 -0.297 2 10 -0.132 2 9 0.223 2 10 -0.082 -0.300 1 0.000 1 2 10 0.139 0.033 1 1 2 0.012 0.010 -0.000 1 2 11 -0.014 1 11 2 12 0.282 1 2 -0.090 -0.076 1 12 -0.000 13 0.021 0.160 1 2 13 2 0.016 -0.000 1 -0.042 1 2 14 -0.264 2 14 0.143 -0.152 1 1 2 15 
 15
 0.429
 -0.001

 16
 0.311
 -0.000
 2 15 -0.001 -0.022 1 16 -0.335 1 2 0.287 1 2 1 2 17 -0.229 0.129 1 2 18 0.694 -0.001 2 17 -0.182 -0.014 1 1 2 18 -0.416 -0.557 2 19 -0.048 0.121 1 2 19 -0.194 0.025 1 1 2 20 -0.014 1 2 20 -0.266 0.011 0.016 1 2 21 -0.058 1 2 21 -0.496 -0.364 0.069 1 2 22 0.412 0.002 1 2 22 -0.084 0.084 -0.106 1 2 23 0.504 0.010 1 2 23 -0.411 1 2 24 -0.129 0.149 1 2 24 -0.315 0.141 1 2 25 0.577 1 2 25 -0.088 -0.100 -0.004 0.021 0.001 1 2 26 1 2 26 0.002 -0.000 2 27 -0.014 0.011 1 1 2 27 0.000 0.001 2 28 0.085 1 0.000 0.002 1 2 28 -0.002 2 29 0.033 1 0.052 1 2 29 -0.184 0.164 2 30 1 0.051 0.040 1 2 30 -0.138 -0.141 2 1 31 1 2 31 0.172 -0.000 -0.094 -0.035 2 1 2 32 -0.007 0.005 1 32 0.005 0.000 33 2 0.002 1 1 -0.002 2 33 -0.001 0.001 34 0.001 -0.001 2 34 0.000 1 2 -0.000 1 2 0.054 -0.001 -0.017 2 1 35 -0.040 1 35 0.000 1 2 36 -0.001 0.000 1 2 36 0.000 2 2 37 -0.002 1 37 -0.003 1 0.003 0.000 0.039 2 38 1 2 0.000 1 38 -0.013 0.014 2 39 -0.017 39 -0.013 -0.020 1 0.001 1 2 \_\_\_\_\_ \_\_\_\_\_



**Figure S1.** X-ray structure of the azacryptand ligand. Only the H atoms of the ammonium groups are shown for clarity. Colour code: Blue (N), red (O), grey (C), orange (H), Green (Cl).



**Figure S2.**  $\pi$ - $\pi$  interactions for a) **2** and b) **4**. Colour code: Purple (Co), blue (N), red (O), grey (C), bright green (Cl).



**Figure S3.** IR spectra of complexes **1-5** highlighting the main peaks in the 4000-400 cm<sup>-1</sup> zone.



**Figure S4.** EPR spectra in CH<sub>3</sub>CN at 77 K of complexes **1-5** showing broad signals with  $g_{avg}$  values. Slow sweep (min): 2; swp (mT): 7.9 x 100; Mod. Wid. (mT): 0.2 x 1; Amplitd: 5 x 1000; Time Cnst. (ms): 0.03; Power (mW): 1.



**Figure S5.** Plot of 2*J* vs  $\Phi$ /R1 for compounds 1-5.



**Figure S6.** Plots of  $M_{\text{mol}}$  vs. H at 1.8 K (blue line) and 5 K (orange line) for compounds 1-5.





A)









**Figure S9.** Spin density plots for complexes A) **1** B) **2** C) **3** D) **4** and E) **5**.



C)





Figure S10. The magnetic data can be fitted using multiple parameters using PHI software which is represented in the 2-dimentional plot for models A) 1 B) 2 c) 3 d) 4 and e) 5. This clearly shows a range of parameters can yield a good fit to the magnetic data.