Supplementary Information for

Tris(8-methoxy-2-quinolylmethyl)amine (8-MeOTQA) as a highly fluorescent Zn^{2+} probe prepared by convenient C_3 -symmetric tripodal amine synthesis

Yuji Mikata,^{a,b,*} Yuki Nodomi,^b Risa Ohnishi,^b Asako Kizu^b and Hideo Konno^c

^aKYOUSEI Science Center and ^bDepartment of Chemistry, Faculty of Science, Nara Women's University, Nara 630-8506, Japan and ^cNational Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

	2	8-MeOTQA·0.5CH2Cl2 (4·0.5CH2Cl2)
Formula	C30H39N	C33.5H31ClN4O3
FW	413.64	573.09
Crystal system	monoclinic	triclinic
Space group	P21/c	<i>P-</i> 1
<i>a</i> , Å	10.2132(4)	13.6378(18)
<i>b,</i> Å	30.9988(11)	14.5501(17)
<i>c,</i> Å	16.2427(6)	15.854(2)
α, deg	90	76.043(6)
β, deg	95.006(3)	82.248(6)
γ, deg	90	69.739(6)
<i>V</i> , Å ³	5122.8(4)	2859.5(7)
Ζ	8	4
D_{calc} , g cm ⁻³	1.073	1.331
μ, mm ⁻¹	0.0607	0.1758
2θ _{max} , deg	55.0	55.0
temp, K	153	153
no. reflns collected	50925	23430
no. reflns used	11658	12543
no. of params	793	748
Rint	0.0450	0.0294
Final $R1$ ($I > 2\sigma(I)$) ^{<i>a</i>}	0.0685	0.0757
wR2 (all data) ^b	0.1693	0.2382
GOF	1.096	1.065

Table S1 Crystallographic Data for Tris(2,4,6-trimethylbenzyl)amine (2) and 8-MeOTQA·0.5CH2Cl2 (4·0.5CH2Cl2)

 ${}^{a}R1 = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|. \quad {}^{b}wR2 = [\Sigma w[(F_{o}^{2} - F_{c}^{2})^{2}]/\Sigma [w(F_{o}^{2})^{2}]]^{1/2}.$

	[Zn(8-MeOTQA)](ClO ₄) ₂	[Cd(8-MeOTQA)](ClO ₄) ₂	
Formula	C33H30Cl2N4O11Zn	C33H30CdCl2N4O11	
FW	794.91	841.94	
Crystal system	monoclinic	monoclinic	
Space group	P21/c	P21/c	
<i>a,</i> Å	18.484(2)	18.248(5)	
<i>b,</i> Å	11.4954(13)	11.367(3)	
<i>c,</i> Å	15.595(2)	15.943(5)	
β, deg	105.6890(16)	95.105(3)	
<i>V</i> , Å ³	3190.3(7)	3293.7(15)	
Ζ	4	4	
$D_{\rm calc}$, g cm ⁻³	1.655	1.698	
μ, mm ⁻¹	1.0092	0.8957	
2θ _{max} , deg	55.0	55.0	
temp, K	153	153	
no. reflns collected	23966	32773	
no. reflns used	7162	7560	
no. of params	580	460	
Rint	0.0210	0.0409	
Final $R1 (I > 2\sigma(I))^a$	0.0334	0.0453	
wR2 (all data) ^{b}	0.0891	0.1185	
GOF	1.061	1.078	

Table S2Crystallographic Data for [Zn(8-MeOTQA)](ClO₄)2 and [Cd(8-MeOTQA)](ClO₄)2

 ${}^{a}R1 = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|. \quad {}^{b}wR2 = [\Sigma w[(F_{o}^{2} - F_{c}^{2})^{2}]/\Sigma [w(F_{o}^{2})^{2}]]^{1/2}.$

	[Zn(6-MeOTQA)(DMF)- (ClO4)]ClO4·0.5H2O	[Zn(8-MeOBQPA)- (CH3OH)](ClO4)2·0.5H2O	
Formula	C36H38Cl2N5O12.5Zn	C29H31Cl2N4O11.5Zn	
FW	877.01	755.87	
Crystal system	monoclinic	triclinic	
Space group	Сс	<i>P-</i> 1	
<i>a,</i> Å	19.446(5)	12.5269(17)	
<i>b,</i> Å	14.257(3)	14.684(2)	
<i>c,</i> Å	15.252(4)	20.826(3)	
α, deg	90	72.888(7)	
β, deg	116.370(2)	69.124(7)	
γ, deg	90	64.913(6)	
<i>V</i> , Å ³	3788.2(17)	3195.0(8)	
Ζ	4	4	
D_{calc} , g cm ⁻³	1.538	1.571	
μ, mm ⁻¹	0.8613	1.0041	
2θ _{max} , deg	55.0	55.0	
temp, K	153	153	
no. reflns collected	14423	25181	
no. reflns used	6352	13957	
no. of params	532	904	
Rint	0.0236	0.0257	
Final R1 ($I > 2\sigma(I)$) ^{<i>a</i>}	0.0396	0.0501	
wR2 (all data) ^b	0.1017	0.1321	
GOF	1.082	1.081	

Table S3 Crystallographic Data for [Zn(6-MeOTQA)(DMF)(ClO4)]ClO4·0.5H2O and[Zn(8-MeOBQPA)(CH3OH)](ClO4)2·0.5H2O

 ${}^{a}R1 = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. \quad {}^{b}wR2 = [\Sigma w[(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}]]^{1/2}.$

Formula	C30H34CdCl2N4O12	
FW	825.93	
Crystal system	monoclinic	
Space group	P21/c	
<i>a,</i> Å	17.838(3)	
b, Å	11.9318(16)	
<i>c,</i> Å	15.668(2)	
β, deg	97.0190(17)	
<i>V</i> , Å ³	3309.8(8)	
Ζ	4	
D_{calc} , g cm ⁻³	1.657	
μ, mm ⁻¹	0.8914	
2θ _{max} , deg	55.0	
temp, K	153	
no. reflns collected	25209	
no. reflns used	7549	
no. of params	446	
Rint	0.0207	
Final R1 ($I > 2\sigma(I)$) ^{<i>a</i>}	0.0440	
wR2 (all data) ^b	0.1201	
GOF	1.066	

Table S4 Crystallographic Data for [Cd(8-MeOBQPA)(CH ₃ OH)](ClO ₄)	2·CH3OH
---	---------

 ${}^{a}R1 = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|. \quad {}^{b}wR2 = [\Sigma w[(F_{o}^{2} - F_{c}^{2})^{2}]/\Sigma [w(F_{o}^{2})^{2}]]^{1/2}.$

[Cd(8-MeOBQPA)(CH₃OH)](ClO₄)₂·CH₃OH

Compound ^a	Izn/I0	Icd/Izn(%)	φZn	Solvent	Reference
8-MeOTQA(4)	16	16	0.51	DMF-H2O (1:1)	_
Α	-	75	-	MeOH (0.01 M NaOAc)	b
В	-	15	-	MeOH (0.01 M NaOAc)	b
С	-	~50	-	MeOH (0.01 M NaOAc)	С
D	7	44	-	CH3CN-HEPES (4:1)	d
Ε	17	~250	-	10 mM HEPES buffer	e
F	0.5	~120	-	10 mM HEPES buffer	e
	13	-	0.03	50 mM HEPES-DMSO (99:1) h
G	~10	~130	0.24	50 mM HEPES buffer	f
	11	-	0.24	50 mM HEPES-DMSO (99:1) j
Н	~6	~100	0.43	25 mM HEPES buffer	g
I	~4	~200	0.24	25 mM HEPES-DMSO (95:5	i) h
J	~5	~120	0.49	25 mM HEPES-DMSO (95:5	i) h
К	~6	~200	0.65	25 mM HEPES-DMSO (95:5	i) h
L	~9	~13	-	MeOH-H ₂ O (1:1)	i
Μ	3.6	-	0.03	50 mM HEPES-DMSO (99:1) j

Table S5 Comparison of Fluorescence Sensing Properties of 8-Hydroxy- or 8-Alkoxy-2-aminomethylquinoline Derivatives

^a See Chart S1.

- ^b J. Org. Chem., 2001, **66**, 4752.
- ^c Anal. Sci., 2003, **19**, 1353.
- ^d Dalton Trans., 2004, 2771.
- ^e Chem. Eur. J., 2006, **12**, 9066.
- ^f J. Am. Chem. Soc., 2006, **128**, 3854.
- ^g Org. Lett., 2007, **9**, 4995.
- ^h Inorg. Chem., 2008, **47**, 4310.
- ⁱ *Dalton Trans.*, 2013, **42**, 14516.
- ^j Polyhedron, 2013, **58**, 85.

Ν

G

L

М

Chart S1

Fig. S1 (a) Absorbance (at 304 nm) and (b) fluorescence (at 442 nm) spectral changes for 34 μ M 8-MeOTQA (4) in the presence of increasing amount of Zn²⁺ in DMF-H₂O (1:1) (λ_{ex} = 335 nm, 25 °C).

Fig. S2 Estimation of LOD (limit of detection) for Zn^{2+} with 8-MeOTQA in DMF-H₂O (1:1). The 3 σ value (σ corresponds to standard deviation from 5 measurements) of blank solution (34 μ M 8-MeOTQA) is 0.191 in fluorescence intensity unit, which corresponds to 3.4 nM from the slope of the liner dynamic fluorescence intensity plot (*k*) shown above (LOD = $3\sigma/k$).

Fig. S3 Effect of pH on fluorescence intensity of 34 μ M 8-MeOTQA (4) at 442 nm in the absence (blue) and presence (red) of 1 equiv. of Zn²⁺ in DMF-H₂O (1:1) at 25 °C (λ_{ex} = 335 nm).

Fig. S4 (a, c, e) Absorbance and (b, d, f) fluorescence spectral changes for 34 μ M (a, b) 6-MeOTQA (3), (c, d) 6,8-DiMeOTQA (5) and (e, f) 8-MeOBQPA (8) in the presence of increasing amount of Zn²⁺ in DMF-H₂O (1:1) at 25 °C (λ_{ex} = 332 nm for 6-MeOTQA; 347 nm for 6,8-DiMeOTQA; 335 nm for 8-MeOBQPA).

Fig. S5 Comparison of fluorescence spectra of 34 μ M TQA (orange), 6-MeOTQA (**3**) (green), and 8-MeOTQA (**4**) (red), 6,8-DiMeOTQA (**5**) (blue) and 8-MeOBQPA (**8**) (light blue) in the presence (solid lines) and absence (broken lines) of 1 equiv. of Zn²⁺ in DMF-H₂O (1:1) at 25 °C (λ_{ex} = 317 nm for TQA; 332 nm for 6-MeOTQA; 335 nm for 8-MeOTQA and 8-MeOBQPA; 347 nm for 6,8-DiMeOTQA).

Fig. S6 Comparison of fluorescence spectra of 34 μ M (a) 6-MeOTQA (3), (b) 8-MeOTQA (4), (c) 6,8-DeiMeOTQA (5), (d) 5,6,7-TriMeOTQA (6), (e) 8-MeSTQA (7) and (f) 8-MeOBQPA (8) in the presence of 1 equiv. of various metal ions in DMF-H₂O (1:1) at 25 °C.

Fig. S7 Absorption and fluorescence spectral changes of 34 μ M 5,6,7-TriMeOTQA (6) in DMF-H₂O (1:1) in the presence of Cd²⁺ (λ_{ex} = 332 nm, 25 °C). (a, c) Absorbance changes upon addition of Cd²⁺. (b, d) Fluorescence changes upon addition of Cd²⁺.

Fig. S8 The relative fluorescence intensity of (a) 6,8-DiMeOTQA (5) and (b) 5,6,7-TriMeOTQA (6) in the presence of 1 equiv. of metal ions in DMF-H₂O (1:1) at 25 °C.

Fig. S9 Absorption and fluorescence spectral changes of 34 μ M 8-MeOBQPA (8) in the presence of Cd²⁺ in DMF-H₂O (1:1) (λ_{ex} = 335 nm, 25 °C). (a, c) Absorbance changes upon addition of Cd²⁺. (b, d) Fluorescence changes upon addition of Cd²⁺.

Fig. S10 Comparison of fluorescence spectra for 34 μ M 8-MeOTQA (4) (red) and 8-MeOBQPA (8) (blue) in DMF-H₂O (1:1) in the presence of 1 equiv. of Zn²⁺ (solid lines) or Cd²⁺ (broken lines) (λ_{ex} = 335 nm, 25 °C).

Fig. S11 ¹H NMR spectrum of 2 in CDCl₃.

Fig. S12 ¹³C NMR spectrum of 2 in CDCl₃.

Fig. S13 ¹H NMR spectrum of 6-MeOTQA (3) in CDCl₃.

Fig. S14 ¹³C NMR spectrum of 6-MeOTQA (3) in CDCl₃.

6-MeOTQA (3)

Fig. S15 ¹H NMR spectrum of 8-MeOTQA (4) in CD₂Cl₂.

Fig. S16 ¹³C NMR spectrum of 8-MeOTQA (4) in CD₂Cl₂.

Fig. S17 ¹H NMR spectrum of 6,8-dimethoxy-2-quinolinecarbaldehyde in CDCl₃.

Fig. S18 ¹³C NMR spectrum of 6,8-dimethoxy-2-quinolinecarbaldehyde in CDCl₃.

Fig. S19 ¹H NMR spectrum of 6,8-dimethoxy-2-hydroxymethylquinoline in CDCl₃.

Fig. S20 ¹³C NMR spectrum of 6,8-dimethoxy-2-hydroxymethylquinoline in CDCl₃.

Fig. S21 ¹H NMR spectrum of 6,8-dimethoxy-2-chloromethylquinoline in CDCl₃.

.

Fig. S22 ¹³C NMR spectrum of 6,8-dimethoxy-2-chloromethylquinoline in CDCl₃.

Fig. S23 ¹H NMR spectrum of 6,8-DiMeOTQA (5) in CDCl₃.

Fig. S24 ¹³C NMR spectrum of 6,8-DiMeOTQA (5) in CDCl₃.

Fig. S25 ¹H NMR spectrum of 5,6,7-TriMeOTQA (6) in CDCl₃.

Fig. S26 ¹³C NMR spectrum of 5,6,7-TriMeOTQA (6) in CDCl₃.

Fig. S27 ¹H NMR spectrum of 8-methylthioquinoline-2-carbaldehyde in CDCl₃.

Fig. S28 ¹³C NMR spectrum of 8-methylthioquinoline-2-carbaldehyde in CDCl₃.

Fig. S29 ¹H NMR spectrum of 8-methylthio-2-hydroxymethylquinoline in CDCl₃.

Fig. S30 ¹³C NMR spectrum of 8-methylthio-2-hydroxymethylquinoline in CDCl₃.

Fig. S31 ¹H NMR spectrum of 8-methylthio-2-chloromethylquinoline in CDCl₃.

Fig. S32 ¹³C NMR spectrum of 8-methylthio-2-chloromethylquinoline in CDCl₃.

Fig. S33 ¹H NMR spectrum of 8-MeSTQA (7) in CDCl₃.

Fig. S34 ¹³C NMR spectrum of 8-MeSTQA (7) in CDCl₃.

Fig. S35 ¹H NMR spectrum of 8-MeOBQPA (8) in CDCl₃.

Fig. S36 ¹³C NMR spectrum of 8-MeOBQPA (8) in CDCl₃.

Fig. S37 ¹³C NMR spectrum of [Zn(6-MeOTQA)(DMF)(ClO₄)]ClO₄ in CD₃CN.

Fig. S38 ¹³C NMR spectrum of [Zn(6-MeOTQA)(DMF)(ClO₄)]ClO₄ in CD₃CN.

Fig. S39 ¹H NMR spectrum of [Zn(8-MeOTQA)](ClO₄)₂ in CD₃CN.

Fig. S40 ¹³C NMR spectrum of [Zn(8-MeOTQA)](ClO₄)₂ in CD₃CN.

Fig. S41 ¹H NMR spectrum of [Cd(8-MeOTQA)](ClO₄)² in CD₃CN.

Fig. S42 ¹³C NMR spectrum of [Cd(8-MeOTQA)](ClO₄)₂ in CD₃CN.

Fig. S43 ¹H NMR spectrum of [Zn(8-MeOBQPA)(CH₃OH)](ClO₄)₂ in CD₃CN.

Fig. S44 ¹³C NMR spectrum of [Zn(8-MeOBQPA)(CH₃OH)](ClO₄)₂ in CD₃CN.

Fig. S45 ¹H NMR spectrum of [Cd(8-MeOBQPA)(CH₃OH)](ClO₄)₂ in CD₃CN.

Fig. S46 ¹³C NMR spectrum of [Cd(8-MeOBQPA)(CH₃OH)](ClO₄)₂ in CD₃CN.