Synthesis of a Phosphapyracene via Metal-Mediated Cyclization: Structural and Reactivity Effects of Acenaphthene Precursors

Ge Wang,^a Marites A. Guino-o,^a David S. Glueck,^a* James A. Golen,^b Christopher J. A. Daley,^b

and Arnold L. Rheingold^b

^a6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New

Hampshire 03755, United States ^b Department of Chemistry, University of California, San Diego,

9500 Gilman Drive, La Jolla, California 92093, United States

Glueck@Dartmouth.Edu

Supporting Information

- 1. Additional Experimental Information
- 2. NMR Spectra
- 3. Details of the X-ray Crystallographic Studies

1. Additional Experimental Information

6-bromo-5-acenaphthoic acid (9). This known compound was prepared by a modified literature method.^{1,2} A brown solution of 5,6-dibromoacenaphthene (5.011 g, 16 mmol) in 200 mL of THF was cooled to -78 °C under N₂, and *n*-BuLi (9.64 mL, 19 mmol, 1.2 equiv, 2 M in cyclohexane) was slowly added. After complete addition, the resulting yellow mixture was stirred for about 20 min at -78 °C. Excess dry ice pellets were dropped through the neck of the Schlenk flask against the N₂ flow, turning the mixture to milky white. It was stirred until it warmed up to room temperature, then acidified to pH 6 with H₂SO₄ (conc or 1 M), and extracted with Et₂O (2 x 50 mL). The combined organic layers were extracted with 1 M NaOH (2 x 50 mL). The combined aqueous extracts were acidified with conc HCl, yielding an off-white precipitate, which was filtered and recrystallized from EtOH to give an off-white solid. Yield = 2.83 g (64%). This reaction was also run with 10.44 g of dibromoacenaphthene to give 4.88 g of the acid (55% yield).

¹H NMR (acetone- d_6): δ 7.81 (d, J = 7, 1H), 7.70 (d, J = 7, 1H), 7.41 (dt, J = 7, 1, 1H), 7.30 (dt, J = 7, 1, 1H), 3.41 (m, 4H). ¹³C{¹H} NMR (acetone- d_6): δ 170.3, 149.5, 147.1, 140.8, 134.4, 130.0, 128.9, 127.1, 121.4, 119.7, 114.1, 30.3, 29.7.

Bromo alcohol 10 Carboxylic acid **9** was converted to an acid chloride using SOCl₂ or oxalyl chloride by analogy to related procedures,³ then reduced to alcohol **10**. The thionyl chloride method was preferred. Under N₂, SOCl₂ (0.299 mL, 4.51 mmol, 11 equiv) was added via syringe to a Schlenk tube containing 6-bromo-5-acenaphthoic acid (0.100 g, 0.361 mmol) at room temperature. The bromoacenaphthoic acid was insoluble at room temperature but the mixture turned dark as it was slowly heated up to reflux for 1-3 h. It was then cooled to room temperature and the excess SOCl₂ was removed *in vacuo* to give an off-white solid, which was

dissolved in 20-25 mL of Et_2O to give a yellow solution. LiAlH₄ (0.014 g, 0.36 mmol, 1 equiv) was added. The solution was heated gently to reflux for 5-8 h. Workup involved addition of 5-10 mL of H₂O at room temperature, extraction with Et_2O (2 x 50 mL), drying with MgSO₄, filtration and solvent removal *in vacuo*. The yellow solid was purified by recrystallization from CH₂Cl₂ layered with petroleum ether. Yield: 0.084 g (0.32 mmol, 88%). This reaction was also scaled up successfully: 4.88 g of acid gave 2.76 g of alcohol (64% yield).

Anal. Calcd. for C₁₃H₁₁BrO: C, 59.34; H, 4.21; Found C, 59.04; H, 4.98. HRMS m/z calcd for C₁₃H₁₁BrO: 261.9993. Found: m/z 261.9996. ¹H NMR (CDCl₃): δ 7.75 (d, *J* = 7, 1H), 7.57 (d, *J* = 7, 1H), 7.28 (d, *J* = 7, 1H), 7.13 (d, *J* = 7, 1H), 5.34 (d, *J* = 2, 2H), 3.39-3.33 (m, 4H), 2.39 (br, OH, 1H). ¹³C{¹H} NMR (CDCl₃): δ 147.8, 147.2, 142.0, 134.4, 132.9, 132.2, 129.0, 120.6, 120.3, 113.4, 64.1, 30.3, 30.2.

Benzyl Chloride 3 via Alcohol 10 Under N₂, a solution of alcohol **10** (0.600 g, 2.28 mmol) in ca. 50 mL of CH₂Cl₂ was treated with NEt₃ (0.477 mL, 3.42 mmol, 1.5 equiv). The mixture was cooled to 0 °C and methanesulfonyl chloride (0.194 mL, 2.51 mmol, 1.1 equiv) was added via syringe. The mixture was stirred until it reached room temperature, and then overnight. The workup involved addition of 10 mL of aqueous NH₄Cl solution, extraction using CH₂Cl₂ (2 x 10 mL), drying with MgSO₄ and removing the solvent *in vacuo*. The resulting light yellow solid was purified via recrystallization from Et₂O. Yield = 0.438 g (1.56 mmol, 68%); similarly, 2 g of alcohol **10** gave 1.70 g of **3** (79% yield). Note: when this reaction was followed by ¹H NMR spectroscopy in CD₂Cl₂, the CH₂ signal for the mesylate intermediate was observed at δ 6.01; it was soon replaced by the analogous signal for the product (δ 5.45).

Reduction of Carboxylic Acid 9 to Alcohol 10 Using Oxalyl Chloride and LiAlH₄, Instead of SOCl₂/LiAlH₄ Under N₂, oxalyl chloride (0.037 mL, 0.43 mmol, 1.2 equiv) was added via

syringe to a suspension of 6-bromo-5-acenaphthoic acid (0.100 g, 0.361 mmol) in 10 mL of CH_2Cl_2 at room temperature. Addition of DMF (2 drops) resulted in rapid gas evolution; then the mixture turned light yellow. The solution was stirred for 20 min and then the solvent was removed *in vacuo* to give an off-white solid, which was dissolved in 20-25 mL of Et₂O. To the clear solution, LiAlH₄ (0.014 g, 0.36 mmol, 1 equiv) was added and the mixture was heated to reflux for 5-8 h. Workup of the reaction mixture involved addition of 5-10 mL of H₂O at room temperature, extraction with Et₂O (2x 50 mL), drying with MgSO₄, filtration and solvent removal *in vacuo*. The white solid was purified via recrystallization from CH_2Cl_2 layered with petroleum ether. Yield: 0.038 g (0.144 mmol, 40%).

Attempts to reduce acid 9 directly, without converting it to the acid chloride, led to dehalogenation.

Attempted reduction of 6-Br-5-acenaphthoic acid with LiAlH₄ Under N₂, the carboxylic acid 9 (421 mg, 1.52 mmol) was dissolved in 15 mL of dry THF. A gray suspension of 3 equiv of LiAlH₄ (173 mg, 4.56 mmol) in 5 mL of dry THF was added to the carboxylic acid solution with a pipet under N₂ flow. Bubbles were observed immediately after addition. The mixture was stirred at room temperature overnight. Workup: 4 mL of conc HCl was added dropwise to the reaction flask at 0 °C. 2×50 mL of ether was used to extract the product. The organic layer was collected and dried with MgSO₄. After removing the solvent under reduced pressure, 332 mg (108% yield) of deep green solid was obtained. ¹H NMR spectroscopy showed a mixture of the

debrominated benzyl chloride and the desired bromo-benzyl chloride **3** in an approximate ratio of 1:0.18.

¹H NMR (CDCl₃): δ 7.82 (d, *J* = 8, 1H), 7.55 (dd, *J* = 8, 7, 1H), 7.46 (d, *J* = 7, 1H), 7.34 (d, *J* = 7, 1H), 7.23 (d, *J* = 7, 1H), 5.02 (2H, benzyl), 3.44-3.34 (m, 4H, ace CH₂).

Under N_2 , the carboxylic acid **9** (247 mg, 0.89 mmol) was dissolved in 10 mL of dry THF. A gray suspension of 2 equiv of LiAlH₄ (68 mg, 1.78 mmol) in 3 mL of dry THF was added to the carboxylic acid solution with a pipet under N_2 flow. Bubbles were observed immediately after addition. The mixture was heated to reflux at 75 °C overnight. Workup: 6 mL of distilled water was added dropwise to the reaction flask at 0 °C. 2×30 mL of ether was used to extract the product. The organic layer was collected and then washed with 50 mL of aqueous NH₄Cl. After drying with MgSO₄ and concentrating the solution, 148 mg (90% yield) of white solid was obtained. ¹H NMR spectroscopy confirmed the formation of the debrominated alcohol, plus ca. 5% of the desired bromo-benzyl alcohol **10** and 8% of unidentified impurities.

¹H NMR (CDCl₃): δ 7.82 (d, J = 8, 1H), 7.51 (dd, J = 8, 7, 1H), 7.45 (d, J = 7, 1H), 7.32 (d, J = 7, 1H), 7.24 (d, J = 7, 1H), 5.09 (d, J = 6, 2H benzyl), 3.42-3.39 (m, 4H, ace CH₂), 1.62 (t, J = 6, 1H).

The product debrominated alcohol and benzyl chloride derivatives are known compounds and were identified by comparison of their ¹H NMR spectra (CDCl₃) to the literature data (Honda, H. JP2002205967, **2002**.)

Arbuzov Reaction: Formation of Phosphine Oxide 13 Under N_2 , benzyl chloride 3 (0.466 g, 1.66 mmol, 1 equiv) was placed in a 50 mL round bottom flask. Diisopropyl phenylphosphonite (0.19 mL, 0.8 mmol, 0.5 equiv) was added via syringe. The reaction mixture was placed in a short-path distillation apparatus and heated to 50 °C, then slowly heated to 150 °C in increments of 10 °C every 10-15 min. The benzyl chloride **3** appeared to sublime up the walls of the flask, so it was occasionally washed down with aliquots of an additional 0.19 mL of the phosphonite (a total of 0.38 mL, 1.6 mmol, 1 equiv was used, resulting in full conversion of **3**). The temperature was held at 150 °C for 1 h. Then, the apparatus was placed under vacuum at 150 °C for 30 min to remove volatile materials. The involatile residue was recrystallized from warm petroleum ether or toluene/petroleum ether in a refrigerator to give colorless blocks (0.65 g, 72% yield). A second recrystallization from warm petroleum ether gave analytically pure material, while X-ray quality crystals were obtained from toluene/petroleum ether.

Anal. calcd for $C_{22}H_{22}BrO_2P$: C, 61.55; H, 5.17. Found: C, 61.67; H, 5.01. HRMS m/z calcd for $C_{22}H_{22}BrO_2P$: 429.0619. Found: m/z 429.0625. ³¹P{¹H} NMR (CDCl₃): δ 39.0. ¹H NMR (CDCl₃): δ 7.67 (m, 3H), 7.45-7.41 (m, 3H), 7.34-7.33 (m, 1H), 7.22-7.21 (m, 1H), 7.02-7.01 (m, 1H), 4.63-4.57 (t, *J* = 16, 1H), 4.48-4.44 (m, 1H), 4.24-4.17 (t, *J* = 16, 1H), 3.34-3.30 (m, 4H), 1.15-1.07 (dd, m, 6H). ¹³C{¹H} NMR (CDCl₃): δ 146.7, 146.1 (d, *J* = 4), 141.4, 134.5, 133.6 (d, *J* = 7), 132.4, 132.04, 132.0, 131.7 (d, *J* = 3), 131.4, 129.0 (d, *J* = 4), 128.0 (d, *J* = 12), 124.0 (d, *J* = 10), 119.9, 119.8 (d, *J* = 4), 114.3 (d, *J* = 2), 69.7 (d, *J* = 7), 36.0 (d, *J* = 96), 30.0, 29.8, 24.2 (d, *J* = 3), 23.9 (d, *J* = 5).

Figure S1 ORTEP diagram of Arbuzov product 13.

Secondary Phosphine Ph-11 from Reduction of Phosphine Oxide 13 To a LiAlH₄ slurry (0.079 g or 0.22 g, 2.1 mmol or 5.8 mmol, 6 equiv) in 10-20 mL of THF, Me₃SiCl (0.27 mL or 0.74 mL, 2.1 mmol or 5.8 mmol, 6 equiv) was added via syringe; the mixture was cooled to -78 °C and stirred for 1 h. The gray solution was then stirred at room temperature for 30 min before cooling to -40 °C. To this mixture, a solution of Arbuzov product 13 (0.15 g or 0.41 g, 0.35 mmol or 0.96 mmol, 1 equiv) in 10-20 mL of THF was added via cannula. The mixture was stirred and allowed to reach room temperature overnight. Workup involved adding 30-50 mL of degassed water, extracting with dry Et₂O (2 x 30 mL), combining the organic layers, drying with MgSO₄ and removing the solvent *in vacuo*. Although this method gave secondary phosphine Ph-11, the primary phosphine PH₂Ph and other unidentified impurities were also formed.

[Pt((R,R)-Me-DuPhos)(Ph)(PHPh(CH₂Ar))][OTf] (17) Using AgOTf We originally prepared this cation using AgOTf, but the NH₄PF₆ procedure (experimental section) gave higher-purity product more conveniently.

In the glove box, AgOTf (42 mg, 0.16 mmol) and Pt((R,R)-Me-DuPhos)(Ph)(Cl) (101 mg, 0.16 mmol, 1 equiv) were dissolved in 1 mL of THF separately in two vials. The two solutions were mixed together and white precipitate formed immediately. After stirring for 5 min, the mixture was filtered through Celite to remove the precipitate. The filtrate was added to a solution of secondary phosphine **Ph-11** (65 mg, 0.18 mmol, 1.1 equiv) in 1 mL of THF. The color turned deep red immediately. Several more filtrations didn't help to remove the color and the solution was still yellow/brown. After concentrating the THF solution to about 1 mL, 2 mL of pentane was added and beige product precipitated (67 mg, 34% yield). The ³¹P NMR spectrum showed the product was formed, but some impurity peaks were present. In a similar procedure, the reaction mixture was protected from light using aluminum foil. However, it was still difficult to remove colored impurities and the product was beige.

Screening Pt-Catalyzed Tandem Phosphination/Cyclization of Benzyl Chloride 3

General procedure: A solution of benzyl chloride **3** (15 mg, 0.05 mmol) in ca. 0.2 mL of THF was added to a mixture of PH_2Ph (6 mg, 0.05 mmol), NaOSiMe₃ (12 mg, 0.10 mmol, 2 equiv) and Pt((R,R)-Me-DuPhos)(Ph)(Cl) (2 mg, $3x10^{-3}$ mmol, 6 mol %) in 0.3 mL of THF. The reaction was monitored by ³¹P NMR spectroscopy.

Similar experiments were carried out using other primary phosphines, including commercially available PH₂Cy, *o*-C₆H₄(PH₂)₂, and H₂PCH₂CH₂PH₂, as well as FcCH₂PH₂ and 1,1'-Fc(PH₂)₂, which were prepared by the literature procedures. (See: (a) Goodwin, N. J.; Henderson, W.; Nicholson, B. K.; Fawcett, J.; Russell, D. R. *J. Chem. Soc., Dalton Trans.* **1999**, 1785-1793. (b) Burk, M. J.; Gross, M. F. *Tetrahedron Lett.* **1994**, *35*, 9363-9366.)

We also tested the solvent toluene, the base KOtBu, and other catalyst precursors, including Pt((R,R)-i-Pr-DuPhos)(Ph)(Cl), Pt((R,R)-i-Pr-DuPhos)(Me)(Cl), Pt((R,R)-Me-BPE)(Ph)(Cl), Pt((R,R)-Me-BPE)(Me)(Cl), and Pt((R,R)-Ph-BPE)(Me)(Cl) (see Guino-o, M. A.; Zureick, A. H.; Blank, N. F.; Anderson, B. J.; Chapp, T. W.; Kim, Y.; Glueck, D. S.; Rheingold, A. L. *Organometallics* **2012**, *31*, 6900-6910.) As described briefly in the text, the main product of these catalytic reactions was the secondary phosphine **Ph-11** and its assumed analogues with other R groups.

Ph-PyraPhos(O) (16) As described in the experimental section, deprotection of Ph-PyraPhos(BH₃) gave a small amount of phosphine oxide 16, which was isolated by washing the silica plug with methanol quickly (isopropanol can also elute the phosphine oxide). Removal of methanol under vacuum gave a light yellow solid, which was characterized by NMR and mass spectrometry.

HRMS (m/z): calcd for $C_{19}H_{16}OP$ (MH)⁺, 291.0939, found, 291.0938. We could not obtain satisfactory elemental analyses for this compound even after recrystallization by vapor diffusion of pentane into a CH_2Cl_2 solution. For example: Anal. Calcd for $C_{19}H_{15}OP$: C, 78.61; H, 5.21. Found: C, 74.80; H, 4.61. Also found C, 76.67; H, 4.62. ³¹P{¹H} NMR (CDCl₃): δ 51.3; ³¹P{¹H} NMR (THF): δ 46.4. ¹H NMR (CDCl₃): δ 7.84 (dd, $J_{P-H} = 10$, $J_{H-H} = 7$, 1H), 7.58-7.54 (m, 2H), 7.50-7.43 (m, 2H), 7.41-7.36 (m, 4H), 3.73 (ABX, $J_{AB} = 18$, $J_{AX} = 18$, 1H, benzyl), 3.62 (ABX, $J_{AB} = 18, J_{AX} = 6, 1H, benzyl), 3.55-3.47 (m, 4H, ace H).$ ¹³C{¹H} NMR (CDCl₃): δ 150.4 (d, J = 2, Ar, quat), 143.8 (d, <math>J = 1, Ar, quat), 138.0 (d, J = 17, Ar, quat), 137.9 (d, <math>J = 33, Ar, quat), 134.5 (d, J = 99, Ar, quat), 132.0 (d, J = 3, Ar), 130.6 (d, J = 11, Ar), 129.6 (d, J = 8, Ar), 129.0 (d, J = 7, Ar, quat), 128.8 (d, J = 12, Ar), 127.8 (d, J = 102, Ar, quat), 125.1 (d, J = 12, Ar), 121.5 (d, J = 12, Ar), 121.2 (d, J = 1, Ar), 35.9 (d, J = 77, benzyl CH₂), 32.1 (d, J = 1, ace-CH₂), 31.2 (ace-CH₃).

Oxidation of Ph-PyraPhos Ph-4 in air also gave phosphine oxide 16. Under N_2 , Ph-PyraPhos (Ph-4, 13 mg, 0.047 mmol) was dissolved in 1 mL of THF and transferred to a NMR tube with a rubber septum. The NMR tube was then heated at 60 °C with a vent needle in the septum to allow air exchange. ³¹P NMR monitoring showed formation of the phosphine oxide after 6 d.

Formation of Ph-PyraPhos(O) (16) via Its Hydrogen Peroxide Adduct $16+0.5H_2O_2$ A solution of Ph-PyraPhos (Ph-4, 28 mg, 0.11 mmol) in 1 mL of THF was transferred to a NMR tube with a rubber septum. Concentrated aqueous H_2O_2 (30 weight % in H_2O , 0.2 mL, 1.7 mmol H_2O_2) was added dropwise via syringe. The reaction was exothermic. After the NMR tube was shaken briefly, the ³¹P NMR spectrum showed that oxidation had occurred (δ 52.2). Thirty min later, small crystals came out and the solution was allowed to sit overnight (in another repeated reaction, crystals formed after overnight standing). The next day, the crystals were separated (approximately 10 mg, 30% yield) and the X-ray single crystal analysis showed that two PyraPhos oxide molecules co-crystallized with one H_2O_2 molecule, which was also observed by ¹H NMR spectroscopy (δ 8.33 (broad), CDCl₃). To remove the H_2O_2 , molecular sieves were added to a CH₂Cl₂ solution of the crystals. After two d, the solution was decanted and removal of the solvent gave oxide **16**.⁴

Figure S2. ORTEP diagram of Ph-PyraPhos(O)•0.5H₂O₂ (**16**•0.5H₂O₂), showing one of the hydrogen bonding interactions. Selected distances (Å) and angles (deg): O2–O1 2.694; O1-H16 1.798; O2–H16–O1 176.05 (H16 was located and refined).

Note: In a similar reaction with 28 mg of Ph-PyraPhos, after addition of H_2O_2 , a few crystals formed immediately. However, after standing overnight, no more crystals came out. The mixture was then added to 10 mL of CH_2Cl_2 and dried with anhydrous MgSO₄. After filtration, activated molecular sieves were added to the solution to remove H_2O_2 . After three d, the solution was decanted and the solvent was removed to give 14 mg of white solid (47% yield). The crude product was dissolved in a small amount of CH_2Cl_2 and loaded onto a short silica column (5 cm long). Five mL of CH_2Cl_2 was first used to flush the column to remove any impurities. Then 5 mL of THF was used to wash the phosphine oxide off the column. Removal of THF gave 13 mg

of white solid (44% yield). The ³¹P NMR spectrum showed a clean singlet for **16**. However, the ¹H NMR spectrum showed a few impurities were present.

We could not obtain satisfactory elemental analysis for the $16 \cdot 0.5 H_2 O_2$ adduct, even with crystals from the same batch used for X-ray analysis. Anal. Calcd for C₁₉H₁₅OP·0.5H₂O₂: C, 74.26; H, 5.25. Found: C, 73.44; H, 4.79. ³¹P{¹H} NMR (CDCl₃): δ 52.3. ¹H NMR (CDCl₃): δ 8.33 (broad, 1H, H₂O₂), 7.85 (dd, $J_{P-H} = 10$, $J_{H-H} = 7$, 1H), 7.61-7.54 (m, 2H), 7.52-7.44 (m, 2H), 7.44-7.36 (m, 4H), 3.76 (ABX, $J_{AB} = 18$, $J_{AX} = 18$, 1H, benzyl), 3.63 (ABX, $J_{AB} = 18$, $J_{AX} = 6$, 1H, benzyl), 3.58-3.45 (m, 4H, ace H).

Cyclization of Pt-Phosphido Complex Ph-8, Generated by Deprotonation of the Cation $[Pt((R,R)-Me-DuPhos)(Ph)(PH(Ph)(CH_2Ar))][PF_6]$ (17) The reaction was repeated by the procedure described in the experimental section multiple times on different scales. However, the rate and the ratio of the two diastereomers of the product 18 were not consistent or reproducible. Starting with 100 mg of Pt complex 17, the reaction was done in 1 week and the diastereomer ratio was about 1.4:1 with 46% yield. In another reaction with 1.042 g of 17, the reaction took 2 weeks and the diastereomer ratio was 1.4:1. For small-scale reactions starting with 20 mg of 17, the reaction was in one case done in 2 days giving 5:1 diastereomer ratio, and in another case took about two weeks giving 2:1 diastereomer ratio. The reaction was also conducted at 45 °C with 20 mg of 17. After 27 h, no phosphido complex Ph-8 could be seen in the ³¹P NMR spectrum, while the color of the solution was light yellow. It took 3 days until the solution became colorless. After workup, 14 mg (76% yield) of white solid was obtained and the diastereomer ratio was 1.7:1.

Isolation of Highly Diastereoenriched $[Pt((R,R)-Me-DuPhos)(Ph)(R-Ph-PyraPhos)][PF_6]$ (18a) by Recrystallization and Its Use to Prepare Highly Diastereoenriched [Pt((S,S)-Me**DuPhos**)(**Ph**)(*R*-**Ph-PyraPhos**)][**PF**₆] (18b') Approximately 700 mg of **18a-b** (diastereomer ratio = 1.4:1) was recrystallized multiple times via vapor diffusion of ether into THF solution at room temperature to give 90 mg of the major diastereomer **18a** (dr = 98:2). In these recrystallizations, after removal of the mother liquor via pipet, crystals which were enriched in **18a** were collected. The sticky solid formed at the bottom of the vials (enriched in the minor diastereomer **18b**) was dissolved in CH₂Cl₂ and separated. The process was repeated multiple times until the crystals collected were almost diastereopure.

In the glove box, a solution of tetraoctylammonium bromide (99 mg, 0.18 mmol, 2 equiv) in 2 mL of THF was added to a solution of enriched 18a (90 mg, 0.09 mmol) in 2 mL of THF. The ³¹P NMR spectrum showed a mixture of Ph-PyraPhos (Ph-4, 51%), Ph-PyraPhos(O) (16, 40%), remaining cation 18a (10%) and Pt((R,R)-Me-DuPhos)(Ph)(Br) (19). Then 0.2 mL of BH₃-THF (1 M in THF, 0.2 mmol, 2.1 equiv) was added to the mixture, to give Ph-PyraPhos(BH₃) (14). The THF was removed under vacuum and the residue was dissolved in the minimum amount of CH₂Cl₂ and loaded on a silica column. Pentane/ethyl acetate (20:1) was used as eluent for chromatography, yielding a co-eluting mixture of phosphine borane 14, an unidentified Pt(Me-Duphos) complex (³¹P{¹H} NMR (CDCl₃): δ 78.8 ($J_{Pt-P} = 2346$), 77.1 ($J_{Pt-P} = 2434$)), and [NOct₄][Br]. After removal of the solvent from the eluent, the residue was extracted with pentane/ethyl acetate (20:1) to separate the less soluble tetraoctylammonium bromide salt. Then four more columns were conducted to partially separate borane adduct 14 from the unidentified Pt(Me-Duphos) complex. A total of 9 mg (35% crude yield) of solid was collected which contained about 20% of the Pt complex (³¹P NMR integration). This impurity was eventually removed when using silica gel chromatography to purify 18b', which was much more polar than the Pt complex (see below).

The crude phosphine-borane **14** (9 mg, 0.03 mmol) was dissolved in 8 mL of toluene and piperazinomethyl polystyrene (1% DVB, 100-200 mesh, Matrix Innovation, 23 mg, 2.7 mmol/g, 0.062 mmol, 2 equiv) was added to the solution. After stirring at 60 °C under N₂ for 2 d, the toluene was removed under vacuum. In the glove box, the residue was extracted with degassed dry CH_2Cl_2 and the solution was passed through a silica plug (5 cm long) to remove any phosphine oxide. Removal of CH_2Cl_2 gave Ph-PyraPhos **Ph-4** as a white solid (4 mg, 47%).

In the glove box, Ph-PyraPhos **Ph-4** (4 mg, 0.01 mmol) was dissolved in about 0.3 mL of THF. A mixture of Pt((*S*,*S*)-Me-DuPhos)(Ph)(Cl) (9 mg, 0.01 mmol) and NH₄PF₆ (3 mg, 0.02 mmol) in 1 mL of THF was prepared and added to the Ph-PyraPhos solution portion by portion. The ³¹P NMR spectrum was checked during the addition to ensure the exact stoichiometry. White precipitate, which formed during the addition, was filtered off through a Celite plug. The THF was removed under vacuum and the residue was extracted with CH₂Cl₂. Removal of CH₂Cl₂ gave 11 mg of white solid, which was further purified with silica gel chromatography (2:1 ethyl acetate/pentane as eluant, $R_f = 0.3$ in ethyl acetate). 4 mg (28% yield) of the cation **18b'** was collected; the ³¹P NMR spectrum showed it was highly enriched, with the ratio **18a'/18b'** = 3/97. The overall yield of this reaction from **18a** to **18b'** was 4%.

Generation of $[Pt((R,R)-Me-DuPhos)(Ph)(Ph-PyraPhos)][PF_6]$ (18a-b) by Complexation of Racemic Ph-PyraPhos A solution of racemic Ph-PyraPhos (Ph-4, 9 mg, 0.03 mmol) in about 0.3 mL of CDCl₃ was added to a mixture of Pt((R,R)-Me-DuPhos)(Ph)(Cl) (20 mg, 0.03 mmol) and NH₄PF₆ (11 mg, 0.07 mmol) in 1 mL of CDCl₃. The ³¹P NMR spectrum showed generation of a 1:1 mixture of diastereomers of cation **18**, plus about 11% of unreacted Pt((R,R)-Me-DuPhos)(Ph)(Cl), presumably due to inexact stoichiometry on this small scale. Kinetic Resolution in Complexation of Racemic Ph-PyraPhos to Pt((R,R)-Me-DuPhos)(Ph)(Cl) A mixture of Pt((R,R)-Me-DuPhos)(Ph)(Cl) (19 mg, 0.03 mmol, 1 equiv) and NH₄PF₆ (7 mg, 0.04 mmol, 1.33 equiv) in 1 mL of CDCl₃ was slowly added to a solution of racemic Ph-PyraPhos **Ph-4** (17 mg, 0.06 mmol, 2 equiv) solution in about 0.5 mL of CDCl₃. The ³¹P NMR spectrum showed generation of a 1.3:1 mixture of **18b** (*S*-Ph-PyraPhos complex) and **18a** (*R*-Ph-PyraPhos complex) plus extra Ph-PyraPhos. The ratio didn't change after two weeks at room temperature, or after heating at 60 °C for 3 d. These experiments demonstrated lowselectivity kinetic resolution in binding **Ph-4** to the [Pt(Me-DuPhos)(Ph)]⁺ group.

Intermediates in the Reaction of $Pt((R,R)-Me-DuPhos)(Ph)(PPh(CH_2Ar))$ (Ph-8) with **AgOTf** As described in the experimental section, this reaction gave long-lived intermediates with distinctive broad ³¹P NMR signals near 0 ppm. Two closely related sets of spectra were observed over multiple experiments; these may arise from the same intermediate, or from structurally related complexes. In most cases, we observed broad ³¹P NMR signals which were consistent with the fragment Pt(Me-DuPhos)(Ph)(PPh(CH₂Ar)(X)), in which unidentified modification of the phosphido group has occurred. ${}^{31}P{}^{1}H{}$ NMR (THF): δ 60.7 (br d, J ~ 270, $J_{Pt-P} = 2240$), 59.5 (br, $J_{Pt-P} = 1700$), 1.8 (br d, $J \sim 270$, $J_{Pt-P} \sim 1800$). In a few cases, we observed a similar broad spectrum, which differed slightly in the chemical shift and appearance of the upfield signal, which now showed a four-line pattern tentatively assigned to a Pt-Ag μ phosphido complex as a mixture of two diastereomers, although we could not identify the expected Pt satellites on the upfield peak, or the analogous expected signal of the minor diastereomer. ³¹P{¹H} NMR (THF): δ 61.5 (br d, J ~ 270, J_{Pt-P} = 2250, b), 60.7 (br d, J ~ 260, J_{Pt-P}) = 2240, a), 60.0 (br, $J_{Pt-P} \sim 1710$, a), 59.6 (br, $J_{Pt-P} \sim 1700$, b), -1.8 (br d, $J \sim 280$, $J_{A\sigma-P} \sim 650$, 570, a). The ratio a/b was about 2:1. We cannot tell if these spectra are due to the same intermediate,

and did not attempt to carry out further structural characterization of this material, or of the precipitate formed.

As described in the experimental section, these intermediates decomposed over the course of a few days to form a mixture of Pt complexes. The major product, cyclometalated complex 21 was usually formed first, but the ratio of this product, Ph-PyraPhos complex 18, and unidentified 22 was not consistent over several runs, perhaps for the same reason that the rate and selectivity of formation of 18 from Ph-8 in the absence of AgOTf was also inconsistent.

Figure S3 Portions of the ³¹P{¹H} NMR spectra (THF) of the intermediate(s) formed by addition of $[Pt((R,R)-Me-Duphos)(Ph)(PHPh(CH_2Ar))][PF_6]$ (**17**), NaOSiMe₃ and AgOTf. Top: broad doublet signal; bottom: 4-line pattern

Pt((*R*,*R*)-Me-Duphos)(*trans*-stilbene) was synthesized by a modified literature method.⁵ To a stirring slurry of Pt((*R*,*R*)-Me-Duphos)Cl₂ (80 mg, 0.14 mmol) and *trans*-stilbene (30 mg, 0.17 mmol, 1.2 equiv) in THF (4 mL) was added a solution of NaBH(OMe)₃ (54 mg, 0.42 mmol, 3 equiv) in THF (2 mL). The reaction mixture immediately turned brown. After stirring at room temperature for 3 d, it was filtered through a Celite plug to give a clear light brown solution. After the solvent was removed under vacuum, the brown residue was extracted with toluene (8 mL) and filtered; removing the toluene from the filtrate under vacuum gave 91 mg (95% crude yield) of brown solid. The ³¹P NMR spectrum in toluene showed a clean 4:1 mixture of two diastereomers. The crude product was used directly in the next step without further purification.

2. NMR Spectra NMR spectra are included in the order ³¹P{¹H} (where appropriate), ¹H, ¹³C{¹H}.

 ^1H and ^{13}C NMR spectra for $\boldsymbol{9}$ in acetone-d_6

$^{31}P{^{1}H} NMR (CDCl_3)$

140 120 100 80 60 40 20 0 -10 -30 -50 -70 -90 -110 -130 ppm

The ¹H NMR sample contained CH₂Cl₂.

The ¹³C NMR sample contained THF.

3. X-Ray Crystallographic Data

These compounds are identified with an internal code (GLUxxx), a name/formula, the number in the manuscript (**in bold**), and the CCDC deposit number.

- 1. GLU298 5-Br-6-CH₂Cl-acenaphthene (**3**, CCDC 1047184)
- 2. GLU301 1-Br-8-CH₂Cl-naphthalene (**1**, CCDC 1047185)
- 3. GLU308 5-Br-6-CH₂P(O)(O-*i*-Pr)(Ph)-acenaphthene (**13**, CCDC 1047186)
- 4. GLU314 5-Br-6-CH₂PHPh-acenaphthene (**Ph-11**, CCDC 1047187)
- 5. GLU388 [Pt((*R*,*R*)-Me-DuPhos)(Ph)(*R*-Ph-PyraPhos)][PF₆] (**18a**, CCDC 1047188)
- 6. GLU391 Ph-PyraPhos(BH₃) (14, CCDC 1047189)
- 7. GLU395 [Pt((*R*,*R*)-Me-DuPhos)(Ph)(*R*-Ph-PyraPhos)][PF₆]•THF (**18a•THF**, CCDC 1047190)
- 8. GLU395a PhP(CH₂Ar)₂(BH₃) (**15**, CCDC 1047191)
- 9. GLU397 Ph-PyraPhos(O)•0.5H₂O₂(**16•0.5H₂O₂**, CCDC 1047192)
- 10. GLU421 [Pt((*R*,*R*)-Me-DuPhos)(κ^2 -(P,C)-5-PPh₂CH₂-6-C₁₂H₈)][PF₆] (**21**, CCDC 1047193)

5		1 , 0
Identification code	glu298	
Empirical formula	C13 H10 Br Cl	
Formula weight	281.57	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Orthorhombic	
Space group	Pna2(1)	
Unit cell dimensions	a = 16.0522(6) Å	α= 90°
	b = 14.3181(6) Å	β= 90°
	c = 4.6148(3) Å	$\gamma=90^{\circ}$
Volume	1060.65(9) Å ³	
Z	4	
Density (calculated)	1.763 g/cm^3	
Absorption coefficient	7.247 mm ⁻¹	
F(000)	560	
Crystal size	0.41 x 0.10 x 0.04 mm ³	
Crystal color, habit	Colorless needle	
Theta range for data collection	6.18 to 65.10°	
Index ranges	-18<=h<=18, -16<=k<=	16, -5<=l<=3
Reflections collected	3251	
Independent reflections	1310 [R(int) = 0.0504]	
Completeness to theta = 65.00°	96.1 %	
Absorption correction	Multi-scan	
Max. and min. transmission	0.7603 and 0.1551	
Refinement method	Full-matrix least-squares	s on F ²
Data / restraints / parameters	1310 / 1 / 137	
Goodness-of-fit on F ²	1.006	
Final R indices [I>2sigma(I)]	R1 = 0.0363, wR2 = 0.0	809
R indices (all data)	R1 = 0.0505, wR2 = 0.0	867
Absolute structure parameter	0.10(5)	
Extinction coefficient	0.0013(3)	
Largest diff. peak and hole	0.442 and -0.422 e Å $^{\text{-3}}$	

Table 1. Crystal data and structure refinement for 5-bromo-6-(chloromethyl)-acenaphthene, glu298.

	Х	у	Z	U(eq)
Br(1)	5081(1)	8878(1)	5246(4)	29(1)
Cl(1)	3890(1)	6777(1)	4997(6)	24(1)
C(1)	4765(4)	6823(4)	2532(16)	20(2)
C(2)	5555(4)	6535(4)	4053(14)	16(2)
C(3)	5819(4)	5635(4)	3574(16)	20(1)
C(4)	6529(4)	5227(4)	4920(20)	22(2)
C(5)	6980(4)	5760(4)	6764(16)	19(2)
C(6)	7744(4)	5542(4)	8536(16)	22(2)
C(7)	6032(3)	7113(4)	5966(14)	14(2)
C(8)	6724(4)	6694(4)	7289(16)	17(1)
C(9)	7264(4)	7128(4)	9266(15)	24(2)
C(10)	7106(3)	8032(4)	10050(20)	21(1)
C(11)	6436(4)	8490(4)	8768(17)	23(2)
C(12)	5919(4)	8072(4)	6801(16)	20(2)
C(13)	7954(3)	6465(4)	10130(30)	21(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for 5-bromo-6-(chloromethyl)-acenaphthene, glu298. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Br(1)-C(12)	1.912(6)	C(6)-C(13)	1.548(9)
Cl(1)-C(1)	1.809(7)	C(7)-C(8)	1.403(9)
C(1)-C(2)	1.508(9)	C(7)-C(12)	1.438(8)
C(2)-C(3)	1.374(8)	C(8)-C(9)	1.404(9)
C(2)-C(7)	1.431(8)	C(9)-C(10)	1.368(8)
C(3)-C(4)	1.424(9)	C(9)-C(13)	1.512(8)
C(4)-C(5)	1.352(10)	C(10)-C(11)	1.392(9)
C(5)-C(8)	1.421(8)	C(11)-C(12)	1.368(9)
C(5)-C(6)	1.506(9)		
C(2)-C(1)-Cl(1)	110.5(5)	C(7)-C(8)-C(9)	125.7(6)
C(3)-C(2)-C(7)	118.5(6)	C(7)-C(8)-C(5)	123.9(6)
C(3)-C(2)-C(1)	116.2(5)	C(9)-C(8)-C(5)	110.4(6)
C(7)-C(2)-C(1)	125.3(5)	C(10)-C(9)-C(8)	118.4(6)
C(2)-C(3)-C(4)	124.1(6)	C(10)-C(9)-C(13)	131.4(6)
C(5)-C(4)-C(3)	118.1(5)	C(8)-C(9)-C(13)	110.2(6)
C(4)-C(5)-C(8)	119.0(6)	C(9)-C(10)-C(11)	118.6(7)
C(4)-C(5)-C(6)	131.3(5)	C(12)-C(11)-C(10)	123.0(6)
C(8)-C(5)-C(6)	109.7(5)	C(11)-C(12)-C(7)	121.3(6)
C(5)-C(6)-C(13)	105.0(5)	C(11)-C(12)-Br(1)	114.3(4)
C(8)-C(7)-C(2)	116.4(5)	C(7)-C(12)-Br(1)	124.4(5)
C(8)-C(7)-C(12)	113.0(6)	C(9)-C(13)-C(6)	104.6(6)
C(2)-C(7)-C(12)	130.6(5)		

Table 3. Bond lengths [Å] and angles [deg] for 5-bromo-6-(chloromethyl)-acenaphthene, glu298.

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br(1)	29(1)	19(1)	39(1)	0(1)	-2(1)	5(1)
Cl(1)	20(1)	27(1)	25(1)	3(1)	-1(1)	0(1)
C(1)	26(3)	21(3)	12(4)	-4(3)	5(3)	1(2)
C(2)	14(3)	22(3)	11(4)	4(2)	3(2)	-2(3)
C(3)	17(3)	22(3)	21(4)	-3(3)	7(3)	-7(2)
C(4)	24(3)	17(2)	25(4)	-2(4)	8(4)	0(2)
C(5)	16(3)	16(3)	23(4)	2(3)	8(3)	-1(2)
C(6)	30(4)	15(3)	20(4)	-3(3)	5(3)	1(2)
C(7)	20(3)	14(3)	9(4)	2(2)	9(2)	-2(2)
C(8)	16(3)	16(3)	19(4)	-3(3)	11(3)	-6(2)
C(9)	23(3)	23(3)	26(5)	3(3)	6(3)	-7(2)
C(10)	26(3)	23(3)	15(3)	3(4)	1(5)	-9(2)
C(11)	24(3)	14(3)	31(4)	-6(3)	6(3)	-3(3)
C(12)	24(3)	14(3)	21(4)	8(3)	-1(3)	4(2)
C(13)	21(2)	26(3)	14(3)	-2(5)	1(5)	-3(2)

Table 4. Anisotropic displacement parameters $(Å^2 \times 10^3)$ for 5-bromo-6-(chloromethyl)-acenaphthene, glu298. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

	Х	у	Z	U(eq)
H(1A)	4662	6401	871	23
H(1B)	4827	7466	1773	23
H(3)	5508	5262	2260	24
H(4)	6682	4598	4539	26
H(6A)	8211	5348	7271	26
H(6B)	7628	5036	9942	26
H(10)	7446	8341	11435	26
H(11)	6333	9122	9283	27
H(13A)	7962	6370	12253	25
H(13B)	8503	6707	9506	25

Table 5. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å² x 10³) for 5-bromo-6-(chloromethyl)-acenaphthene, glu298.

Figure S4. ORTEP diagram of 1-bromo-8-(chloromethyl)naphthalene, glu301 (one of the two molecules in the unit cell)

Table 1. Crystal data and structure refinement for 1-bromo-8-(chloromethyl)naphthalene, glu301.

Identification code	glu301	
Empirical formula	C11 H8 Br Cl	
Formula weight	255.53	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/c	
Unit cell dimensions	a = 8.0594(3) Å	α= 90°
	b = 28.0000(10) Å	$\beta = 90.1380(10)^{\circ}$
	c = 8.3318(3) Å	$\gamma = 90^{\circ}$
Volume	1880 18(12) Å ³	•
7. 7.	8 2	
Density (calculated)	1.805 g/cm^3	
Absorption coefficient	4.599 mm ⁻¹	
F(000)	1008	
Crystal size	0.41 x 0.33 x 0.30 mm ³	
Crystal color, habit	Colorless block	
Theta range for data collection	2.53 to 26.47°	
Index ranges	-10<=h<=10, -34<=k<=3	5, -10<=l<=10
Reflections collected	15297	
Independent reflections	3403 [R(int) = 0.0220]	
Completeness to theta = 25.00°	98.5 %	
Absorption correction	Multi-scan	
Max. and min. transmission	0.3391 and 0.2543	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	3403 / 0 / 235	
Goodness-of-fit on F^2	1.041	
Final R indices [I>2sigma(I)]	R1 = 0.0250, wR2 = 0.06	09
R indices (all data)	R1 = 0.0289, wR2 = 0.06	27
Largest diff. peak and hole	1.097 and -0.326 e Å ⁻³	

	Х	у	Z	U(eq)
Br(1)	4865(1)	1417(1)	-1368(1)	22(1)
Br(1')	3865(1)	-1076(1)	7354(1)	21(1)
Cl(1')	2818(1)	-33(1)	9277(1)	22(1)
Cl(1)	6881(1)	2483(1)	-709(1)	21(1)
C(1)	4942(3)	2537(1)	-1815(3)	17(1)
C(1')	4138(3)	46(1)	7537(3)	17(1)
C(2')	3138(3)	64(1)	6010(3)	15(1)
C(2)	3465(3)	2555(1)	-717(3)	16(1)
C(3)	2544(3)	2150(1)	-129(3)	14(1)
C(3')	2593(3)	-344(1)	5096(3)	13(1)
C(4)	2906(3)	1652(1)	-357(3)	17(1)
C(4')	2850(3)	-841(1)	5434(3)	16(1)
C(5')	2332(3)	-1198(1)	4421(3)	19(1)
C(5)	1873(4)	1298(1)	176(3)	21(1)
C(6')	1504(3)	-1088(1)	2974(4)	20(1)
C(6)	376(3)	1407(1)	1007(3)	17(1)
C(7)	28(3)	1871(1)	1319(3)	20(1)
C(7')	1168(3)	-623(1)	2615(3)	18(1)
C(8)	1072(3)	2245(1)	777(3)	16(1)
C(8')	1691(3)	-249(1)	3632(3)	15(1)
C(9)	618(3)	2722(1)	1157(3)	19(1)
C(9')	1317(3)	228(1)	3177(3)	17(1)
C(10)	1550(3)	3095(1)	625(3)	20(1)
C(10')	1844(3)	603(1)	4076(3)	19(1)
C(11)	2957(3)	3011(1)	-327(3)	20(1)
C(11')	2760(3)	517(1)	5483(3)	18(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å² x 10³) for 1-bromo-8-(chloromethyl)naphthalene, glu301. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Br(1)-C(4)	1.908(3)	C(4)-C(5)	1.370(4)
Br(1')-C(4')	1.913(2)	C(4')-C(5')	1.373(4)
Cl(1')-C(1')	1.814(3)	C(5')-C(6')	1.411(4)
Cl(1)-C(1)	1.818(2)	C(5)-C(6)	1.425(4)
C(1)-C(2)	1.503(4)	C(6')-C(7')	1.363(4)
C(1')-C(2')	1.505(3)	C(6)-C(7)	1.356(4)
C(2')-C(11')	1.376(4)	C(7)-C(8)	1.418(4)
C(2')-C(3')	1.439(3)	C(7')-C(8')	1.412(4)
C(2)-C(11)	1.381(4)	C(8)-C(9)	1.421(4)
C(2)-C(3)	1.442(4)	C(8')-C(9')	1.420(4)
C(3)-C(8)	1.433(4)	C(9)-C(10)	1.362(4)
C(3)-C(4)	1.437(4)	C(9')-C(10')	1.359(4)
C(3')-C(4')	1.435(3)	C(10)-C(11)	1.405(4)
C(3')-C(8')	1.443(3)	C(10')-C(11')	1.405(4)
C(2)-C(1)-Cl(1)	112.03(18)	C(2')-C(3')-C(8')	117.0(2)
C(2')-C(1')-Cl(1')	111.44(18)	C(5)-C(4)-C(3)	122.4(3)
C(11')-C(2')-C(3')	119.6(2)	C(5)-C(4)-Br(1)	113.5(2)
C(11')-C(2')-C(1')	114.7(2)	C(3)-C(4)-Br(1)	124.1(2)
C(3')-C(2')-C(1')	125.7(2)	C(5')-C(4')-C(3')	122.9(2)
C(11)-C(2)-C(3)	119.6(3)	C(5')-C(4')-Br(1')	113.07(19)
C(11)-C(2)-C(1)	114.2(2)	C(3')-C(4')-Br(1')	124.03(19)
C(3)-C(2)-C(1)	126.2(2)	C(4')-C(5')-C(6')	120.7(2)
C(8)-C(3)-C(4)	114.8(2)	C(4)-C(5)-C(6)	121.2(3)
C(8)-C(3)-C(2)	117.4(2)	C(7')-C(6')-C(5')	119.2(2)
C(4)-C(3)-C(2)	127.8(3)	C(7)-C(6)-C(5)	118.3(2)
C(4')-C(3')-C(2')	128.4(2)	C(6)-C(7)-C(8)	121.6(3)
C(4')-C(3')-C(8')	114.6(2)	C(6')-C(7')-C(8')	121.3(2)

Table 3. Bond lengths [Å] and angles [deg] for 1-bromo-8-(chloromethyl)naphthalene, glu301.

C(7)-C(8)-C(9)	118.0(3)	C(10)-C(9)-C(8)	120.4(3)
C(7)-C(8)-C(3)	121.5(2)	C(10')-C(9')-C(8')	121.0(2)
C(9)-C(8)-C(3)	120.5(2)	C(9)-C(10)-C(11)	120.1(3)
C(7')-C(8')-C(9')	118.4(2)	C(9')-C(10')-C(11')	119.3(2)
C(7')-C(8')-C(3')	121.3(2)	C(2)-C(11)-C(10)	121.9(3)
C(9')-C(8')-C(3')	120.3(2)	C(2')-C(11')-C(10')	122.8(2)

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br(1)	21(1)	18(1)	28(1)	-4(1)	4(1)	3(1)
Br(1')	24(1)	18(1)	21(1)	4(1)	-1(1)	2(1)
Cl(1')	23(1)	30(1)	14(1)	0(1)	3(1)	4(1)
Cl(1)	15(1)	28(1)	21(1)	-1(1)	-1(1)	-1(1)
C(1)	15(1)	21(1)	16(1)	3(1)	-1(1)	-2(1)
C(1')	16(1)	19(1)	16(1)	-1(1)	3(1)	-2(1)
C(2')	11(1)	22(1)	12(1)	1(1)	4(1)	0(1)
C(2)	14(1)	20(1)	13(1)	0(1)	-3(1)	1(1)
C(3)	14(1)	17(1)	10(1)	1(1)	-2(1)	1(1)
C(3')	10(1)	17(1)	13(1)	1(1)	6(1)	0(1)
C(4)	16(1)	21(1)	15(1)	-1(1)	-1(1)	3(1)
C(4')	13(1)	20(1)	15(1)	3(1)	3(1)	0(1)
C(5')	20(1)	15(1)	23(2)	3(1)	7(1)	-3(1)
C(5)	24(1)	17(1)	22(1)	0(1)	-4(1)	-1(1)
C(6')	19(1)	20(1)	21(1)	-5(1)	4(1)	-5(1)
C(6)	21(1)	14(1)	17(1)	6(1)	-3(1)	-6(1)
C(7)	16(1)	26(1)	16(1)	4(1)	-1(1)	0(1)
C(7')	15(1)	24(1)	16(1)	-1(1)	2(1)	-3(1)
C(8)	16(1)	19(1)	13(1)	2(1)	-4(1)	1(1)
C(8')	11(1)	19(1)	15(1)	1(1)	5(1)	-1(1)
C(9)	17(1)	23(1)	17(1)	-3(1)	-1(1)	5(1)
C(9')	15(1)	23(1)	15(1)	3(1)	2(1)	1(1)
C(10)	22(1)	15(1)	23(2)	-2(1)	-2(1)	5(1)
C(10')	18(1)	18(1)	21(1)	3(1)	6(1)	4(1)
C(11)	21(1)	20(1)	19(1)	-2(1)	-6(1)	2(1)

Table 4. Anisotropic displacement parameters (Å² x 10³) for 1-bromo-8-(chloromethyl)naphthalene, glu301. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

C(11')	18(1)	17(1)	19(1)	-2(1)	3(1)	-1(1)

	Х	у	Z	U(eq)
H(1A)	4970	2831	-2473	21
H(1B)	4826	2261	-2551	21
H(1'A)	4775	347	7652	20
H(1'B)	4940	-221	7479	20
H(5'A)	2534	-1522	4697	23
H(5A)	2159	973	-11	25
H(6'A)	1184	-1336	2257	24
H(6A)	-358	1160	1335	21
H(7A)	-939	1948	1915	23
H(7'A)	570	-550	1662	22
H(9A)	-342	2781	1787	23
H(9'A)	690	285	2229	21
H(10A)	1249	3413	897	24
H(10B)	1596	921	3758	23
H(11A)	3576	3276	-714	24
H(11B)	3134	782	6097	22

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for 1-bromo-8-(chloromethyl)naphthalene, glu301.

-)	
Identification code	glu308
Empirical formula	C22 H22 Br O2 P
Formula weight	429.28
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Crystal color, habit	Colorless block
Space group	Pna2(1)
Unit cell dimensions	$a = 18.9410(7) \text{ Å}$ $\alpha = 90^{\circ}$
	$b = 17.6865(6) \text{ Å} \qquad \beta = 90^{\circ}$
	$c = 5.6269(2) \text{ Å}$ $\gamma = 90^{\circ}$
Volume	1885.01(12) Å ³
Z	4
Density (calculated)	1.513 g/cm ³
Absorption coefficient	2.279 mm ⁻¹
F(000)	880
Crystal size	0.34 x 0.30 x 0.26 mm ³
Theta range for data collection	1.58 to 25.41°
Index ranges	-22<=h<=21,-20<=k<=21,-6<=l<=6
Reflections collected	9974
Independent reflections	3251 [R(int) = 0.0271]
Completeness to theta = 25.00°	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.849 and 0.678
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3251 / 1 / 235
Goodness-of-fit on F ²	1.031
Final R indices [I>2sigma(I)]	R1 = 0.0262, wR2 = 0.0615
R indices (all data)	R1 = 0.0289, wR2 = 0.0629
Absolute structure parameter	0.003(7)
Largest diff. peak and hole	0.308 and -0.413 e Å ⁻³

Table 1. Crystal data and structure refinement for glu308, 1-Br-8-CH₂PPh(O)(O-*i*-Pr)-acenaphthene.

	Х	у	Z	U(eq)
Br(1)	3076(1)	7166(1)	5080(1)	29(1)
P(1)	1000(1)	7745(1)	6169(1)	13(1)
O(1)	1172(1)	7868(1)	3640(4)	18(1)
O(2)	723(1)	6918(1)	6814(3)	14(1)
C(1)	300(1)	8370(2)	7114(5)	14(1)
C(2)	118(1)	8971(2)	5662(4)	16(1)
C(3)	-424(1)	9459(2)	6308(5)	20(1)
C(4)	-789(2)	9337(2)	8384(5)	19(1)
C(5)	-614(1)	8743(2)	9867(6)	20(1)
C(6)	-61(1)	8259(2)	9241(5)	19(1)
C(7)	-309(2)	6155(2)	7144(5)	24(1)
C(8)	138(1)	6602(2)	5415(5)	17(1)
C(9)	435(2)	6131(2)	3426(5)	24(1)
C(10)	1730(1)	7838(1)	8203(5)	13(1)
C(11)	2087(1)	8589(2)	7743(4)	13(1)
C(12)	2583(1)	8723(2)	5863(5)	14(1)
C(13)	2970(1)	8220(2)	4381(5)	17(1)
C(14)	3363(2)	8465(2)	2477(5)	18(1)
C(15)	3438(1)	9235(2)	1943(5)	20(1)
C(16)	3141(1)	9753(2)	3424(5)	16(1)
C(17)	2724(1)	9495(1)	5336(5)	14(1)
C(18)	2447(1)	10105(2)	6654(5)	15(1)
C(19)	2020(1)	9961(2)	8544(5)	18(1)
C(20)	1841(1)	9199(2)	9045(5)	16(1)
C(21)	3156(2)	10609(2)	3429(5)	23(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å² x 10³) for glu308, 1-Br-8-CH₂PPh(O)(O-*i*-Pr)-acenaphthene. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(22)	2698(2)	10843(2)	5572(5)	20(1)

Br(1)-C(13)	1.915(3)	C(11)-C(20)	1.385(4)
P(1)-O(1)	1.476(2)	C(11)-C(12)	1.434(4)
P(1)-O(2)	1.5947(19)	C(12)-C(13)	1.423(4)
P(1)-C(10)	1.802(3)	C(12)-C(17)	1.423(4)
P(1)-C(1)	1.806(3)	C(13)-C(14)	1.376(4)
O(2)-C(8)	1.469(3)	C(14)-C(15)	1.401(4)
C(1)-C(2)	1.385(4)	C(15)-C(16)	1.362(4)
C(1)-C(6)	1.393(4)	C(16)-C(17)	1.411(4)
C(2)-C(3)	1.389(4)	C(16)-C(21)	1.513(4)
C(3)-C(4)	1.374(4)	C(17)-C(18)	1.411(4)
C(4)-C(5)	1.383(4)	C(18)-C(19)	1.360(4)
C(5)-C(6)	1.397(4)	C(18)-C(22)	1.516(4)
C(7)-C(8)	1.513(4)	C(19)-C(20)	1.419(4)
C(8)-C(9)	1.505(4)	C(21)-C(22)	1.543(4)
C(10)-C(11)	1.512(4)		
O(1)-P(1)-O(2)	115.28(11)	C(1)-C(2)-C(3)	120.5(3)
O(1)-P(1)-C(10)	115.44(13)	C(4)-C(3)-C(2)	119.7(3)
O(2)-P(1)-C(10)	101.10(11)	C(3)-C(4)-C(5)	120.8(3)
O(1)-P(1)-C(1)	110.82(13)	C(4)-C(5)-C(6)	119.6(3)
O(2)-P(1)-C(1)	104.60(11)	C(1)-C(6)-C(5)	119.9(3)
C(10)-P(1)-C(1)	108.65(12)	O(2)-C(8)-C(9)	109.1(2)
C(8)-O(2)-P(1)	118.39(16)	O(2)-C(8)-C(7)	106.1(2)
C(2)-C(1)-C(6)	119.5(2)	C(9)-C(8)-C(7)	113.4(2)
C(2)-C(1)-P(1)	118.7(2)	C(11)-C(10)-P(1)	108.34(17)
C(6)-C(1)-P(1)	121.8(2)	C(20)-C(11)-C(12)	118.8(3)

'able 3. Bond lengths [Å] and angles [deg] for glu308, 1-Br-8-CH ₂ PPh(O)(O- <i>i</i> -Pr)-acenaphthene.	

C(20)-C(11)-C(10)	116.3(2)	C(17)-C(16)-C(21)	109.5(2)
C(12)-C(11)-C(10)	124.4(2)	C(16)-C(17)-C(18)	111.1(2)
C(13)-C(12)-C(17)	112.4(2)	C(16)-C(17)-C(12)	125.1(3)
C(13)-C(12)-C(11)	131.8(3)	C(18)-C(17)-C(12)	123.7(3)
C(17)-C(12)-C(11)	115.8(2)	C(19)-C(18)-C(17)	119.2(3)
C(14)-C(13)-C(12)	122.6(3)	C(19)-C(18)-C(22)	131.4(3)
C(14)-C(13)-Br(1)	114.2(2)	C(17)-C(18)-C(22)	109.3(2)
C(12)-C(13)-Br(1)	122.83(19)	C(18)-C(19)-C(20)	118.5(3)
C(13)-C(14)-C(15)	121.9(3)	C(11)-C(20)-C(19)	123.7(3)
C(16)-C(15)-C(14)	118.8(3)	C(16)-C(21)-C(22)	105.0(2)
C(15)-C(16)-C(17)	118.7(3)	C(18)-C(22)-C(21)	105.0(2)
C(15)-C(16)-C(21)	131.8(3)		

	U ¹¹	U ²²	U ³³	U ²³	U^{13}	U ¹²
Br(1)	34(1)	15(1)	36(1)	0(1)	17(1)	3(1)
P(1)	11(1)	14(1)	13(1)	1(1)	1(1)	0(1)
O(1)	20(1)	20(1)	14(1)	2(1)	0(1)	0(1)
O(2)	14(1)	11(1)	16(1)	0(1)	-2(1)	-2(1)
C(1)	9(1)	14(2)	18(1)	-4(1)	-1(1)	-1(1)
C(2)	13(1)	17(2)	19(2)	1(1)	0(1)	0(1)
C(3)	20(2)	16(2)	26(2)	1(1)	-2(1)	1(1)
C(4)	11(1)	16(2)	30(2)	-8(1)	-2(1)	4(1)
C(5)	14(1)	26(2)	19(1)	-4(1)	4(1)	-1(1)
C(6)	15(2)	21(2)	21(1)	2(1)	1(1)	0(1)
C(7)	21(2)	30(2)	22(2)	3(1)	-1(1)	-11(1)
C(8)	11(1)	20(2)	21(2)	2(1)	-4(1)	-1(1)
C(9)	24(2)	27(2)	22(2)	-4(1)	-3(1)	-4(1)
C(10)	12(1)	14(2)	14(1)	-1(1)	2(1)	-1(1)
C(11)	9(1)	17(2)	14(1)	2(1)	-5(1)	0(1)
C(12)	8(1)	18(2)	17(1)	0(1)	-3(1)	0(1)
C(13)	13(1)	15(2)	22(2)	2(1)	1(1)	2(1)
C(14)	15(2)	20(2)	18(1)	-4(1)	3(1)	1(1)
C(15)	13(2)	28(2)	18(1)	4(1)	1(1)	-2(1)
C(16)	10(1)	18(2)	19(1)	1(1)	-1(1)	-1(1)
C(17)	9(1)	16(1)	17(1)	3(1)	-3(1)	1(1)
C(18)	11(1)	13(2)	21(2)	-1(1)	-3(1)	0(1)
C(19)	16(2)	17(2)	20(2)	-4(1)	-1(1)	2(1)
C(20)	10(2)	22(2)	15(1)	-1(1)	1(1)	-1(1)
C(21)	24(2)	21(2)	23(2)	6(1)	1(1)	-3(1)

Table 4. Anisotropic displacement parameters (Å² x 10³) for glu308, 1-Br-8-CH₂PPh(O)(O-*i*-Pr)-acenaphthene. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

C(22)	18(2)	13(2)	30(2)	0(1)	0(1)	-1(1)

	X	у	Z	U(eq)
H(2A)	360	9049	4245	19
H(3A)	-539	9867	5339	24
H(4A)	-1158	9658	8796	23
H(5A)	-862	8665	11271	24
H(6A)	65	7863	10243	23
H(7A)	-482	6485	8365	36
H(7B)	-28	5763	7849	36
H(7C)	-700	5933	6314	36
H(8A)	-144	7016	4748	21
H(9A)	713	6445	2395	36
H(9B)	56	5909	2538	36
H(9C)	727	5738	4075	36
H(10A)	1561	7817	9829	16
H(10B)	2062	7428	7967	16
H(14A)	3586	8110	1516	22
H(15A)	3687	9388	602	24
H(19A)	1850	10353	9486	21
H(20A)	1541	9103	10319	19
H(21A)	2962	10808	1962	27
H(21B)	3636	10793	3611	27
H(22A)	2973	11130	6710	25
H(22B)	2300	11147	5059	25

Table 5. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å² x 10³) for glu308, 1-Br-8-CH₂PPh(O)(O-*i*-Pr)-acenaphthene.

Sample GLU314 code reference mage302

Data collected on July 5, 2009

A colorless crystal of sample GLU314 (mag-e302) was mounted on a Cryoloop with Paratone-N oil. Data were collected on a Bruker APEX II CCD systems using Mo K alpha radiation in a nitrogen gas stream at 100(2) K using phi and omega scans. Crystal-to-detector distance was 60 mm and exposure time was 10 seconds per frame using a scan width of 0.5° . Indexing and unit cell refinement indicated a primitive, monoclinic lattice with space group of P2₁. The data were integrated using the Bruker SHELXTL software program and scaled using the SADABS software program. Solution by direct methods (SHELXS) and all non-hydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-97). Structural solution indicated a racemic twin (roughly BASF value of 0.472). Hydrogen atom on P1 was found from a Fourier difference map and was set using a DFIX command. Attempts to solve structure under a triclinic space group P1 indicated either error message of wrong structure – try racemic twin. Best solution was found using P2₁ with twin command.

Table 1. Crystal data and structure refinement for	5-DI-6-CI12I III II-accinapitutiene	, GL0514.	
Identification code	glu314		
Empirical formula	C19 H16 Br P		
Formula weight	355.20		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Crystal color/habit	colorless/block		
Space group	P2(1)		
Unit cell dimensions	a = 10.217(3) Å	$\alpha = 90^{\circ}$	
	b = 6.9781(19) Å	β=101.873(3)°	
	c = 10.816(3) Å	$\gamma = 90^{\circ}$	
Volume	754.6(4) Å ³		
Z	2		
Density (calculated)	1.563 Mg/m ³		
Absorption coefficient	2.820 mm ⁻¹		
F(000)	360		
Crystal size	0.25 x 0.20 x 0.10 mm ³		
Theta range for data collection	1.92 to 27.93°.		
Index ranges	-13<=h<=13, -8<=k<=9, -14<	<=l<=13	
Reflections collected	11849		
Independent reflections	3365 [R(int) = 0.0711]		
Completeness to theta = 25.00°	100.0 %		
Absorption correction	multi-scan		
Max. and min. transmission	0.7657 and 0.5391		
Refinement method	Full-matrix least-squares on I	72	
Data / restraints / parameters	3365 / 2 / 194		
Goodness-of-fit on F ²	1.003		
Final R indices [I>2sigma(I)]	R1 = 0.0391, $wR2 = 0.0852$		
R indices (all data)	R1 = 0.0482, wR2 = 0.0888		
Absolute structure parameter	0.00(19) – found racemic twin		
Largest diff. peak and hole	0.767 and -0.666 e.Å ⁻³		

Table 1. Crystal data and structure refinement for 5-Br-6-CH₂PHPh-acenaphthene, GLU314.

	Х	у	Z	U(eq)
Br(1)	4980(1)	7580(1)	2658(1)	26(1)
P(1)	6589(1)	4361(2)	4937(1)	24(1)
C(1)	6602(4)	3248(5)	2389(3)	19(1)
C(2)	7358(4)	1651(6)	2267(4)	22(1)
C(3)	8111(4)	1433(6)	1307(4)	22(1)
C(4)	8087(3)	2861(7)	459(3)	22(1)
C(5)	7339(4)	4525(6)	573(3)	20(1)
C(6)	6608(3)	4813(6)	1535(3)	20(1)
C(7)	5957(4)	6642(6)	1449(4)	21(1)
C(8)	6014(4)	7913(6)	503(3)	25(1)
C(9)	6738(3)	7541(9)	-444(3)	24(1)
C(10)	7410(4)	5845(6)	-399(3)	22(1)
C(11)	8255(4)	5023(6)	-1255(4)	26(1)
C(12)	8734(4)	3054(7)	-673(4)	32(1)
C(13)	5798(4)	3217(6)	3420(3)	21(1)
C(14)	7915(3)	2650(8)	5562(3)	21(1)
C(15)	9237(4)	3273(6)	5976(3)	25(1)
C(16)	10211(4)	2022(6)	6577(4)	28(1)
C(17)	9893(4)	141(7)	6755(4)	29(1)
C(18)	8590(4)	-508(7)	6345(4)	28(1)
C(19)	7612(4)	773(6)	5764(4)	26(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å² x 10³) for 5-Br-6-CH₂PHPh-acenaphthene, GLU314. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Br(1)-C(7)	1.916(4)	C(9)-H(9A)	0.9500
P(1)-C(14)	1.827(5)	C(10)-C(11)	1.504(5)
P(1)-C(13)	1.854(4)	C(11)-C(12)	1.548(6)
P(1)-H(1)	1.285(19)	C(11)-H(11A)	0.9900
C(1)-C(2)	1.378(5)	C(11)-H(11B)	0.9900
C(1)-C(6)	1.432(5)	C(12)-H(12A)	0.9900
C(1)-C(13)	1.515(5)	C(12)-H(12B)	0.9900
C(2)-C(3)	1.422(5)	C(13)-H(13A)	0.9900
C(2)-H(2A)	0.9500	C(13)-H(13B)	0.9900
C(3)-C(4)	1.350(6)	C(14)-C(19)	1.373(7)
C(3)-H(3A)	0.9500	C(14)-C(15)	1.402(5)
C(4)-C(5)	1.410(6)	C(15)-C(16)	1.382(5)
C(4)-C(12)	1.513(5)	C(15)-H(15A)	0.9500
C(5)-C(10)	1.411(6)	C(16)-C(17)	1.376(6)
C(5)-C(6)	1.414(5)	C(16)-H(16A)	0.9500
C(6)-C(7)	1.433(5)	C(17)-C(18)	1.389(6)
C(7)-C(8)	1.364(6)	C(17)-H(17A)	0.9500
C(8)-C(9)	1.406(5)	C(18)-C(19)	1.390(6)
C(8)-H(8A)	0.9500	C(18)-H(18A)	0.9500
C(9)-C(10)	1.364(7)	C(19)-H(19A)	0.9500
C(14)-P(1)-C(13)	101.60(17)	C(1)-C(2)-H(2A)	118.2
C(14)-P(1)-H(1)	98(2)	C(3)-C(2)-H(2A)	118.2
C(13)-P(1)-H(1)	103.0(19)	C(4)-C(3)-C(2)	118.7(4)
C(2)-C(1)-C(6)	118.6(3)	C(4)-C(3)-H(3A)	120.7
C(2)-C(1)-C(13)	117.3(3)	C(2)-C(3)-H(3A)	120.7
C(6)-C(1)-C(13)	124.1(3)	C(3)-C(4)-C(5)	118.9(3)
C(1)-C(2)-C(3)	123.7(4)	C(3)-C(4)-C(12)	131.7(4)

Table 3. Bond lengths [Å] and angles [deg] for 5-Br-6-CH₂PHPh-acenaphthene, GLU314.

C(5)-C(4)-C(12)	109.4(4)	C(4)-C(12)-H(12B)	110.8
C(4)-C(5)-C(10)	111.2(3)	C(11)-C(12)-H(12B)	110.8
C(4)-C(5)-C(6)	124.0(4)	H(12A)-C(12)-H(12B)	108.9
C(10)-C(5)-C(6)	124.8(4)	C(1)-C(13)-P(1)	116.2(2)
C(5)-C(6)-C(1)	116.1(4)	C(1)-C(13)-H(13A)	108.2
C(5)-C(6)-C(7)	112.8(4)	P(1)-C(13)-H(13A)	108.2
C(1)-C(6)-C(7)	131.1(3)	C(1)-C(13)-H(13B)	108.2
C(8)-C(7)-C(6)	122.5(4)	P(1)-C(13)-H(13B)	108.2
C(8)-C(7)-Br(1)	113.5(3)	H(13A)-C(13)-H(13B)	107.4
C(6)-C(7)-Br(1)	124.1(3)	C(19)-C(14)-C(15)	118.6(4)
C(7)-C(8)-C(9)	122.4(4)	C(19)-C(14)-P(1)	120.5(3)
C(7)-C(8)-H(8A)	118.8	C(15)-C(14)-P(1)	120.5(4)
C(9)-C(8)-H(8A)	118.8	C(16)-C(15)-C(14)	120.5(4)
C(10)-C(9)-C(8)	118.1(4)	C(16)-C(15)-H(15A)	119.7
C(10)-C(9)-H(9A)	121.0	C(14)-C(15)-H(15A)	119.7
C(8)-C(9)-H(9A)	121.0	C(17)-C(16)-C(15)	120.0(4)
C(9)-C(10)-C(5)	119.4(3)	C(17)-C(16)-H(16A)	120.0
C(9)-C(10)-C(11)	131.1(4)	C(15)-C(16)-H(16A)	120.0
C(5)-C(10)-C(11)	109.5(4)	C(16)-C(17)-C(18)	120.3(4)
C(10)-C(11)-C(12)	105.2(3)	С(16)-С(17)-Н(17А)	119.8
C(10)-C(11)-H(11A)	110.7	C(18)-C(17)-H(17A)	119.8
C(12)-C(11)-H(11A)	110.7	C(19)-C(18)-C(17)	119.1(4)
C(10)-C(11)-H(11B)	110.7	C(19)-C(18)-H(18A)	120.4
C(12)-C(11)-H(11B)	110.7	C(17)-C(18)-H(18A)	120.4
H(11A)-C(11)-H(11B)	108.8	C(14)-C(19)-C(18)	121.4(4)
C(4)-C(12)-C(11)	104.7(3)	C(14)-C(19)-H(19A)	119.3
C(4)-C(12)-H(12A)	110.8	C(18)-C(19)-H(19A)	119.3
C(11)-C(12)-H(12A)	110.8		

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br(1)	22(1)	31(1)	24(1)	1(1)	5(1)	6(1)
P(1)	23(1)	31(1)	16(1)	-2(1)	-1(1)	6(1)
C(1)	11(2)	29(2)	14(2)	-5(1)	-5(1)	-5(2)
C(2)	15(2)	28(2)	20(2)	0(2)	-3(2)	-3(2)
C(3)	12(2)	27(2)	24(2)	-6(2)	1(2)	-3(2)
C(4)	14(2)	36(3)	17(2)	-7(2)	1(1)	-4(2)
C(5)	12(2)	31(2)	16(2)	-7(2)	-3(2)	-5(2)
C(6)	10(2)	30(2)	17(2)	-3(2)	-3(1)	-4(2)
C(7)	18(2)	32(2)	14(2)	-4(2)	0(2)	0(2)
C(8)	17(2)	32(3)	20(2)	0(2)	-5(1)	-3(2)
C(9)	20(2)	35(2)	13(2)	3(3)	-2(1)	-5(3)
C(10)	14(2)	38(2)	12(2)	-3(2)	-4(1)	-4(2)
C(11)	17(2)	41(3)	19(2)	-2(2)	2(2)	-5(2)
C(12)	24(2)	48(3)	26(2)	-7(2)	6(2)	-1(2)
C(13)	16(2)	29(2)	16(2)	2(2)	0(1)	-1(2)
C(14)	20(2)	30(2)	11(1)	-3(2)	1(1)	1(2)
C(15)	25(2)	33(2)	16(2)	-1(2)	3(2)	3(2)
C(16)	17(2)	46(3)	18(2)	-5(2)	-1(2)	2(2)
C(17)	23(2)	41(3)	20(2)	1(2)	-3(2)	14(2)
C(18)	35(2)	31(2)	17(2)	1(2)	2(2)	4(2)
C(19)	21(2)	35(2)	21(2)	-3(2)	3(2)	1(2)

Table 4. Anisotropic displacement parameters (Å² x 10³) for 5-Br-6-CH₂PHPh-acenaphthene, GLU314. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}$]

	Х	У	Z	U(eq)
H(1)	7330(40)	5660(50)	4600(40)	36
H(2A)	7376	637	2857	26
H(3A)	8621	307	1263	26
H(8A)	5546	9093	484	29
H(9A)	6760	8445	-1096	28
H(11A)	9028	5868	-1282	32
H(11B)	7723	4867	-2123	32
H(12A)	8442	2009	-1286	39
H(12B)	9721	3020	-411	39
H(13A)	5601	1865	3591	25
H(13B)	4932	3862	3096	25
H(15A)	9465	4566	5843	29
H(16A)	11102	2461	6867	33
H(17A)	10567	-719	7160	35
H(18A)	8370	-1809	6461	34
H(19A)	6717	340	5500	31

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for 5-Br-6-CH₂PHPh-acenaphthene, GLU314.

ruble 1. Crystal and structure formement for [1		ar nos)][1 1 6], gr
Identification code	glu388	
Empirical formula	C43 H48 F6 P4 Pt	
Formula weight	997.78	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P2(1)2(1)2(1)	
Unit cell dimensions	a = 12.5232(4) Å	α= 90°
	b = 15.3824(5) Å	β= 90°
	c = 20.9494(6) Å	$\gamma = 90^{\circ}$
Volume	4035.6(2) Å ³	
Z	4	
Density (calculated)	1.642 g/cm^3	
Absorption coefficient	3.694 mm ⁻¹	
F(000)	1992	
Crystal size	0.38 x 0.36 x 0.32 mm ³	
Theta range for data collection	2.31 to 26.43°	
Index ranges	-14<=h<=15, -19<=k<=19, -2	2<=1<=26
Reflections collected	50401	
Independent reflections	8283 [R(int) = 0.0513]	
Completeness to theta = 25.00°	99.9 %	
Absorption correction	Multi-scan	
Max. and min. transmission	0.3844 and 0.3342	
Refinement method	Full-matrix least-squares on F	2
Data / restraints / parameters	8283 / 0 / 488	
Goodness-of-fit on F ²	0.911	
Final R indices [I>2sigma(I)]	R1 = 0.0198, wR2 = 0.0387	
R indices (all data)	R1 = 0.0226, $wR2 = 0.0394$	
Absolute structure parameter	0.000(3)	
Extinction coefficient	0.00025(3)	
Largest diff. peak and hole	0.454 and -0.341 e Å $^{\text{-3}}$	

Table 1. Crystal data and structure refinement for $[Pt(R,R)-Me-DuPhos)(Ph)(Ph-PyraPhos)][PF_6]$, glu388.

	X	у	Z	U(eq)
Pt(1)	7586(1)	1512(1)	6837(1)	9(1)
P(1)	7974(1)	1819(1)	5795(1)	11(1)
P(2)	7204(1)	2951(1)	6941(1)	11(1)
P(3)	8103(1)	79(1)	6915(1)	12(1)
F(1)	6524(2)	2910(1)	2701(1)	39(1)
F(2)	8417(2)	3818(2)	3467(1)	38(1)
F(3)	8322(2)	2826(2)	2679(1)	43(1)
F(4)	7506(2)	4122(1)	2558(1)	37(1)
F(5)	7447(2)	2604(1)	3603(1)	34(1)
F(6)	6626(2)	3909(2)	3488(1)	44(1)
C(1)	7701(2)	2971(2)	5657(1)	11(1)
C(2)	7819(2)	3357(2)	5052(1)	15(1)
C(3)	7591(2)	4227(2)	4967(1)	18(1)
C(4)	7256(2)	4722(2)	5481(1)	18(1)
C(5)	7151(2)	4357(2)	6077(1)	15(1)
C(6)	7364(2)	3476(2)	6166(1)	12(1)
C(7)	5913(2)	3280(2)	7288(1)	15(1)
C(8)	5047(2)	3486(2)	6807(2)	23(1)
C(9)	6200(3)	3999(2)	7773(2)	21(1)
C(10)	7286(3)	3774(2)	8054(1)	22(1)
C(11)	8049(2)	3569(2)	7502(1)	18(1)
C(12)	9098(2)	3127(2)	7667(2)	22(1)
C(13)	9273(2)	1554(2)	5429(2)	25(1)
C(14)	10107(3)	2259(3)	5447(2)	51(1)
C(15)	8999(3)	1187(3)	4772(2)	46(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å² x 10³) for [Pt(*R*,*R*)-Me-DuPhos)(Ph)(Ph-PyraPhos)][PF₆], glu388. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(16)	7979(3)	659(2)	4846(2)	42(1)
C(17)	7167(3)	1223(2)	5193(1)	22(1)
C(18)	6202(3)	743(3)	5465(2)	45(1)
C(19)	6862(2)	1288(2)	7718(1)	12(1)
C(20)	7321(3)	1335(2)	8321(1)	16(1)
C(21)	6725(3)	1222(2)	8873(2)	22(1)
C(22)	5644(3)	1045(2)	8840(2)	21(1)
C(23)	5161(2)	991(2)	8246(2)	20(1)
C(24)	5760(2)	1114(2)	7697(1)	15(1)
C(25)	6950(2)	-683(2)	6925(1)	17(1)
C(26)	7217(2)	-1403(2)	6460(1)	13(1)
C(27)	6657(2)	-2139(2)	6319(2)	18(1)
C(28)	7072(3)	-2780(2)	5882(2)	19(1)
C(29)	8042(3)	-2665(2)	5609(2)	19(1)
C(30)	8747(3)	-3187(2)	5153(2)	27(1)
C(31)	9810(3)	-2672(2)	5112(2)	28(1)
C(32)	9644(2)	-1861(2)	5499(2)	18(1)
C(33)	10258(2)	-1157(2)	5660(1)	15(1)
C(34)	9862(2)	-499(2)	6076(1)	14(1)
C(35)	8845(2)	-554(2)	6326(1)	12(1)
C(36)	8217(2)	-1277(2)	6172(1)	12(1)
C(37)	8613(2)	-1911(2)	5757(1)	15(1)
C(38)	8883(2)	-58(2)	7638(1)	14(1)
C(39)	9729(2)	507(2)	7738(2)	20(1)
C(40)	10339(2)	458(2)	8284(2)	27(1)
C(41)	10097(3)	-169(3)	8739(2)	30(1)
C(42)	9267(3)	-734(2)	8638(2)	30(1)
C(43)	8667(2)	-689(2)	8090(2)	22(1)
P(4)	7470(1)	3364(1)	3080(1)	20(1)

Pt(1)-C(19)	2.086(3)	C(10)-C(11)	1.533(4)
Pt(1)-P(2)	2.2747(7)	C(11)-C(12)	1.519(4)
Pt(1)-P(1)	2.2859(7)	C(13)-C(14)	1.506(5)
Pt(1)-P(3)	2.3030(7)	C(13)-C(15)	1.527(5)
P(1)-C(1)	1.828(3)	C(15)-C(16)	1.521(5)
P(1)-C(13)	1.844(3)	C(16)-C(17)	1.521(5)
P(1)-C(17)	1.859(3)	C(17)-C(18)	1.527(5)
P(2)-C(6)	1.824(3)	C(19)-C(20)	1.388(4)
P(2)-C(11)	1.844(3)	C(19)-C(24)	1.406(4)
P(2)-C(7)	1.845(3)	C(20)-C(21)	1.388(4)
P(3)-C(38)	1.815(3)	C(21)-C(22)	1.383(5)
P(3)-C(35)	1.825(3)	C(22)-C(23)	1.384(4)
P(3)-C(25)	1.861(3)	C(23)-C(24)	1.387(4)
F(1)-P(4)	1.589(2)	C(25)-C(26)	1.513(4)
F(2)-P(4)	1.597(2)	C(26)-C(27)	1.365(4)
F(3)-P(4)	1.590(2)	C(26)-C(36)	1.403(4)
F(4)-P(4)	1.5979(17)	C(27)-C(28)	1.442(4)
F(5)-P(4)	1.6038(17)	C(28)-C(29)	1.354(4)
F(6)-P(4)	1.597(2)	C(29)-C(37)	1.398(4)
C(1)-C(6)	1.387(4)	C(29)-C(30)	1.529(4)
C(1)-C(2)	1.407(4)	C(30)-C(31)	1.552(4)
C(2)-C(3)	1.380(4)	C(31)-C(32)	1.502(4)
C(3)-C(4)	1.383(4)	C(32)-C(33)	1.370(4)
C(4)-C(5)	1.375(4)	C(32)-C(37)	1.402(4)
C(5)-C(6)	1.394(4)	C(33)-C(34)	1.425(4)
C(7)-C(8)	1.514(4)	C(34)-C(35)	1.379(4)
C(7)-C(9)	1.544(4)	C(35)-C(36)	1.400(4)
C(9)-C(10)	1.523(4)	C(36)-C(37)	1.398(4)

Table 3. Bond lengths [Å] and angles [deg] for $[Pt(R,R)-Me-DuPhos)(Ph)(Ph-PyraPhos)][PF_6]$, glu388.

C(38)-C(43)	1.383(4)	C(40)-C(41)	1.390(5)
C(38)-C(39)	1.386(4)	C(41)-C(42)	1.371(5)
C(39)-C(40)	1.377(4)	C(42)-C(43)	1.374(4)
C(19)-Pt(1)-P(2)	89.16(8)	C(2)-C(1)-P(1)	122.2(2)
C(19)-Pt(1)-P(1)	166.38(8)	C(3)-C(2)-C(1)	120.2(3)
P(2)-Pt(1)-P(1)	86.27(3)	C(2)-C(3)-C(4)	119.8(3)
C(19)-Pt(1)-P(3)	84.34(8)	C(5)-C(4)-C(3)	120.7(3)
P(2)-Pt(1)-P(3)	169.63(3)	C(4)-C(5)-C(6)	120.1(3)
P(1)-Pt(1)-P(3)	101.83(3)	C(1)-C(6)-C(5)	120.0(2)
C(1)-P(1)-C(13)	108.22(15)	C(1)-C(6)-P(2)	118.1(2)
C(1)-P(1)-C(17)	105.57(13)	C(5)-C(6)-P(2)	122.0(2)
C(13)-P(1)-C(17)	95.04(15)	C(8)-C(7)-C(9)	117.0(3)
C(1)-P(1)-Pt(1)	108.19(9)	C(8)-C(7)-P(2)	115.0(2)
C(13)-P(1)-Pt(1)	122.66(11)	C(9)-C(7)-P(2)	104.6(2)
C(17)-P(1)-Pt(1)	115.55(11)	C(10)-C(9)-C(7)	107.4(2)
C(6)-P(2)-C(11)	106.01(13)	C(9)-C(10)-C(11)	108.2(2)
C(6)-P(2)-C(7)	108.99(13)	C(12)-C(11)-C(10)	117.3(3)
C(11)-P(2)-C(7)	96.35(14)	C(12)-C(11)-P(2)	114.2(2)
C(6)-P(2)-Pt(1)	108.83(9)	C(10)-C(11)-P(2)	103.2(2)
C(11)-P(2)-Pt(1)	116.20(10)	C(14)-C(13)-C(15)	116.5(3)
C(7)-P(2)-Pt(1)	119.28(10)	C(14)-C(13)-P(1)	116.2(3)
C(38)-P(3)-C(35)	103.15(13)	C(15)-C(13)-P(1)	105.0(2)
C(38)-P(3)-C(25)	109.56(14)	C(16)-C(15)-C(13)	107.1(3)
C(35)-P(3)-C(25)	93.81(13)	C(15)-C(16)-C(17)	107.8(3)
C(38)-P(3)-Pt(1)	108.72(10)	C(16)-C(17)-C(18)	115.6(3)
C(35)-P(3)-Pt(1)	127.33(10)	C(16)-C(17)-P(1)	104.0(2)
C(25)-P(3)-Pt(1)	112.73(10)	C(18)-C(17)-P(1)	114.5(2)
C(6)-C(1)-C(2)	119.2(3)	C(20)-C(19)-C(24)	116.5(3)
C(6)-C(1)-P(1)	118.6(2)	C(20)-C(19)-Pt(1)	127.9(2)

C(24)-C(19)-Pt(1)	115.5(2)	C(35)-C(36)-C(26)	120.8(3)
C(21)-C(20)-C(19)	121.9(3)	C(36)-C(37)-C(29)	122.3(3)
C(22)-C(21)-C(20)	120.6(3)	C(36)-C(37)-C(32)	122.0(3)
C(21)-C(22)-C(23)	119.0(3)	C(29)-C(37)-C(32)	115.5(3)
C(22)-C(23)-C(24)	120.1(3)	C(43)-C(38)-C(39)	119.1(3)
C(23)-C(24)-C(19)	122.0(3)	C(43)-C(38)-P(3)	123.2(3)
C(26)-C(25)-P(3)	106.39(19)	C(39)-C(38)-P(3)	117.7(2)
C(27)-C(26)-C(36)	118.7(3)	C(40)-C(39)-C(38)	121.0(3)
C(27)-C(26)-C(25)	129.3(3)	C(39)-C(40)-C(41)	119.2(3)
C(36)-C(26)-C(25)	111.9(3)	C(42)-C(41)-C(40)	119.9(3)
C(26)-C(27)-C(28)	121.3(3)	C(41)-C(42)-C(43)	120.8(3)
C(29)-C(28)-C(27)	120.1(3)	C(42)-C(43)-C(38)	120.0(3)
C(28)-C(29)-C(37)	118.3(3)	F(1)-P(4)-F(3)	90.43(11)
C(28)-C(29)-C(30)	135.5(3)	F(1)-P(4)-F(6)	90.22(13)
C(37)-C(29)-C(30)	106.2(3)	F(3)-P(4)-F(6)	179.33(13)
C(29)-C(30)-C(31)	105.2(3)	F(1)-P(4)-F(2)	179.43(13)
C(32)-C(31)-C(30)	106.0(3)	F(3)-P(4)-F(2)	89.90(12)
C(33)-C(32)-C(37)	117.7(3)	F(6)-P(4)-F(2)	89.44(11)
C(33)-C(32)-C(31)	135.4(3)	F(1)-P(4)-F(4)	90.02(12)
C(37)-C(32)-C(31)	106.8(3)	F(3)-P(4)-F(4)	89.99(12)
C(32)-C(33)-C(34)	121.1(3)	F(6)-P(4)-F(4)	90.15(12)
C(35)-C(34)-C(33)	120.7(3)	F(2)-P(4)-F(4)	90.44(12)
C(34)-C(35)-C(36)	118.7(3)	F(1)-P(4)-F(5)	90.41(12)
C(34)-C(35)-P(3)	133.9(2)	F(3)-P(4)-F(5)	89.65(12)
C(36)-C(35)-P(3)	107.1(2)	F(6)-P(4)-F(5)	90.21(12)
C(37)-C(36)-C(35)	119.9(3)	F(2)-P(4)-F(5)	89.13(12)
C(37)-C(36)-C(26)	119.2(3)	F(4)-P(4)-F(5)	179.44(14)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Pt(1)	10(1)	9(1)	9(1)	-1(1)	1(1)	0(1)
P(1)	13(1)	11(1)	10(1)	-1(1)	1(1)	2(1)
P(2)	13(1)	10(1)	10(1)	-1(1)	2(1)	0(1)
P(3)	13(1)	10(1)	13(1)	-1(1)	2(1)	-1(1)
F(1)	41(1)	32(1)	44(2)	4(1)	-21(1)	-13(1)
F(2)	35(1)	46(2)	33(1)	-8(1)	-9(1)	-13(1)
F(3)	46(2)	60(2)	23(1)	-10(1)	3(1)	28(1)
F(4)	45(1)	28(1)	37(1)	11(1)	-6(1)	-4(1)
F(5)	48(1)	30(1)	24(1)	5(1)	-7(1)	-2(1)
F(6)	40(1)	46(2)	45(2)	-10(1)	11(1)	19(1)
C(1)	7(2)	13(1)	13(1)	0(1)	2(1)	2(1)
C(2)	15(2)	18(2)	11(1)	-2(1)	-1(1)	2(1)
C(3)	17(2)	21(2)	16(1)	3(1)	0(2)	-1(2)
C(4)	21(2)	12(1)	22(2)	4(1)	-3(1)	4(1)
C(5)	16(2)	14(2)	16(2)	-3(1)	3(1)	1(1)
C(6)	10(1)	14(1)	13(1)	0(1)	-1(1)	-5(2)
C(7)	18(2)	10(2)	17(2)	-1(1)	9(1)	5(1)
C(8)	16(2)	26(2)	27(2)	-4(2)	6(2)	4(2)
C(9)	28(2)	20(2)	16(2)	-5(1)	8(2)	6(2)
C(10)	35(2)	16(1)	16(2)	-5(1)	4(2)	0(1)
C(11)	26(2)	14(2)	14(2)	1(1)	1(1)	-6(2)
C(12)	20(2)	25(2)	23(2)	-2(2)	-4(2)	-7(2)
C(13)	25(2)	25(2)	25(2)	10(2)	14(1)	14(2)
C(14)	19(2)	47(3)	88(3)	35(3)	20(2)	8(2)
C(15)	70(3)	48(3)	20(2)	5(2)	22(2)	41(2)

Table 4. Anisotropic displacement parameters $(Å^2 \ge 10^3)$ for $[Pt(R,R)-Me-DuPhos)(Ph)(Ph-PyraPhos)][PF_6]$, glu388. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2 a^{*2}U^{11} + ... + 2hk a^* b^* U^{12}]$

C(16)	82(3)	24(2)	20(2)	-9(2)	-16(2)	26(2)
C(17)	38(2)	14(2)	16(2)	-2(1)	-8(2)	-1(2)
C(18)	56(3)	40(3)	40(2)	12(2)	-31(2)	-31(2)
C(19)	16(2)	7(2)	13(2)	1(1)	5(1)	2(1)
C(20)	16(2)	15(2)	18(2)	2(1)	0(1)	6(1)
C(21)	38(2)	16(2)	13(2)	2(1)	3(2)	9(2)
C(22)	28(2)	15(2)	19(2)	8(1)	12(2)	4(2)
C(23)	19(2)	13(2)	28(2)	-1(2)	11(2)	-1(1)
C(24)	19(2)	12(2)	14(2)	0(1)	0(1)	0(1)
C(25)	15(2)	17(2)	20(2)	1(1)	5(1)	-5(1)
C(26)	14(2)	13(2)	12(2)	1(1)	0(1)	3(1)
C(27)	17(2)	15(2)	22(2)	3(1)	1(2)	-2(1)
C(28)	16(2)	17(2)	24(2)	-3(2)	-2(2)	-4(1)
C(29)	27(2)	11(2)	18(2)	-2(1)	4(2)	1(1)
C(30)	35(2)	17(2)	30(2)	-8(2)	9(2)	0(2)
C(31)	33(2)	21(2)	29(2)	-4(2)	13(2)	1(2)
C(32)	22(2)	16(2)	15(2)	3(1)	3(1)	4(1)
C(33)	15(2)	18(2)	11(2)	6(1)	5(1)	4(1)
C(34)	18(2)	13(2)	12(2)	6(1)	2(1)	2(1)
C(35)	14(2)	12(2)	11(2)	5(1)	-1(1)	1(1)
C(36)	16(2)	11(2)	10(2)	3(1)	-2(1)	1(1)
C(37)	18(2)	11(2)	17(2)	3(1)	0(1)	1(1)
C(38)	15(2)	17(2)	12(2)	1(1)	4(1)	7(1)
C(39)	18(2)	25(2)	17(2)	6(2)	1(1)	3(2)
C(40)	15(2)	41(2)	24(2)	0(2)	-1(2)	1(2)
C(41)	23(2)	56(3)	12(2)	1(2)	-3(2)	12(2)
C(42)	35(2)	36(2)	17(2)	10(2)	5(2)	9(2)
C(43)	23(2)	22(2)	21(2)	2(2)	4(2)	5(1)
P(4)	20(1)	20(1)	20(1)	-3(1)	-1(1)	3(1)
	Х	у	Z	U(eq)		
--------	-------	------	------	-------		
H(2A)	8056	3018	4701	18		
H(3A)	7664	4486	4558	21		
H(4A)	7096	5321	5421	22		
H(5A)	6934	4706	6428	18		
H(7A)	5651	2773	7543	18		
H(8A)	4390	3646	7032	35		
H(8B)	4913	2974	6541	35		
H(8C)	5277	3971	6537	35		
H(9A)	6229	4572	7557	26		
H(9B)	5655	4027	8115	26		
H(10A)	7223	3263	8339	27		
H(10B)	7563	4269	8306	27		
H(11A)	8228	4133	7291	21		
H(12A)	9501	3493	7964	34		
H(12B)	9516	3040	7276	34		
H(12C)	8953	2563	7866	34		
H(13A)	9571	1059	5681	30		
H(14A)	10761	2051	5241	77		
H(14B)	10260	2413	5891	77		
H(14C)	9842	2773	5220	77		
H(15A)	8890	1665	4462	55		
H(15B)	9586	812	4615	55		
H(16A)	8123	124	5094	51		
H(16B)	7701	489	4421	51		
H(17A)	6893	1660	4880	27		

Table 5. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å² x 10³) for [Pt(R,R)-Me-DuPhos)(Ph)(Ph-PyraPhos)][PF₆], glu388.

H(18A)	5821	447	5119	68
H(18B)	5723	1160	5673	68
H(18C)	6443	313	5779	68
H(20A)	8065	1448	8356	19
H(21A)	7063	1268	9278	26
H(22A)	5239	961	9218	25
H(23A)	4419	869	8216	24
H(24A)	5415	1081	7294	18
H(25A)	6844	-923	7359	20
H(25B)	6288	-380	6793	20
H(27A)	5981	-2232	6512	22
H(28A)	6664	-3284	5785	23
H(30A)	8408	-3234	4728	33
H(30B)	8872	-3780	5322	33
H(31A)	10406	-3020	5288	33
H(31B)	9976	-2524	4663	33
H(33A)	10959	-1106	5490	18
H(34A)	10302	-18	6183	17
H(39A)	9891	934	7425	24
H(40A)	10917	847	8348	32
H(41A)	10507	-206	9120	36
H(42A)	9105	-1161	8950	35
H(43A)	8104	-1092	8022	27

Table 1. Crystal data and structure refinement for r	11-1 ylai 1105(D113), glu391.	
Identification code	glu391	
Empirical formula	C19 H18 B P	
Molecular formula	C19 H18 B P	
Formula weight	288.11	
Temperature	100 K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C 1 2/c 1	
Unit cell dimensions	a = 27.795(3) Å	α= 90°.
	b = 6.3966(7) Å	β= 91.000(7)°.
	c = 17.4407(17) Å	$\gamma = 90^{\circ}$.
Volume	3100.3(5) Å ³	
Z	8	
Density (calculated)	1.235 Mg/m ³	
Absorption coefficient	0.167 mm ⁻¹	
F(000)	1216	
Crystal size	0.40 x 0.35 x 0.10 mm ³	
Crystal color, habit	Colorless blade	
Theta range for data collection	2.736 to 28.311°.	
Index ranges	-35<=h<=36, -8<=k<=7, -23<=	=1<=23
Reflections collected	12047	
Independent reflections	3852 [R(int) = 0.0384]	
Completeness to theta = 26.000°	99.9 %	
Absorption correction	Semi-empirical from equivalen	ts
Max. and min. transmission	0.7457 and 0.6835	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3852 / 41 / 249	
Goodness-of-fit on F ²	1.025	
Final R indices [I>2sigma(I)]	R1 = 0.0438, wR2 = 0.1015	
R indices (all data)	R1 = 0.0653, wR2 = 0.1123	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.289 and -0.234 e.Å ⁻³	

Table 1. Crystal data and structure refinement for Ph-PyraPhos(BH₃), glu391.

	X	у	Z	U(eq)
P(1)	4005(1)	2608(1)	8526(1)	20(1)
C(1)	3609(1)	4491(3)	8073(1)	21(1)
C(2)	3379(1)	6269(3)	8324(1)	28(1)
C(3)	3050(2)	7385(9)	7830(3)	33(1)
C(4)	2964(1)	6715(3)	7101(1)	30(1)
C(5)	2647(1)	7447(3)	6434(1)	38(1)
C(6)	2743(1)	5882(5)	5758(2)	38(1)
C(7)	3085(1)	4260(3)	6102(1)	27(1)
C(8)	3286(1)	2452(4)	5836(1)	31(1)
C(9)	3606(1)	1265(5)	6328(1)	28(1)
C(10)	3728(1)	1929(3)	7056(1)	22(1)
C(11)	3512(1)	3782(3)	7323(1)	20(1)
C(12)	3197(1)	4880(4)	6846(2)	24(1)
C(13)	4066(1)	965(3)	7650(1)	24(1)
B(1)	3744(3)	1185(13)	9399(5)	26(1)
P(1M)	3918(1)	3137(4)	8772(1)	20(1)
C(1M)	3769(2)	2670(10)	7763(4)	21(1)
C(2M)	3882(3)	1144(14)	7258(6)	28(1)
C(3M)	3685(6)	1220(20)	6483(9)	33(1)
C(4M)	3378(3)	2723(13)	6252(5)	30(1)
C(5M)	3107(3)	3276(13)	5525(6)	38(1)
C(6M)	2841(5)	5310(20)	5731(8)	38(1)
C(7M)	2945(3)	5838(12)	6542(4)	27(1)
C(8M)	2808(3)	7326(16)	7018(5)	31(1)
C(9M)	3011(10)	7390(40)	7812(9)	28(1)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for Ph-PyraPhos(BH₃), glu391. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(10M)	3316(3)	5850(14)	8059(5)	22(1)
C(11M)	3464(4)	4249(15)	7556(5)	20(1)
C(12M)	3270(5)	4330(20)	6820(7)	24(1)
C(13M)	3534(3)	5462(12)	8859(4)	24(1)
B(1M)	3797(15)	940(70)	9450(30)	26(1)
C(14)	4576(1)	3844(2)	8731(1)	26(1)
C(15)	4914(1)	2742(3)	9172(1)	34(1)
C(16)	5368(1)	3566(3)	9301(1)	38(1)
C(17)	5487(1)	5473(3)	9004(1)	41(1)
C(18)	5154(1)	6590(3)	8582(1)	53(1)
C(19)	4698(1)	5779(3)	8444(1)	42(1)

P(1)-C(1)	1.8046(17)	C(13)-H(13B)	0.9900
P(1)-C(13)	1.8647(19)	B(1)-H(1A)	1.162(15)
P(1)-B(1)	1.927(10)	B(1)-H(1B)	1.161(16)
P(1)-C(14)	1.8033(15)	B(1)-H(1C)	1.182(16)
C(1)-C(2)	1.379(3)	P(1M)-C(1M)	1.826(7)
C(1)-C(11)	1.407(2)	P(1M)-C(13M)	1.838(8)
C(2)-H(2)	0.9500	P(1M)-B(1M)	1.87(4)
C(2)-C(3)	1.434(4)	P(1M)-C(14)	1.887(3)
C(3)-H(3)	0.9500	C(1M)-C(2M)	1.355(9)
C(3)-C(4)	1.360(5)	C(1M)-C(11M)	1.364(10)
C(4)-C(5)	1.522(3)	C(2M)-H(2M)	0.9500
C(4)-C(12)	1.415(3)	C(2M)-C(3M)	1.450(13)
C(5)-H(5A)	0.9900	C(3M)-H(3M)	0.9500
C(5)-H(5B)	0.9900	C(3M)-C(4M)	1.344(12)
C(5)-C(6)	1.573(4)	C(4M)-C(5M)	1.505(10)
C(6)-H(6B)	0.9900	C(4M)-C(12M)	1.463(12)
C(6)-H(6A)	0.9900	C(5M)-H(5MA)	0.9900
C(6)-C(7)	1.523(3)	C(5M)-H(5MB)	0.9900
C(7)-C(8)	1.369(3)	C(5M)-C(6M)	1.542(13)
C(7)-C(12)	1.387(3)	C(6M)-H(6MA)	0.9900
C(8)-H(8)	0.9500	C(6M)-H(6MB)	0.9900
C(8)-C(9)	1.441(3)	C(6M)-C(7M)	1.479(13)
C(9)-H(9)	0.9500	C(7M)-C(8M)	1.324(11)
C(9)-C(10)	1.374(3)	C(7M)-C(12M)	1.400(10)
C(10)-C(11)	1.411(3)	C(8M)-H(8M)	0.9500
C(10)-C(13)	1.519(2)	C(8M)-C(9M)	1.487(16)
C(11)-C(12)	1.387(3)	C(9M)-H(9M)	0.9500
C(13)-H(13A)	0.9900	C(9M)-C(10M)	1.366(16)

Table 3. Bond lengths [Å] and angles [deg] for Ph-PyraPhos(BH₃), glu391.

C(10M)-C(11M)	1.415(10)	C(1)-C(2)-C(3)	121.0(3)
C(10M)-C(13M)	1.531(9)	C(3)-C(2)-H(2)	119.5
C(11M)-C(12M)	1.384(12)	C(2)-C(3)-H(3)	119.9
C(13M)-H(13C)	0.9900	C(4)-C(3)-C(2)	120.3(3)
C(13M)-H(13D)	0.9900	C(4)-C(3)-H(3)	119.9
B(1M)-H(1MA)	0.9800	C(3)-C(4)-C(5)	135.1(2)
B(1M)-H(1MB)	0.9800	C(3)-C(4)-C(12)	118.8(2)
B(1M)-H(1MC)	0.9800	C(12)-C(4)-C(5)	106.1(2)
C(14)-C(15)	1.395(2)	C(4)-C(5)-H(5A)	110.6
C(14)-C(19)	1.379(2)	C(4)-C(5)-H(5B)	110.6
С(15)-Н(15)	0.9500	C(4)-C(5)-C(6)	105.88(17)
C(15)-C(16)	1.381(2)	H(5A)-C(5)-H(5B)	108.7
С(16)-Н(16)	0.9500	C(6)-C(5)-H(5A)	110.6
C(16)-C(17)	1.368(3)	C(6)-C(5)-H(5B)	110.6
С(17)-Н(17)	0.9500	C(5)-C(6)-H(6B)	110.9
C(17)-C(18)	1.373(3)	C(5)-C(6)-H(6A)	110.9
C(18)-H(18)	0.9500	H(6B)-C(6)-H(6A)	108.9
C(18)-C(19)	1.388(2)	C(7)-C(6)-C(5)	104.49(19)
С(19)-Н(19)	0.9500	C(7)-C(6)-H(6B)	110.9
		C(7)-C(6)-H(6A)	110.9
C(1)-P(1)-C(13)	94.71(8)	C(8)-C(7)-C(6)	134.2(2)
C(1)-P(1)-B(1)	115.2(2)	C(8)-C(7)-C(12)	118.20(18)
C(13)-P(1)-B(1)	115.0(3)	C(12)-C(7)-C(6)	107.6(2)
C(14)-P(1)-C(1)	108.85(8)	C(7)-C(8)-H(8)	120.2
C(14)-P(1)-C(13)	108.50(8)	C(7)-C(8)-C(9)	119.6(2)
C(14)-P(1)-B(1)	113.1(3)	C(9)-C(8)-H(8)	120.2
C(2)-C(1)-P(1)	134.01(15)	C(8)-C(9)-H(9)	119.1
C(2)-C(1)-C(11)	118.59(17)	C(10)-C(9)-C(8)	121.7(3)
C(11)-C(1)-P(1)	107.26(13)	С(10)-С(9)-Н(9)	119.1
C(1)-C(2)-H(2)	119.5	C(9)-C(10)-C(11)	117.7(2)

C(9)-C(10)-C(13)	130.1(2)	C(1M)-C(2M)-C(3M)	119.6(10)
C(11)-C(10)-C(13)	112.19(15)	C(3M)-C(2M)-H(2M)	120.2
C(1)-C(11)-C(10)	120.18(17)	C(2M)-C(3M)-H(3M)	118.9
C(12)-C(11)-C(1)	120.15(19)	C(4M)-C(3M)-C(2M)	122.1(13)
C(12)-C(11)-C(10)	119.66(18)	C(4M)-C(3M)-H(3M)	118.9
C(7)-C(12)-C(4)	115.75(19)	C(3M)-C(4M)-C(5M)	136.6(10)
C(7)-C(12)-C(11)	122.98(19)	C(3M)-C(4M)-C(12M)	115.9(10)
C(11)-C(12)-C(4)	121.3(2)	C(12M)-C(4M)-C(5M)	107.4(7)
P(1)-C(13)-H(13A)	110.7	C(4M)-C(5M)-H(5MA)	111.0
P(1)-C(13)-H(13B)	110.7	C(4M)-C(5M)-H(5MB)	111.0
C(10)-C(13)-P(1)	105.40(12)	C(4M)-C(5M)-C(6M)	103.7(8)
C(10)-C(13)-H(13A)	110.7	H(5MA)-C(5M)-H(5MB)	109.0
C(10)-C(13)-H(13B)	110.7	C(6M)-C(5M)-H(5MA)	111.0
H(13A)-C(13)-H(13B)	108.8	C(6M)-C(5M)-H(5MB)	111.0
P(1)-B(1)-H(1A)	104.9(10)	C(5M)-C(6M)-H(6MA)	109.9
P(1)-B(1)-H(1B)	105.0(13)	C(5M)-C(6M)-H(6MB)	109.9
P(1)-B(1)-H(1C)	106.5(11)	H(6MA)-C(6M)-H(6MB)	108.3
H(1A)-B(1)-H(1B)	112.5(16)	C(7M)-C(6M)-C(5M)	109.2(8)
H(1A)-B(1)-H(1C)	112.7(14)	C(7M)-C(6M)-H(6MA)	109.9
H(1B)-B(1)-H(1C)	114.2(16)	C(7M)-C(6M)-H(6MB)	109.9
C(1M)-P(1M)-C(13M)	95.1(3)	C(8M)-C(7M)-C(6M)	135.2(8)
C(1M)-P(1M)-B(1M)	116.6(14)	C(8M)-C(7M)-C(12M)	118.0(8)
C(1M)-P(1M)-C(14)	101.8(2)	C(12M)-C(7M)-C(6M)	106.8(8)
C(13M)-P(1M)-B(1M)	116.4(14)	C(7M)-C(8M)-H(8M)	120.1
C(13M)-P(1M)-C(14)	111.9(3)	C(7M)-C(8M)-C(9M)	119.7(10)
B(1M)-P(1M)-C(14)	112.9(12)	C(9M)-C(8M)-H(8M)	120.1
C(2M)-C(1M)-P(1M)	133.9(6)	C(8M)-C(9M)-H(9M)	120.1
C(2M)-C(1M)-C(11M)	120.7(8)	C(10M)-C(9M)-C(8M)	119.8(14)
C(11M)-C(1M)-P(1M)	105.3(5)	C(10M)-C(9M)-H(9M)	120.1
C(1M)-C(2M)-H(2M)	120.2	C(9M)-C(10M)-C(11M)	120.8(10)

C(9M)-C(10M)-C(13M)	129.7(9)	C(15)-C(14)-P(1M)	120.14(14)
C(11M)-C(10M)-C(13M)	109.4(7)	C(19)-C(14)-P(1)	122.82(12)
C(1M)-C(11M)-C(10M)	123.9(8)	C(19)-C(14)-P(1M)	118.25(13)
C(1M)-C(11M)-C(12M)	120.4(8)	C(19)-C(14)-C(15)	119.07(14)
C(12M)-C(11M)-C(10M)	115.7(8)	C(14)-C(15)-H(15)	120.0
C(7M)-C(12M)-C(4M)	112.8(8)	C(16)-C(15)-C(14)	120.08(16)
C(11M)-C(12M)-C(4M)	121.2(8)	C(16)-C(15)-H(15)	120.0
C(11M)-C(12M)-C(7M)	125.9(9)	C(15)-C(16)-H(16)	119.8
P(1M)-C(13M)-H(13C)	110.5	C(17)-C(16)-C(15)	120.35(16)
P(1M)-C(13M)-H(13D)	110.5	C(17)-C(16)-H(16)	119.8
C(10M)-C(13M)-P(1M)	106.1(5)	C(16)-C(17)-H(17)	119.9
C(10M)-C(13M)-H(13C)	110.5	C(16)-C(17)-C(18)	120.10(16)
C(10M)-C(13M)-H(13D)	110.5	C(18)-C(17)-H(17)	119.9
H(13C)-C(13M)-H(13D)	108.7	C(17)-C(18)-H(18)	119.9
P(1M)-B(1M)-H(1MA)	109.5	C(17)-C(18)-C(19)	120.24(18)
P(1M)-B(1M)-H(1MB)	109.5	C(19)-C(18)-H(18)	119.9
P(1M)-B(1M)-H(1MC)	109.5	C(14)-C(19)-C(18)	120.14(16)
H(1MA)-B(1M)-H(1MB)	109.5	C(14)-C(19)-H(19)	119.9
H(1MA)-B(1M)-H(1MC)	109.5	C(18)-C(19)-H(19)	119.9
H(1MB)-B(1M)-H(1MC)	109.5		
C(15)-C(14)-P(1)	118.06(12)		

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
P(1)	18(1)	19(1)	21(1)	2(1)	0(1)	2(1)
C(1)	16(1)	19(1)	27(1)	2(1)	-1(1)	1(1)
C(2)	22(1)	22(1)	39(1)	-5(1)	0(1)	2(1)
C(3)	23(2)	15(1)	62(2)	-2(1)	-3(1)	5(1)
C(4)	16(1)	25(1)	50(1)	12(1)	-5(1)	-3(1)
C(5)	21(1)	29(1)	64(1)	18(1)	-11(1)	-2(1)
C(6)	17(1)	54(2)	42(1)	26(1)	-7(1)	1(1)
C(7)	17(1)	38(1)	28(1)	12(1)	-2(1)	-6(1)
C(8)	26(1)	44(1)	23(1)	6(1)	-3(1)	-6(1)
C(9)	27(2)	34(1)	22(1)	-2(1)	4(1)	0(1)
C(10)	21(1)	24(1)	20(1)	3(1)	1(1)	1(1)
C(11)	18(1)	20(1)	22(1)	4(1)	-1(1)	-3(1)
C(12)	13(1)	24(2)	33(1)	10(1)	-2(1)	-2(1)
C(13)	25(1)	22(1)	25(1)	-1(1)	0(1)	7(1)
B(1)	24(2)	27(3)	26(2)	3(2)	1(1)	-1(2)
P(1M)	18(1)	19(1)	21(1)	2(1)	0(1)	2(1)
C(1M)	16(1)	19(1)	27(1)	2(1)	-1(1)	1(1)
C(2M)	22(1)	22(1)	39(1)	-5(1)	0(1)	2(1)
C(3M)	23(2)	15(1)	62(2)	-2(1)	-3(1)	5(1)
C(4M)	16(1)	25(1)	50(1)	12(1)	-5(1)	-3(1)
C(5M)	21(1)	29(1)	64(1)	18(1)	-11(1)	-2(1)
C(6M)	17(1)	54(2)	42(1)	26(1)	-7(1)	1(1)
C(7M)	17(1)	38(1)	28(1)	12(1)	-2(1)	-6(1)
C(8M)	26(1)	44(1)	23(1)	6(1)	-3(1)	-6(1)
C(9M)	27(2)	34(1)	22(1)	-2(1)	4(1)	0(1)

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for Ph-PyraPhos (BH₃), glu391. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

C(10M)	21(1)	24(1)	20(1)	3(1)	1(1)	1(1)
C(11M)	18(1)	20(1)	22(1)	4(1)	-1(1)	-3(1)
C(12M)	13(1)	24(2)	33(1)	10(1)	-2(1)	-2(1)
C(13M)	25(1)	22(1)	25(1)	-1(1)	0(1)	7(1)
B(1M)	24(2)	27(3)	26(2)	3(2)	1(1)	-1(2)
C(14)	21(1)	30(1)	28(1)	4(1)	-3(1)	-1(1)
C(15)	28(1)	36(1)	38(1)	7(1)	-6(1)	4(1)
C(16)	22(1)	59(1)	33(1)	2(1)	-4(1)	8(1)
C(17)	21(1)	66(1)	37(1)	-2(1)	0(1)	-9(1)
C(18)	35(1)	54(1)	68(1)	21(1)	-6(1)	-19(1)
C(19)	28(1)	44(1)	56(1)	23(1)	-10(1)	-8(1)

	Х	У	Z	U(eq)
H(2)	3440	6762	8830	33
H(3)	2892	8597	8014	40
H(5A)	2732	8891	6283	46
H(5B)	2304	7416	6575	46
H(6B)	2440	5219	5577	45
H(6A)	2893	6609	5321	45
H(8)	3214	1981	5331	37
H(9)	3737	-9	6145	33
H(13A)	4402	987	7469	29
H(13B)	3974	-500	7756	29
H(1A)	3376(6)	530(30)	9184(11)	29(5)
H(1B)	3702(8)	2470(30)	9862(12)	44(6)
H(1C)	4021(8)	-150(30)	9568(12)	38(7)
H(2M)	4089	31	7411	33
H(3M)	3777	176	6128	40
H(5MA)	2876	2158	5380	46
H(5MB)	3330	3507	5098	46
H(6MA)	2948	6461	5395	45
H(6MB)	2490	5122	5650	45
H(8M)	2580	8347	6853	37
H(9M)	2929	8507	8146	33
H(13C)	3278	5214	9235	29
H(13D)	3727	6682	9029	29
H(1MA)	3853	1422	9979	38
H(1MB)	4013	-227	9342	38

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for Ph-PyraPhos(BH₃), glu391.

H(1MC)	3462	488	9388	38
H(15)	4833	1424	9384	41
H(16)	5598	2805	9597	46
H(17)	5801	6024	9090	49
H(18)	5237	7924	8384	63
H(19)	4469	6558	8152	51

Identification code	18a.THF	
Empirical formula	C47 H56 F6 O P4 Pt	
Formula weight	1069.88	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 11.5207(4) Å	α=90°
	b = 17.2787(5) Å	β= 90°
	c = 22.7156(7) Å	$\gamma = 90^{\circ}$
Volume	4521.8(2) Å ³	
Z	4	
Density (calculated)	1.572 Mg/m ³	
Absorption coefficient	3.305 mm ⁻¹	
F(000)	2152	
Crystal size	0.300 x 0.240 x 0.090 mm	n ³
Theta range for data collection	1.982 to 28.319°	
Index ranges	-13<=h<=15, -21<=k<=2	2, -19<=1<=30
Reflections collected	43409	
Independent reflections	11027 [R(int) = 0.0493]	
Completeness to theta = 25.000°	99.8 %	
Absorption correction	Semi-empirical from equi	ivalents
Max. and min. transmission	0.666 and 0.394	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	11027 / 195 / 597	
Goodness-of-fit on F ²	1.023	
Final R indices [I>2sigma(I)]	R1 = 0.0438, wR2 = 0.06	84
R indices (all data)	R1 = 0.0462, wR2 = 0.07	19
Absolute structure parameter	0.000(4)	

Table 1. Crystal data and structure refinement for $[Pt(R,R)-Me-DuPhos)(Ph)((R)-Ph-PyraPhos)][PF_6]$ •THF, glu395.

Extinction coefficient	n/a
Largest diff. peak and hole	1.412 and -1.456 e.Å-3

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å² x 10³) for [Pt(R,R)-Me-DuPhos)(Ph)((R)-Ph-PyraPhos)][PF₆]•THF, glu395. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)	
Pt(1)	2620(1)	3674(1)	8243(1)	16(1)	
P(1)	2009(1)	2456(1)	8027(1)	17(1)	
P(2)	3137(1)	3187(1)	9145(1)	18(1)	
P(3)	2901(2)	4981(1)	8386(1)	19(1)	
P(3')	3557(9)	4915(5)	8340(4)	19(1)	
P(4B)	7871(5)	4378(4)	8503(3)	68(2)	
F(1B)	7526(13)	4997(6)	8990(5)	111(4)	
F(2B)	6590(6)	4077(7)	8383(5)	75(4)	
F(3B)	7741(13)	4946(7)	7957(5)	105(4)	
F(4B)	9165(6)	4668(8)	8598(5)	136(6)	
F(5B)	8024(9)	3740(6)	9001(4)	103(4)	
F(6B)	8316(8)	3758(6)	8038(4)	79(3)	
O(1)	2184(6)	8652(5)	8983(4)	88(3)	
C(1)	-363(6)	2171(5)	8360(4)	40(2)	
C(2)	443(5)	2377(5)	7851(3)	27(2)	
C(3)	391(7)	1838(5)	7322(3)	39(2)	
C(4)	1468(7)	1988(5)	6949(3)	41(2)	
C(5)	2512(7)	1928(4)	7366(2)	28(2)	
C(6)	3673(7)	2187(5)	7108(4)	38(2)	
C(7)	2345(5)	1830(3)	8646(2)	18(1)	
C(8)	2058(5)	1032(4)	8635(3)	25(2)	

C(9)	2328(7)	568(4)	9112(3)	32(2)
C(10)	2844(7)	882(4)	9597(3)	32(2)
C(11)	3102(6)	1659(4)	9626(3)	26(2)
C(12)	2861(5)	2153(4)	9148(3)	18(1)
C(13)	1377(8)	3994(5)	9781(4)	56(3)
C(14)	2486(8)	3515(4)	9842(3)	38(2)
C(15)	3460(8)	3895(6)	10188(3)	55(3)
C(16)	4570(8)	3466(6)	10055(3)	54(3)
C(17)	4651(6)	3355(5)	9391(3)	36(2)
C(18)	5532(6)	2760(5)	9172(5)	52(3)
C(19)	3642(7)	5431(5)	7752(4)	35(2)
C(20)	4727(7)	5171(5)	7617(4)	42(2)
C(21)	5286(7)	5446(6)	7120(5)	57(3)
C(22)	4755(7)	5976(5)	6745(5)	51(2)
C(23)	3664(7)	6244(5)	6888(4)	43(2)
C(24)	3123(7)	5970(5)	7391(3)	36(2)
C(25)	1468(7)	5441(5)	8539(4)	47(2)
C(26)	1562(7)	5903(5)	9073(4)	45(2)
C(27)	765(9)	6307(6)	9366(5)	66(3)
C(28)	1063(13)	6735(7)	9906(6)	85(4)
C(29)	2112(13)	6752(6)	10099(4)	69(4)
C(30)	2708(13)	7154(6)	10581(4)	80(4)
C(31)	4020(14)	6897(7)	10555(5)	95(5)
C(32)	4085(11)	6371(6)	10036(4)	69(3)
C(33)	4989(8)	5944(6)	9745(4)	52(3)
C(34)	4688(7)	5501(5)	9235(4)	41(2)
C(35)	3578(7)	5466(5)	9017(4)	41(2)
C(36)	2966(7)	6332(5)	9766(3)	45(2)
C(37)	2731(9)	5891(5)	9288(3)	46(2)
C(38)	835(6)	4293(5)	7403(4)	36(2)
C(39)	347(8)	4619(5)	6901(4)	56(3)

C(40)	1022(10)	4729(6)	6421(5)	61(3)
C(41)	2182(9)	4520(5)	6421(3)	51(3)
C(42)	2665(8)	4184(4)	6932(3)	36(2)
C(48)	2097(13)	8221(10)	8460(8)	139(7)
C(43)	2006(6)	4060(4)	7430(3)	24(2)
C(47)	3179(14)	7989(10)	8237(7)	139(7)
C(46)	3975(11)	8181(11)	8712(6)	123(6)
C(45)	3291(9)	8507(7)	9187(5)	71(3)
P(4A)	7943(6)	4684(5)	8525(3)	68(2)
F(6A)	8865(13)	4026(9)	8608(9)	118(5)
F(4A)	8595(14)	5167(10)	9007(7)	113(5)
F(5A)	7160(9)	4319(8)	9044(5)	72(3)
F(2A)	7139(15)	4299(11)	8059(7)	122(5)
F(3A)	8745(10)	5101(7)	8076(7)	86(4)
F(1)	7017(8)	5386(7)	8456(6)	81(4)

S89

Pt(1)-C(43)	2.087(6)	C(4)-C(5)	1.534(10)
Pt(1)-P(1)	2.2726(17)	C(5)-C(6)	1.528(10)
Pt(1)-P(2)	2.2933(16)	C(7)-C(12)	1.400(8)
Pt(1)-P(3)	2.305(2)	C(7)-C(8)	1.418(9)
Pt(1)-P(3')	2.412(9)	C(8)-C(9)	1.381(9)
P(1)-C(7)	1.817(6)	C(9)-C(10)	1.364(10)
P(1)-C(5)	1.850(6)	C(10)-C(11)	1.377(10)
P(1)-C(2)	1.853(6)	C(11)-C(12)	1.410(9)
P(2)-C(12)	1.815(7)	C(13)-C(14)	1.528(12)
P(2)-C(14)	1.841(7)	C(14)-C(15)	1.519(11)
P(2)-C(17)	1.854(7)	C(15)-C(16)	1.508(13)
P(3)-P(3')	0.772(10)	C(16)-C(17)	1.524(11)
P(3)-C(35)	1.835(9)	C(17)-C(18)	1.529(12)
P(3)-C(19)	1.846(8)	C(19)-C(20)	1.363(11)
P(3)-C(25)	1.864(8)	C(19)-C(24)	1.377(10)
P(3')-C(19)	1.609(12)	C(20)-C(21)	1.383(12)
P(3')-C(35)	1.808(13)	C(21)-C(22)	1.392(13)
P(4B)-F(4B)	1.5878(12)	C(22)-C(23)	1.378(11)
P(4B)-F(6B)	1.5886(12)	C(23)-C(24)	1.386(10)
P(4B)-F(2B)	1.5887(12)	C(25)-C(26)	1.457(12)
P(4B)-F(1B)	1.5890(12)	C(26)-C(27)	1.331(12)
P(4B)-F(3B)	1.5893(12)	C(26)-C(37)	1.432(13)
P(4B)-F(5B)	1.5895(12)	C(27)-C(28)	1.474(16)
O(1)-C(45)	1.379(12)	C(28)-C(29)	1.286(17)
O(1)-C(48)	1.405(15)	C(29)-C(36)	1.438(14)
C(1)-C(2)	1.524(10)	C(29)-C(30)	1.468(14)
C(2)-C(3)	1.522(10)	C(30)-C(31)	1.577(19)
C(3)-C(4)	1.525(11)	C(31)-C(32)	1.489(15)

Table 3. Bond lengths [Å] and angles [deg] for $[Pt(R,R)-Me-DuPhos)(Ph)((R)-Ph-PyraPhos)][PF_6]$ •THF, glu395.

C(32)-C(36)	1.429(14)	P(3)-Pt(1)-P(3')	18.7(2)
C(32)-C(33)	1.438(15)	C(7)-P(1)-C(5)	105.6(3)
C(33)-C(34)	1.431(12)	C(7)-P(1)-C(2)	109.3(3)
C(34)-C(35)	1.373(11)	C(5)-P(1)-C(2)	95.4(3)
C(35)-C(37)	1.369(12)	C(7)-P(1)-Pt(1)	108.5(2)
C(36)-C(37)	1.352(11)	C(5)-P(1)-Pt(1)	122.3(2)
C(38)-C(39)	1.392(11)	C(2)-P(1)-Pt(1)	114.6(3)
C(38)-C(43)	1.410(10)	C(12)-P(2)-C(14)	103.3(3)
C(39)-C(40)	1.352(14)	C(12)-P(2)-C(17)	108.6(3)
C(40)-C(41)	1.385(14)	C(14)-P(2)-C(17)	94.3(4)
C(41)-C(42)	1.411(11)	C(12)-P(2)-Pt(1)	108.5(2)
C(42)-C(43)	1.379(9)	C(14)-P(2)-Pt(1)	123.3(3)
C(48)-C(47)	1.405(19)	C(17)-P(2)-Pt(1)	117.1(3)
C(47)-C(46)	1.454(19)	P(3')-P(3)-C(35)	75.8(8)
C(46)-C(45)	1.450(15)	P(3')-P(3)-C(19)	60.3(8)
P(4A)-F(3A)	1.554(11)	C(35)-P(3)-C(19)	102.7(4)
P(4A)-F(2A)	1.555(14)	P(3')-P(3)-C(25)	162.8(8)
P(4A)-F(6A)	1.568(13)	C(35)-P(3)-C(25)	92.1(4)
P(4A)-F(4A)	1.568(14)	C(19)-P(3)-C(25)	112.0(4)
P(4A)-F(5A)	1.613(10)	P(3')-P(3)-Pt(1)	88.5(7)
P(4A)-F(1)	1.622(12)	C(35)-P(3)-Pt(1)	128.1(3)
		C(19)-P(3)-Pt(1)	111.6(3)
C(43)-Pt(1)-P(1)	90.0(2)	C(25)-P(3)-Pt(1)	108.6(3)
C(43)-Pt(1)-P(2)	174.72(19)	P(3)-P(3')-C(19)	95.1(9)
P(1)-Pt(1)-P(2)	86.23(6)	P(3)-P(3')-C(35)	79.7(8)
C(43)-Pt(1)-P(3)	81.8(2)	C(19)-P(3')-C(35)	114.5(6)
P(1)-Pt(1)-P(3)	168.91(6)	P(3)-P(3')-Pt(1)	72.8(7)
P(2)-Pt(1)-P(3)	101.38(7)	C(19)-P(3')-Pt(1)	116.4(5)
C(43)-Pt(1)-P(3')	87.0(3)	C(35)-P(3')-Pt(1)	123.5(6)
P(1)-Pt(1)-P(3')	169.1(3)	F(4B)-P(4B)-F(6B)	90.01(9)
P(2)-Pt(1)-P(3')	97.4(2)	F(4B)-P(4B)-F(2B)	177.7(7)

F(6B)-P(4B)-F(2B)	88.0(7)	C(11)-C(12)-P(2)	124.3(5)
F(4B)-P(4B)-F(1B)	85.9(7)	C(15)-C(14)-C(13)	115.6(7)
F(6B)-P(4B)-F(1B)	175.5(7)	C(15)-C(14)-P(2)	106.1(5)
F(2B)-P(4B)-F(1B)	96.2(8)	C(13)-C(14)-P(2)	115.4(5)
F(4B)-P(4B)-F(3B)	89.97(9)	C(16)-C(15)-C(14)	108.1(7)
F(6B)-P(4B)-F(3B)	85.9(8)	C(15)-C(16)-C(17)	108.1(7)
F(2B)-P(4B)-F(3B)	88.9(7)	C(16)-C(17)-C(18)	116.6(7)
F(1B)-P(4B)-F(3B)	96.0(7)	C(16)-C(17)-P(2)	105.1(6)
F(4B)-P(4B)-F(5B)	91.0(7)	C(18)-C(17)-P(2)	114.9(5)
F(6B)-P(4B)-F(5B)	88.3(6)	C(20)-C(19)-C(24)	119.1(8)
F(2B)-P(4B)-F(5B)	89.92(9)	C(24)-C(19)-P(3')	147.4(8)
F(1B)-P(4B)-F(5B)	89.93(9)	C(20)-C(19)-P(3)	117.4(6)
F(3B)-P(4B)-F(5B)	174.1(7)	C(24)-C(19)-P(3)	123.2(6)
C(45)-O(1)-C(48)	104.7(9)	P(3')-C(19)-P(3)	24.6(4)
C(3)-C(2)-C(1)	115.6(6)	C(19)-C(20)-C(21)	119.8(8)
C(3)-C(2)-P(1)	104.7(5)	C(20)-C(21)-C(22)	121.4(8)
C(1)-C(2)-P(1)	116.5(5)	C(23)-C(22)-C(21)	118.6(9)
C(2)-C(3)-C(4)	107.6(6)	C(22)-C(23)-C(24)	119.3(8)
C(3)-C(4)-C(5)	106.4(6)	C(19)-C(24)-C(23)	121.8(8)
C(6)-C(5)-C(4)	115.4(6)	C(26)-C(25)-P(3)	108.8(6)
C(6)-C(5)-P(1)	116.2(5)	C(27)-C(26)-C(37)	119.0(9)
C(4)-C(5)-P(1)	102.9(5)	C(27)-C(26)-C(25)	130.7(9)
C(12)-C(7)-C(8)	120.1(6)	C(37)-C(26)-C(25)	110.3(7)
C(12)-C(7)-P(1)	118.8(4)	C(26)-C(27)-C(28)	121.3(10)
C(8)-C(7)-P(1)	121.1(4)	C(29)-C(28)-C(27)	120.9(11)
C(9)-C(8)-C(7)	119.8(6)	C(28)-C(29)-C(36)	116.9(10)
C(10)-C(9)-C(8)	120.1(7)	C(28)-C(29)-C(30)	134.8(12)
C(9)-C(10)-C(11)	121.3(7)	C(36)-C(29)-C(30)	108.1(11)
C(10)-C(11)-C(12)	120.8(7)	C(29)-C(30)-C(31)	106.7(10)
C(7)-C(12)-C(11)	117.9(6)	C(32)-C(31)-C(30)	104.5(10)
C(7)-C(12)-P(2)	117.7(4)	C(36)-C(32)-C(33)	115.5(8)

C(36)-C(32)-C(31)	108.9(11)	C(42)-C(43)-C(38)	116.5(7)
C(33)-C(32)-C(31)	135.5(11)	C(42)-C(43)-Pt(1)	126.1(6)
C(34)-C(33)-C(32)	118.2(8)	C(38)-C(43)-Pt(1)	117.0(5)
C(35)-C(34)-C(33)	122.8(9)	C(48)-C(47)-C(46)	103.1(12)
C(37)-C(35)-C(34)	118.6(9)	C(45)-C(46)-C(47)	107.3(11)
C(37)-C(35)-P(3')	131.0(8)	O(1)-C(45)-C(46)	108.9(11)
C(34)-C(35)-P(3')	110.0(8)	F(3A)-P(4A)-F(2A)	96.1(10)
C(37)-C(35)-P(3)	107.1(6)	F(3A)-P(4A)-F(6A)	90.7(7)
C(34)-C(35)-P(3)	134.3(8)	F(2A)-P(4A)-F(6A)	100.1(12)
P(3')-C(35)-P(3)	24.5(3)	F(3A)-P(4A)-F(4A)	85.8(10)
C(37)-C(36)-C(32)	123.5(9)	F(2A)-P(4A)-F(4A)	171.0(12)
C(37)-C(36)-C(29)	124.7(9)	F(6A)-P(4A)-F(4A)	88.6(11)
C(32)-C(36)-C(29)	111.5(9)	F(3A)-P(4A)-F(5A)	173.7(10)
C(36)-C(37)-C(35)	121.4(9)	F(2A)-P(4A)-F(5A)	89.8(9)
C(36)-C(37)-C(26)	117.0(9)	F(6A)-P(4A)-F(5A)	90.4(9)
C(35)-C(37)-C(26)	121.6(8)	F(4A)-P(4A)-F(5A)	88.1(8)
C(39)-C(38)-C(43)	122.6(8)	F(3A)-P(4A)-F(1)	89.0(7)
C(40)-C(39)-C(38)	119.0(9)	F(2A)-P(4A)-F(1)	82.1(9)
C(39)-C(40)-C(41)	121.2(8)	F(6A)-P(4A)-F(1)	177.7(12)
C(40)-C(41)-C(42)	119.2(8)	F(4A)-P(4A)-F(1)	89.1(9)
C(43)-C(42)-C(41)	121.5(8)	F(5A)-P(4A)-F(1)	89.7(7)
C(47)-C(48)-O(1)	113.1(12)		

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (Å² x 10³) for [Pt(*R*,*R*)-Me-DuPhos)(Ph)((*R*)-Ph-PyraPhos)][PF₆]•THF, glu395. The anisotropic displacement factor exponent takes the form: - $2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²	
Pt(1)	21(1)	15(1)	13(1)	0(1)	-1(1)	0(1)	
P(1)	20(1)	17(1)	14(1)	-1(1)	-2(1)	-4(1)	
P(2)	24(1)	16(1)	13(1)	-1(1)	-1(1)	-1(1)	
P(3)	19(1)	17(1)	20(1)	-2(1)	-2(1)	0(1)	
P(3')	19(1)	17(1)	20(1)	-2(1)	-2(1)	0(1)	
P(4B)	27(1)	119(5)	58(2)	27(3)	7(1)	-11(2)	
F(1B)	68(8)	182(11)	84(8)	-12(8)	6(7)	1(8)	
F(2B)	36(5)	107(9)	82(8)	31(7)	-5(5)	-4(5)	
F(3B)	110(10)	114(9)	91(8)	19(7)	-16(7)	-49(8)	
F(4B)	48(6)	238(16)	123(12)	-33(11)	12(6)	-35(8)	
F(5B)	80(7)	174(11)	55(6)	30(7)	6(5)	15(8)	
F(6B)	54(6)	129(9)	54(6)	24(6)	3(4)	1(6)	
O(1)	55(4)	57(5)	152(8)	-42(5)	-4(4)	9(4)	
C(1)	30(4)	42(5)	48(5)	9(4)	2(3)	-11(3)	
C(2)	22(3)	33(5)	27(4)	10(3)	-10(3)	-8(3)	
C(3)	47(5)	37(5)	32(4)	1(4)	-22(4)	-17(4)	
C(4)	57(5)	44(6)	23(4)	-5(4)	-6(3)	-15(4)	
C(5)	42(4)	25(4)	16(3)	-7(2)	5(3)	-7(4)	
C(6)	45(4)	37(5)	32(4)	-4(4)	17(3)	2(4)	
C(7)	19(3)	15(3)	18(3)	-1(2)	-2(3)	0(3)	
C(8)	29(4)	21(4)	25(3)	2(3)	-1(3)	-1(3)	
C(9)	45(4)	15(4)	36(4)	4(3)	4(4)	1(3)	
C(10)	49(5)	16(4)	32(4)	11(3)	-6(3)	-1(3)	
C(11)	37(4)	18(4)	25(3)	3(3)	-5(3)	1(3)	
C(12)	21(3)	20(4)	14(3)	1(2)	1(2)	2(3)	

C(13)	78(6)	38(6)	51(6)	2(5)	36(5)	-1(5)
C(14)	66(5)	27(4)	22(3)	0(3)	18(4)	-8(4)
C(15)	89(7)	59(7)	15(4)	-13(4)	7(4)	-22(5)
C(16)	78(6)	56(7)	27(4)	3(4)	-21(4)	-23(5)
C(17)	37(4)	32(5)	38(4)	6(4)	-20(3)	-13(3)
C(18)	26(4)	44(6)	87(7)	6(5)	-17(4)	0(4)
C(19)	40(4)	25(5)	39(4)	0(4)	-15(4)	-10(3)
C(20)	42(5)	30(5)	54(5)	15(4)	-7(4)	-14(4)
C(21)	29(4)	56(7)	87(8)	6(6)	4(5)	-9(4)
C(22)	45(4)	52(6)	55(5)	11(5)	8(5)	-22(4)
C(23)	50(4)	37(5)	43(5)	15(4)	-10(3)	-11(4)
C(24)	44(4)	29(5)	34(4)	8(4)	-2(3)	-4(3)
C(25)	42(5)	47(6)	51(6)	14(5)	6(4)	9(4)
C(26)	54(5)	24(5)	57(6)	0(4)	3(4)	5(4)
C(27)	88(7)	47(7)	62(6)	2(6)	-9(5)	28(6)
C(28)	126(11)	64(9)	64(8)	9(7)	8(8)	39(8)
C(29)	140(11)	41(6)	27(4)	-2(4)	-1(6)	17(7)
C(30)	156(13)	43(6)	41(5)	-6(4)	-5(8)	-13(8)
C(31)	177(15)	64(9)	45(6)	2(6)	-7(8)	-61(9)
C(32)	140(10)	33(6)	32(5)	7(5)	7(6)	-47(7)
C(33)	71(6)	52(6)	33(4)	19(5)	-22(5)	-38(5)
C(34)	38(4)	49(6)	37(5)	12(4)	-13(4)	-27(4)
C(35)	46(5)	42(6)	35(5)	4(4)	-3(4)	-14(4)
C(36)	75(5)	22(4)	39(4)	-11(4)	3(4)	-13(5)
C(37)	88(7)	20(4)	29(4)	3(3)	1(5)	0(5)
C(38)	40(4)	27(5)	42(5)	15(4)	-9(4)	-3(3)
C(39)	59(6)	41(6)	67(7)	21(5)	-34(5)	-5(4)
C(40)	96(8)	35(6)	53(6)	19(5)	-41(6)	-12(5)
C(41)	101(8)	31(5)	20(3)	5(3)	6(5)	-24(5)
C(42)	58(5)	25(4)	26(3)	-4(3)	7(4)	-15(4)
C(48)	106(11)	134(14)	176(18)	-84(13)	-64(11)	34(10)

C(43)	34(4)	25(4)	14(3)	3(3)	-6(3)	-6(3)	
C(47)	161(14)	177(18)	78(10)	-45(12)	-25(11)	85(13)	
C(46)	63(8)	230(20)	77(9)	-17(11)	19(7)	30(10)	
C(45)	66(7)	67(9)	80(8)	1(7)	21(6)	15(6)	
P(4A)	27(1)	119(5)	58(2)	27(3)	7(1)	-11(2)	
F(6A)	100(9)	80(8)	175(14)	76(8)	36(8)	21(7)	
F(4A)	90(9)	124(10)	126(9)	24(7)	-15(7)	-33(7)	
F(5A)	61(7)	89(8)	66(6)	29(6)	8(5)	-21(6)	
F(2A)	125(11)	151(11)	91(8)	27(8)	-21(8)	-13(9)	
F(3A)	61(6)	76(8)	121(9)	48(7)	41(6)	36(5)	
F(1)	38(5)	104(8)	100(9)	48(6)	21(5)	5(5)	

					
	Х	У	Z	U(eq)	
H(1A)	-1171	2204	8228	60	
H(1B)	-238	2534	8685	60	
H(1C)	-197	1643	8493	60	
H(2)	195	2898	7708	33	
H(3A)	-319	1940	7089	46	
H(3B)	375	1292	7453	46	
H(4A)	1432	2509	6769	49	
H(4B)	1530	1599	6630	49	
H(5)	2594	1371	7478	33	
H(6A)	3893	1839	6786	57	
H(6B)	4270	2173	7415	57	
H(6C)	3600	2716	6956	57	
H(8)	1681	816	8302	30	
H(9)	2155	31	9101	38	
H(10)	3028	557	9922	39	
H(11)	3446	1865	9972	32	
H(13A)	977	4014	10161	83	
H(13B)	867	3753	9488	83	
H(13C)	1575	4520	9655	83	
H(14)	2267	3037	10064	46	
H(15A)	3537	4445	10073	65	
H(15B)	3291	3872	10615	65	
H(16A)	4569	2957	10255	64	
H(16B)	5246	3767	10198	64	
H(17)	4892	3866	9223	43	

Table 5. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å² x 10³) for $[Pt(R,R)-Me-DuPhos)(Ph)((R)-Ph-PyraPhos)][PF_6]$ •THF, glu395.

H(18A)	6317	2929	9277	79
H(18B)	5471	2712	8743	79
H(18C)	5372	2258	9355	79
H(20)	5098	4801	7863	50
H(21)	6048	5269	7033	69
H(22)	5137	6149	6399	61
H(23)	3288	6613	6643	52
H(24)	2373	6158	7489	43
H(25A)	1240	5775	8204	56
H(25B)	867	5037	8589	56
H(27)	-10	6320	9223	79
H(28)	471	7002	10115	102
H(30A)	2362	7009	10965	96
H(30B)	2642	7722	10532	96
H(31A)	4535	7350	10501	114
H(31B)	4247	6622	10920	114
H(33)	5764	5955	9887	62
H(34)	5282	5219	9039	50
H(38)	360	4225	7741	43
H(39)	-449	4762	6894	67
H(40)	695	4954	6077	73
H(41)	2648	4601	6082	61
H(42)	3461	4040	6933	44
H(48A)	1617	7756	8535	166
H(48B)	1694	8538	8159	166
H(47A)	3375	8276	7873	167
H(47B)	3189	7427	8152	167
H(46A)	4387	7711	8848	148
H(46B)	4559	8561	8574	148
H(45A)	3260	8140	9521	85
H(45B)	3650	8994	9326	85

A colorless crystal of GW 1-103 part 3 was mounted on a Cryoloop with Paratone-N oil and data was collected at 100 K with a Bruker APEX II CCD using Mo K alpha radiation. Data was corrected for absorption with SADABS and structure was solved by direct methods. All non-hydrogen atoms were refined anisotropically by full matrix least squares on F^2 and all hydrogen atoms were placed in calculated positions with appropriate riding parameters. Highest peak 1.13 at 0.1828 0.5550 0.2543 [0.24 A from H16A]

Deepest hole -0.65 at 0.0818 0.4891 0.5801 [0.61 A from BR2]

Table 1. Crystal data and structure refinement for P	$hP(CH_2Ar)_2(BH_3)$ (Ar = 5-brom	o,6-acenaphthenyl), GLU395A.		
Identification code	glu395a (GW 1-103 part 3) C32 H28 B Br2 P			
Empirical formula	C32 H28 B Br2 P			
Molecular formula	C32 H28 B Br2 P			
Formula weight	614.14			
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P2(1)/c			
Unit cell dimensions	a = 21.116(3) Å	<i>α</i> = 90°.		
	b = 10.2016(12) Å	β= 91.709(4)°.		
	c = 12.0731(13) Å	$\gamma = 90^{\circ}$.		
Volume	2599.6(5) Å ³			
Ζ	4			
Density (calculated)	1.569 Mg/m ³			
Absorption coefficient	3.201 mm ⁻¹			
F(000)	1240			
Crystal size	0.20 x 0.10 x 0.06 mm ³			
Crystal color, habit	colourless BLOCK			
Theta range for data collection	1.93 to 26.39°.			
Index ranges	-26<=h<=25, -12<=k<=12, -15	<=1<=15		
Reflections collected	28486			
Independent reflections	5329 [R(int) = 0.0579]			
Completeness to theta = 25.00°	100.0 %			
Absorption correction	multi-scan / sadabs			
Max. and min. transmission	0.8311 and 0.5669			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	5329 / 0 / 326			
Goodness-of-fit on F ²	1.033			
Final R indices [I>2sigma(I)]	R1 = 0.0420, wR2 = 0.0960			
R indices (all data)	R1 = 0.0634, wR2 = 0.1042			
Largest diff. peak and hole	1.134 and -0.649 e.Å ⁻³			

	х	у	Z	U(eq)
P(1)	2480(1)	6234(1)	6421(1)	16(1)
B(1)	2564(2)	6287(4)	4838(3)	20(1)
Br(1)	3453(1)	9290(1)	5436(1)	25(1)
Br(2)	935(1)	5096(1)	5378(1)	28(1)
C(1)	3136(2)	7002(4)	7216(3)	18(1)
C(2)	3783(2)	6449(3)	6961(3)	17(1)
C(3)	3962(2)	5295(4)	7484(3)	19(1)
C(4)	4548(2)	4665(4)	7388(3)	19(1)
C(5)	4992(2)	5243(3)	6748(3)	17(1)
C(6)	4823(2)	6409(3)	6171(3)	15(1)
C(7)	4224(2)	7031(3)	6238(3)	16(1)
C(8)	4183(2)	8172(3)	5542(3)	19(1)
C(9)	4663(2)	8557(4)	4881(3)	22(1)
C(10)	5244(2)	7886(4)	4846(3)	21(1)
C(11)	5325(2)	6813(4)	5506(3)	18(1)
C(12)	5877(2)	5906(4)	5655(3)	21(1)
C(13)	5659(2)	4871(4)	6505(3)	22(1)
C(14)	1772(2)	7000(4)	6996(3)	19(1)
C(15)	1492(2)	8124(4)	6340(3)	18(1)
C(16)	1625(2)	9374(4)	6707(3)	23(1)
C(17)	1410(2)	10525(4)	6174(3)	24(1)
C(18)	1061(2)	10420(4)	5205(3)	21(1)
C(19)	916(2)	9151(3)	4801(3)	16(1)
C(20)	1102(2)	7976(4)	5345(3)	16(1)
C(21)	860(2)	6833(3)	4797(3)	19(1)
C(22)	508(2)	6896(4)	3823(3)	19(1)
C(23)	357(2)	8095(4)	3303(3)	21(1)
C(24)	551(2)	9221(4)	3808(3)	19(1)
C(25)	453(2)	10636(4)	3489(3)	25(1)
C(26)	769(2)	11434(4)	4450(3)	24(1)
C(27)	2486(2)	4596(4)	6995(3)	18(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å² x 10³) for PhP(CH₂Ar)₂(BH₃) (Ar = 5-bromo,6-acenaphthenyl), GLU395A. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(28)	2309(2)	4370(4)	8085(3)	24(1)
C(29)	2378(2)	3135(4)	8548(3)	30(1)
C(30)	2622(2)	2128(4)	7942(4)	34(1)
C(31)	2801(2)	2334(4)	6860(4)	30(1)
C(32)	2725(2)	3564(4)	6385(3)	23(1)

P(1)-C(27)	1.808(4)	C(14)-H(14A)	0.9900
P(1)-C(1)	1.837(4)	C(14)-H(14B)	0.9900
P(1)-C(14)	1.842(4)	C(15)-C(16)	1.376(5)
P(1)-B(1)	1.925(4)	C(15)-C(20)	1.444(5)
B(1)-H(1AA)	0.9800	C(16)-C(17)	1.407(5)
B(1)-H(1AB)	0.9800	C(16)-H(16A)	0.9500
B(1)-H(1AC)	0.9800	C(17)-C(18)	1.368(5)
Br(1)-C(8)	1.918(4)	C(17)-H(17A)	0.9500
Br(2)-C(21)	1.911(4)	C(18)-C(19)	1.414(5)
C(1)-C(2)	1.517(5)	C(18)-C(26)	1.499(5)
C(1)-H(1A)	0.9900	C(19)-C(24)	1.407(5)
C(1)-H(1B)	0.9900	C(19)-C(20)	1.417(5)
C(2)-C(3)	1.383(5)	C(20)-C(21)	1.428(5)
C(2)-C(7)	1.426(5)	C(21)-C(22)	1.374(5)
C(3)-C(4)	1.403(5)	C(22)-C(23)	1.407(5)
C(3)-H(3A)	0.9500	C(22)-H(22A)	0.9500
C(4)-C(5)	1.366(5)	C(23)-C(24)	1.359(5)
C(4)-H(4A)	0.9500	C(23)-H(23A)	0.9500
C(5)-C(6)	1.418(5)	C(24)-C(25)	1.506(5)
C(5)-C(13)	1.496(5)	C(25)-C(26)	1.552(5)
C(6)-C(11)	1.409(5)	C(25)-H(25A)	0.9900
C(6)-C(7)	1.420(5)	C(25)-H(25B)	0.9900
C(7)-C(8)	1.437(5)	C(26)-H(26A)	0.9900
C(8)-C(9)	1.365(5)	C(26)-H(26B)	0.9900
C(9)-C(10)	1.408(5)	C(27)-C(32)	1.389(5)
C(9)-H(9A)	0.9500	C(27)-C(28)	1.397(5)
C(10)-C(11)	1.362(5)	C(28)-C(29)	1.384(5)
C(10)-H(10A)	0.9500	C(28)-H(28A)	0.9500
C(11)-C(12)	1.496(5)	C(29)-C(30)	1.370(6)
C(12)-C(13)	1.552(5)	C(29)-H(29A)	0.9500
C(12)-H(12A)	0.9900	C(30)-C(31)	1.386(6)
C(12)-H(12B)	0.9900	C(30)-H(30A)	0.9500
C(13)-H(13A)	0.9900	C(31)-C(32)	1.387(6)
C(13)-H(13B)	0.9900	C(31)-H(31A)	0.9500
C(14)-C(15)	1.505(5)	C(32)-H(32A)	0.9500

Table 3. Bond lengths [Å] and angles [deg] for $PhP(CH_2Ar)_2(BH_3)$ (Ar = 5-bromo,6-acenaphthenyl), GLU395A.

C(27)-P(1)-C(1)	101.40(16)	C(9)-C(8)-C(7)	122.8(3)
C(27)-P(1)-C(14)	104.07(17)	C(9)-C(8)-Br(1)	113.5(3)
C(1)-P(1)-C(14)	103.28(17)	C(7)-C(8)-Br(1)	123.7(3)
C(27)-P(1)-B(1)	114.03(19)	C(8)-C(9)-C(10)	122.8(4)
C(1)-P(1)-B(1)	114.62(18)	C(8)-C(9)-H(9A)	118.6
C(14)-P(1)-B(1)	117.52(18)	C(10)-C(9)-H(9A)	118.6
P(1)-B(1)-H(1AA)	109.5	C(11)-C(10)-C(9)	117.8(4)
P(1)-B(1)-H(1AB)	109.5	C(11)-C(10)-H(10A)	121.1
H(1AA)-B(1)-H(1AB)	109.5	C(9)-C(10)-H(10A)	121.1
P(1)-B(1)-H(1AC)	109.5	C(10)-C(11)-C(6)	119.1(3)
H(1AA)-B(1)-H(1AC)	109.5	C(10)-C(11)-C(12)	130.6(4)
H(1AB)-B(1)-H(1AC)	109.5	C(6)-C(11)-C(12)	110.3(3)
C(2)-C(1)-P(1)	113.8(2)	C(11)-C(12)-C(13)	104.7(3)
C(2)-C(1)-H(1A)	108.8	C(11)-C(12)-H(12A)	110.8
P(1)-C(1)-H(1A)	108.8	C(13)-C(12)-H(12A)	110.8
C(2)-C(1)-H(1B)	108.8	C(11)-C(12)-H(12B)	110.8
P(1)-C(1)-H(1B)	108.8	C(13)-C(12)-H(12B)	110.8
H(1A)-C(1)-H(1B)	107.7	H(12A)-C(12)-H(12B)	108.9
C(3)-C(2)-C(7)	117.3(3)	C(5)-C(13)-C(12)	104.9(3)
C(3)-C(2)-C(1)	117.3(3)	C(5)-C(13)-H(13A)	110.8
C(7)-C(2)-C(1)	125.3(3)	C(12)-C(13)-H(13A)	110.8
C(2)-C(3)-C(4)	125.6(4)	C(5)-C(13)-H(13B)	110.8
C(2)-C(3)-H(3A)	117.2	C(12)-C(13)-H(13B)	110.8
C(4)-C(3)-H(3A)	117.2	H(13A)-C(13)-H(13B)	108.8
C(5)-C(4)-C(3)	118.2(3)	C(15)-C(14)-P(1)	115.8(3)
C(5)-C(4)-H(4A)	120.9	C(15)-C(14)-H(14A)	108.3
C(3)-C(4)-H(4A)	120.9	P(1)-C(14)-H(14A)	108.3
C(4)-C(5)-C(6)	118.2(3)	C(15)-C(14)-H(14B)	108.3
C(4)-C(5)-C(13)	131.9(3)	P(1)-C(14)-H(14B)	108.3
C(6)-C(5)-C(13)	109.9(3)	H(14A)-C(14)-H(14B)	107.4
C(11)-C(6)-C(5)	110.1(3)	C(16)-C(15)-C(20)	118.1(3)
C(11)-C(6)-C(7)	126.0(3)	C(16)-C(15)-C(14)	117.6(3)
C(5)-C(6)-C(7)	123.9(3)	C(20)-C(15)-C(14)	124.3(3)
C(6)-C(7)-C(2)	116.6(3)	C(15)-C(16)-C(17)	124.5(3)
C(6)-C(7)-C(8)	111.6(3)	C(15)-C(16)-H(16A)	117.8
C(2)-C(7)-C(8)	131.8(3)	C(17)-C(16)-H(16A)	117.8

C(18)-C(17)-C(16)	118.9(3)	C(24)-C(25)-H(25B)	110.7
C(18)-C(17)-H(17A)	120.5	C(26)-C(25)-H(25B)	110.7
C(16)-C(17)-H(17A)	120.5	H(25A)-C(25)-H(25B)	108.8
C(17)-C(18)-C(19)	118.2(3)	C(18)-C(26)-C(25)	104.6(3)
C(17)-C(18)-C(26)	131.8(3)	C(18)-C(26)-H(26A)	110.8
C(19)-C(18)-C(26)	109.9(3)	C(25)-C(26)-H(26A)	110.8
C(24)-C(19)-C(18)	110.8(3)	C(18)-C(26)-H(26B)	110.8
C(24)-C(19)-C(20)	125.1(3)	C(25)-C(26)-H(26B)	110.8
C(18)-C(19)-C(20)	124.1(3)	H(26A)-C(26)-H(26B)	108.9
C(19)-C(20)-C(21)	112.7(3)	C(32)-C(27)-C(28)	119.1(3)
C(19)-C(20)-C(15)	116.1(3)	C(32)-C(27)-P(1)	119.7(3)
C(21)-C(20)-C(15)	131.1(3)	C(28)-C(27)-P(1)	121.0(3)
C(22)-C(21)-C(20)	122.3(3)	C(29)-C(28)-C(27)	120.2(4)
C(22)-C(21)-Br(2)	113.2(3)	C(29)-C(28)-H(28A)	119.9
C(20)-C(21)-Br(2)	124.3(3)	C(27)-C(28)-H(28A)	119.9
C(21)-C(22)-C(23)	122.2(3)	C(30)-C(29)-C(28)	120.2(4)
C(21)-C(22)-H(22A)	118.9	C(30)-C(29)-H(29A)	119.9
C(23)-C(22)-H(22A)	118.9	C(28)-C(29)-H(29A)	119.9
C(24)-C(23)-C(22)	118.2(3)	C(29)-C(30)-C(31)	120.5(4)
C(24)-C(23)-H(23A)	120.9	C(29)-C(30)-H(30A)	119.8
C(22)-C(23)-H(23A)	120.9	C(31)-C(30)-H(30A)	119.8
C(23)-C(24)-C(19)	119.3(3)	C(30)-C(31)-C(32)	119.7(4)
C(23)-C(24)-C(25)	131.1(3)	C(30)-C(31)-H(31A)	120.2
C(19)-C(24)-C(25)	109.5(3)	C(32)-C(31)-H(31A)	120.2
C(24)-C(25)-C(26)	105.0(3)	C(31)-C(32)-C(27)	120.4(4)
C(24)-C(25)-H(25A)	110.7	C(31)-C(32)-H(32A)	119.8
C(26)-C(25)-H(25A)	110.7	C(27)-C(32)-H(32A)	119.8

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
P(1)	16(1)	19(1)	12(1)	1(1)	-1(1)	2(1)
B(1)	19(2)	28(2)	13(2)	-1(2)	-2(2)	0(2)
Br(1)	29(1)	20(1)	27(1)	2(1)	-3(1)	7(1)
Br(2)	30(1)	18(1)	34(1)	3(1)	-3(1)	-2(1)
C(1)	20(2)	20(2)	13(2)	-3(2)	-2(2)	2(2)
C(2)	21(2)	18(2)	12(2)	-4(2)	-4(1)	2(2)
C(3)	19(2)	24(2)	13(2)	0(2)	-3(2)	-1(2)
C(4)	23(2)	18(2)	16(2)	4(2)	-6(2)	4(2)
C(5)	20(2)	19(2)	13(2)	-5(2)	-6(2)	0(2)
C(6)	20(2)	13(2)	12(2)	-5(1)	-2(1)	-2(1)
C(7)	22(2)	15(2)	12(2)	-6(2)	-5(1)	-3(2)
C(8)	22(2)	15(2)	18(2)	-5(2)	-8(2)	4(2)
C(9)	31(2)	16(2)	20(2)	0(2)	-5(2)	-5(2)
C(10)	25(2)	18(2)	19(2)	-1(2)	-2(2)	-9(2)
C(11)	21(2)	20(2)	15(2)	-6(2)	-5(2)	-4(2)
C(12)	19(2)	23(2)	22(2)	-6(2)	-2(2)	-3(2)
C(13)	21(2)	24(2)	19(2)	-2(2)	-5(2)	3(2)
C(14)	17(2)	24(2)	16(2)	0(2)	1(2)	1(2)
C(15)	18(2)	20(2)	17(2)	0(2)	1(2)	2(2)
C(16)	23(2)	26(2)	21(2)	-3(2)	-3(2)	-1(2)
C(17)	25(2)	20(2)	27(2)	-6(2)	0(2)	-3(2)
C(18)	20(2)	19(2)	22(2)	-2(2)	3(2)	1(2)
C(19)	14(2)	20(2)	15(2)	0(2)	3(1)	3(1)
C(20)	13(2)	19(2)	16(2)	2(2)	3(1)	3(1)
C(21)	20(2)	15(2)	21(2)	1(2)	2(2)	2(2)
C(22)	20(2)	20(2)	18(2)	-4(2)	1(2)	-3(2)
C(23)	21(2)	28(2)	13(2)	-3(2)	-2(2)	0(2)
C(24)	19(2)	24(2)	16(2)	4(2)	4(2)	4(2)
C(25)	26(2)	26(2)	21(2)	4(2)	3(2)	6(2)
C(26)	25(2)	19(2)	28(2)	2(2)	3(2)	5(2)
C(27)	13(2)	19(2)	22(2)	3(2)	-3(2)	1(1)
C(28)	19(2)	29(2)	24(2)	7(2)	-3(2)	4(2)

Table 4. Anisotropic displacement parameters (Å²x 10³) for PhP(CH₂Ar)₂(BH₃) (Ar = 5-bromo,6-acenaphthenyl),GLU395A. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

C(29)	26(2)	34(2)	28(2)	15(2)	-6(2)	-1(2)
C(30)	28(2)	25(2)	46(3)	14(2)	-17(2)	-7(2)
C(31)	27(2)	20(2)	43(3)	-6(2)	-9(2)	-1(2)
C(32)	24(2)	21(2)	24(2)	-2(2)	-6(2)	-3(2)

	Х	У	Z	U(eq)
	2000	(157	4650	20
H(IAA)	3009	6157	4658	30
H(IAB)	2420	/141	4556	30
H(IAC)	2306	5592	4494	30
H(1A)	3136	/954	/060	21
H(1B)	3063	6887	8017	21
H(3A)	3662	4895	7949	23
H(4A)	4634	3860	7757	23
H(9A)	4601	9309	4427	27
H(10A)	5570	8172	4376	25
H(12A)	6255	6385	5943	26
H(12B)	5980	5485	4944	26
H(13A)	5676	3978	6187	26
H(13B)	5931	4899	7187	26
H(14A)	1442	6317	7066	23
H(14B)	1883	7318	7752	23
H(16A)	1878	9466	7366	28
H(17A)	1507	11361	6482	29
H(22A)	362	6104	3490	23
H(23A)	125	8116	2616	25
H(25A)	-4	10843	3414	30
H(25B)	656	10832	2779	30
H(26A)	1097	12032	4168	28
H(26B)	450	11957	4841	28
H(28A)	2140	5065	8509	29
H(29A)	2256	2985	9288	36
H(30A)	2669	1284	8265	40
H(31A)	2974	1635	6446	36
H(32A)	2838	3701	5638	28

Table 5. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å² x 10³) for PhP(CH₂Ar)₂(BH₃) (Ar = 5-bromo,6-acenaphthenyl), GLU395A.
Table 1. Crystal data and structure refinement for P	h-PyraPhos(O) \bullet 0.5H ₂ O ₂ , glu397	7.
Identification code	glu397	
Empirical formula	C19 H16 O2 P	
Formula weight	307.29	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C 2/c	
Unit cell dimensions	a = 14.5181(6) Å	α= 90°.
	b = 9.0445(4) Å	β= 105.5400(10)°.
	c = 22.9130(9) Å	$\gamma = 90^{\circ}$.
Volume	2898.7(2) Å ³	
Ζ	8	
Density (calculated)	1.408 Mg/m ³	
Absorption coefficient	0.194 mm ⁻¹	
F(000)	1288	
Crystal size	$0.240 \ x \ 0.230 \ x \ 0.190 \ mm^3$	
Theta range for data collection	1.845 to 27.873°.	
Index ranges	-19<=h<=19, -10<=k<=11, -30)<=l<=28
Reflections collected	29611	
Independent reflections	3460 [R(int) = 0.0602]	
Completeness to theta = 25.000°	100.0 %	
Absorption correction	Multi-scan	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3460 / 0 / 202	
Goodness-of-fit on F ²	1.037	
Final R indices [I>2sigma(I)]	R1 = 0.0368, wR2 = 0.0965	
R indices (all data)	R1 = 0.0397, wR2 = 0.0987	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.477 and -0.383 e.Å ⁻³	

	Х	У	Z	U(eq)
	576(1)	5358(1)	3748(1)	11(1)
O(1)	893(1)	3806(1)	3692(1)	14(1)
O(2)	521(1)	2535(1)	2590(1)	22(1)
O(2)	321(1)	2333(1)	2390(1)	33(1)
C(12)	-888(1)	9204(2)	5586(1)	16(1)
C(11)	-1088(1)	8365(1)	4991(1)	14(1)
C(19)	-242(1)	7642(1)	4974(1)	12(1)
C(18)	-163(1)	6800(1)	4482(1)	12(1)
C(17)	720(1)	6136(1)	4490(1)	12(1)
C(1)	1167(1)	6607(1)	3355(1)	12(1)
C(6)	1990(1)	6120(1)	3208(1)	13(1)
C(5)	2482(1)	7069(2)	2919(1)	16(1)
C(4)	2151(1)	8499(2)	2778(1)	19(1)
C(13)	193(1)	8888(2)	5911(1)	15(1)
C(14)	532(1)	7857(1)	5486(1)	13(1)
C(15)	1389(1)	7179(2)	5498(1)	15(1)
C(16)	1484(1)	6320(2)	4995(1)	14(1)
C(7)	-722(1)	5699(2)	3485(1)	14(1)
C(8)	-959(1)	6649(1)	3971(1)	14(1)
C(10)	-1869(1)	8198(2)	4500(1)	16(1)
C(9)	-1801(1)	7335(2)	3987(1)	15(1)
C(3)	1336(1)	8998(2)	2924(1)	22(1)
C(2)	845(1)	8052(2)	3215(1)	18(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å² x 10³) for Ph-PyraPhos(O)•0.5H₂O₂, glu397. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

P(1)-O(1)	1.4937(9)	C(17)-C(16)	1.3825(18)
P(1)-C(17)	1.7982(13)	C(1)-C(2)	1.3964(18)
P(1)-C(1)	1.7999(13)	C(1)-C(6)	1.3971(17)
P(1)-C(7)	1.8445(13)	C(6)-C(5)	1.3928(18)
O(2)-O(2)#1	1.457(2)	C(5)-C(4)	1.387(2)
C(12)-C(11)	1.5205(18)	C(4)-C(3)	1.389(2)
C(12)-C(13)	1.5731(19)	C(13)-C(14)	1.5224(18)
C(11)-C(10)	1.3755(19)	C(14)-C(15)	1.3802(19)
C(11)-C(19)	1.4016(18)	C(15)-C(16)	1.4279(18)
C(19)-C(18)	1.3885(18)	C(7)-C(8)	1.5177(18)
C(19)-C(14)	1.4041(18)	C(8)-C(9)	1.3795(18)
C(18)-C(17)	1.4121(17)	C(10)-C(9)	1.4363(19)
C(18)-C(8)	1.4147(18)	C(3)-C(2)	1.3917(19)
O(1)-P(1)-C(17)	119.26(6)	C(2)-C(1)-P(1)	121.83(10)
O(1)-P(1)-C(1)	110.34(6)	C(6)-C(1)-P(1)	118.42(10)
C(17)-P(1)-C(1)	106.06(6)	C(5)-C(6)-C(1)	120.05(12)
O(1)-P(1)-C(7)	116.13(6)	C(4)-C(5)-C(6)	119.70(13)
C(17)-P(1)-C(7)	95.38(6)	C(5)-C(4)-C(3)	120.79(12)
C(1)-P(1)-C(7)	108.29(6)	C(14)-C(13)-C(12)	105.15(11)
C(11)-C(12)-C(13)	105.06(10)	C(15)-C(14)-C(19)	118.06(12)
C(10)-C(11)-C(19)	117.56(12)	C(15)-C(14)-C(13)	134.65(12)
C(10)-C(11)-C(12)	134.95(12)	C(19)-C(14)-C(13)	107.27(11)
C(19)-C(11)-C(12)	107.48(11)	C(14)-C(15)-C(16)	120.45(12)
C(18)-C(19)-C(11)	122.80(12)	C(17)-C(16)-C(15)	120.86(12)
C(18)-C(19)-C(14)	122.17(12)	C(8)-C(7)-P(1)	105.49(9)
C(11)-C(19)-C(14)	115.01(12)	C(9)-C(8)-C(18)	117.93(12)
C(19)-C(18)-C(17)	119.72(12)	C(9)-C(8)-C(7)	130.53(12)
C(19)-C(18)-C(8)	119.84(12)	C(18)-C(8)-C(7)	111.54(11)
C(17)-C(18)-C(8)	120.42(12)	C(11)-C(10)-C(9)	120.44(12)
C(16)-C(17)-C(18)	118.71(12)	C(8)-C(9)-C(10)	121.41(12)
C(16)-C(17)-P(1)	134.67(10)	C(4)-C(3)-C(2)	119.60(13)
C(18)-C(17)-P(1)	106.26(9)	C(3)-C(2)-C(1)	120.14(13)
C(2)-C(1)-C(6)	119.72(12)		

Table 3. Bond lengths [Å] and angles [deg] for Ph-PyraPhos(O) $\bullet 0.5 H_2 O_2, \, glu 397.$

Symmetry transformations used to generate equivalent atoms: #1 -x,y,-z+1/2

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
P(1)	11(1)	11(1)	10(1)	0(1)	3(1)	-1(1)
O(1)	15(1)	11(1)	15(1)	1(1)	3(1)	-1(1)
O(2)	34(1)	41(1)	21(1)	-7(1)	2(1)	21(1)
C(12)	19(1)	14(1)	17(1)	-1(1)	9(1)	-1(1)
C(11)	15(1)	13(1)	16(1)	2(1)	8(1)	-2(1)
C(19)	14(1)	12(1)	13(1)	2(1)	6(1)	-2(1)
C(18)	12(1)	13(1)	12(1)	2(1)	4(1)	-2(1)
C(17)	13(1)	14(1)	11(1)	1(1)	4(1)	-2(1)
C(1)	14(1)	12(1)	9(1)	-1(1)	3(1)	-3(1)
C(6)	15(1)	14(1)	9(1)	-2(1)	3(1)	-2(1)
C(5)	16(1)	22(1)	10(1)	-3(1)	5(1)	-7(1)
C(4)	26(1)	20(1)	12(1)	1(1)	4(1)	-11(1)
C(13)	18(1)	15(1)	14(1)	-1(1)	7(1)	-3(1)
C(14)	16(1)	14(1)	11(1)	1(1)	5(1)	-4(1)
C(15)	13(1)	19(1)	10(1)	0(1)	1(1)	-3(1)
C(16)	12(1)	17(1)	14(1)	1(1)	3(1)	0(1)
C(7)	11(1)	19(1)	12(1)	-1(1)	1(1)	-1(1)
C(8)	13(1)	15(1)	14(1)	2(1)	4(1)	-2(1)
C(10)	13(1)	17(1)	19(1)	4(1)	6(1)	1(1)
C(9)	10(1)	18(1)	15(1)	4(1)	1(1)	-2(1)
C(3)	30(1)	14(1)	21(1)	4(1)	6(1)	-2(1)
C(2)	21(1)	14(1)	19(1)	2(1)	7(1)	2(1)
C(2)	21(1)	14(1)	19(1)	2(1)	7(1)	2(1)

Table 4. Anisotropic displacement parameters (Å²x 10³) for Ph-PyraPhos(O)•0.5H₂O₂, glu397. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	х	У	Z	U(eq)
H(16)	617(17)	2950(30)	2957(11)	50
H(12A)	-1304	8845	5835	19
H(12B)	-999	10277	5514	19
H(6A)	2215	5140	3305	15
H(5A)	3042	6739	2818	19
H(4A)	2486	9144	2580	23
H(13A)	568	9817	5974	18
H(13B)	260	8411	6309	18
H(15A)	1919	7284	5844	17
H(16A)	2080	5869	5008	17
H(7A)	-886	6223	3091	17
H(7B)	-1080	4756	3437	17
H(10A)	-2458	8656	4500	19
H(9A)	-2347	7234	3651	18
H(3A)	1115	9980	2827	26
H(2A)	289	8390	3318	21

Table 5. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å²x 10 ³) for Ph-PyraPhos(O)•0.5H₂O₂, glu397.

0		
Identification code	glu421	
Empirical formula	C43 H48 F6 P4 Pt	
Formula weight	997.78	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 11.698(3) Å	<i>α</i> = 90°.
	b = 17.675(3) Å	β= 90°.
	c = 19.808(5) Å	$\gamma = 90^{\circ}$.
Volume	4095.7(15) Å ³	
Z	4	
Density (calculated)	1.618 Mg/m ³	
Absorption coefficient	3.640 mm ⁻¹	
F(000)	1992	
Crystal size	0.472 x 0.271 x 0.232 m	m ³
Theta range for data collection	2.305 to 28.307°.	
Index ranges	-15<=h<=15, -23<=k<=	20, -26<=l<=19
Reflections collected	23377	
Independent reflections	9979 [R(int) = 0.0671]	
Completeness to theta = 25.000°	99.8 %	
Absorption correction	Analytical	
Refinement method	Full-matrix least-squares	s on F ²
Data / restraints / parameters	9979 / 0 / 491	
Goodness-of-fit on F ²	0.888	
Final R indices [I>2sigma(I)]	R1 = 0.0413, wR2 = 0.0	803
R indices (all data)	R1 = 0.0524, wR2 = 0.0	855
Absolute structure parameter	0.003(6)	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.117 and -1.113 e.Å ⁻³	

Table 1. Crystal data and structure refinement for $[Pt((R,R)-Me-DuPhos)(\kappa^2-(P,C)-5-PPh_2CH_2-6-C_{12}H_8)][PF_6]$, glu421.

	х	у	Z	U(eq)
 Pt(1)	5646(1)	4319(1)	2297(1)	11(1)
P(1)	3753(2)	4581(1)	2462(1)	13(1)
P(2)	5851(2)	4517(1)	1148(1)	12(1)
P(3)	7522(2)	3898(1)	2232(1)	16(1)
C(1)	7840(7)	3681(5)	1350(4)	16(2)
C(2)	8829(8)	3301(5)	1160(4)	20(2)
C(3)	9060(8)	3180(5)	479(4)	20(2)
C(4)	8315(8)	3466(5)	-5(4)	22(2)
C(5)	7360(8)	3852(6)	178(4)	23(2)
C(6)	7097(8)	3985(5)	864(4)	16(2)
C(7)	4707(7)	4339(5)	527(3)	16(2)
C(8)	4518(9)	3529(5)	322(4)	24(2)
C(9)	4899(8)	4926(5)	-45(4)	20(2)
C(10)	5266(7)	5670(6)	297(3)	21(2)
C(11)	6124(7)	5508(4)	878(3)	14(2)
C(12)	6006(9)	6086(5)	1453(4)	23(2)
C(13)	8073(8)	3084(5)	2728(5)	24(2)
C(14)	7189(9)	2604(5)	3086(5)	31(2)
C(15)	8996(8)	3414(6)	3187(4)	28(2)
C(16)	9591(8)	4059(5)	2813(4)	29(2)
C(17)	8694(9)	4572(5)	2485(4)	23(2)
C(18)	9158(9)	5057(5)	1918(4)	28(2)
C(19)	5606(8)	4167(4)	3352(3)	12(2)
C(20)	6505(7)	4483(5)	3723(4)	18(2)
C(21)	6705(7)	4336(6)	4415(3)	19(2)
C(22)	6005(7)	3854(5)	4748(4)	17(2)
C(23)	5957(8)	3591(5)	5485(4)	23(2)
C(24)	5000(8)	2984(5)	5486(4)	17(2)
C(25)	4358(9)	3108(4)	4826(3)	16(2)
C(26)	5045(8)	3558(5)	4404(4)	14(2)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å² x 10³) for [Pt((*R*,*R*)-Me-DuPhos)(κ^2 -(P,C)-5-PPh₂CH₂-6-C₁₂H₈)][PF₆], glu421. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(27)	4779(7)	3744(4)	3724(4)	12(2)
C(28)	3657(7)	3498(5)	3514(3)	14(2)
C(29)	2968(8)	3092(5)	3938(4)	17(2)
C(30)	3322(8)	2863(5)	4592(4)	18(2)
C(31)	3161(8)	3714(5)	2829(4)	20(2)
C(32)	2809(7)	4760(5)	1754(4)	15(2)
C(33)	2249(7)	4176(5)	1419(4)	19(2)
C(34)	1649(7)	4327(7)	818(4)	26(2)
C(35)	1625(8)	5035(6)	551(4)	26(2)
C(36)	2164(7)	5630(6)	891(4)	24(2)
C(37)	2738(8)	5497(5)	1490(4)	22(2)
C(38)	3496(8)	5384(5)	3024(4)	18(2)
C(39)	2394(8)	5557(6)	3234(4)	25(2)
C(40)	2204(9)	6185(6)	3641(4)	30(2)
C(41)	3115(9)	6653(6)	3827(4)	29(2)
C(42)	4206(10)	6494(5)	3599(4)	31(2)
C(43)	4416(9)	5858(5)	3196(4)	22(2)
P(4)	8445(2)	6860(2)	3197(1)	26(1)
F(1)	8062(7)	6567(4)	2490(3)	60(2)
F(2)	8875(6)	7639(3)	2861(3)	43(2)
F(3)	9683(6)	6509(4)	3081(4)	62(2)
F(4)	8840(7)	7173(4)	3916(3)	54(2)
F(5)	8005(8)	6105(4)	3551(3)	64(2)
F(6)	7218(6)	7241(4)	3324(3)	49(2)

Pt(1)-C(19)	2.107(6)	C(20)-C(21)	1.416(10)
Pt(1)-P(1)	2.286(2)	C(21)-C(22)	1.353(12)
Pt(1)-P(2)	2.3146(18)	C(22)-C(26)	1.414(12)
Pt(1)-P(3)	2.321(2)	C(22)-C(23)	1.532(10)
P(1)-C(32)	1.813(8)	C(23)-C(24)	1.552(12)
P(1)-C(38)	1.828(9)	C(24)-C(25)	1.523(11)
P(1)-C(31)	1.832(9)	C(25)-C(30)	1.367(13)
P(2)-C(6)	1.824(9)	C(25)-C(26)	1.407(11)
P(2)-C(7)	1.845(7)	C(26)-C(27)	1.422(10)
P(2)-C(11)	1.859(8)	C(27)-C(28)	1.444(11)
P(3)-C(1)	1.827(8)	C(28)-C(29)	1.368(11)
P(3)-C(13)	1.858(8)	C(28)-C(31)	1.525(10)
P(3)-C(17)	1.884(10)	C(29)-C(30)	1.421(11)
C(1)-C(2)	1.389(12)	C(32)-C(33)	1.391(12)
C(1)-C(6)	1.405(11)	C(32)-C(37)	1.407(12)
C(2)-C(3)	1.394(11)	C(33)-C(34)	1.406(11)
C(3)-C(4)	1.390(12)	C(34)-C(35)	1.359(15)
C(4)-C(5)	1.358(13)	C(35)-C(36)	1.398(14)
C(5)-C(6)	1.413(10)	C(36)-C(37)	1.383(11)
C(7)-C(8)	1.505(12)	C(38)-C(39)	1.388(12)
C(7)-C(9)	1.553(11)	C(38)-C(43)	1.406(12)
C(9)-C(10)	1.541(13)	C(39)-C(40)	1.390(13)
C(10)-C(11)	1.553(11)	C(40)-C(41)	1.398(15)
C(11)-C(12)	1.537(10)	C(41)-C(42)	1.383(15)
C(13)-C(14)	1.514(13)	C(42)-C(43)	1.400(12)
C(13)-C(15)	1.526(13)	P(4)-F(1)	1.559(6)
C(15)-C(16)	1.527(13)	P(4)-F(3)	1.592(8)
C(16)-C(17)	1.531(13)	P(4)-F(5)	1.593(7)
C(17)-C(18)	1.514(11)	P(4)-F(4)	1.597(6)
C(19)-C(20)	1.399(11)	P(4)-F(6)	1.605(7)
C(19)-C(27)	1.427(11)	P(4)-F(2)	1.610(6)
C(19)-Pt(1)-P(1)	82.1(2)	P(1)-Pt(1)-P(2)	102.17(7)
C(19)-Pt(1)-P(2)	175.1(3)	C(19)-Pt(1)-P(3)	92.0(2)

Table 3. Bond lengths [Å] and angles [deg] for $[Pt((R,R)-Me-DuPhos)(\kappa^2-(P,C)-5-PPh_2CH_2-6-C_{12}H_8)][PF_6]$, glu421.

P(1)-Pt(1)-P(3)	171.44(7)	C(12)-C(11)-P(2)	113.4(5)
P(2)-Pt(1)-P(3)	84.06(7)	C(10)-C(11)-P(2)	106.0(6)
C(32)-P(1)-C(38)	103.7(4)	C(14)-C(13)-C(15)	114.8(8)
C(32)-P(1)-C(31)	102.8(4)	C(14)-C(13)-P(3)	116.3(7)
C(38)-P(1)-C(31)	110.3(4)	C(15)-C(13)-P(3)	105.3(6)
C(32)-P(1)-Pt(1)	120.9(3)	C(13)-C(15)-C(16)	108.6(7)
C(38)-P(1)-Pt(1)	113.8(3)	C(15)-C(16)-C(17)	109.6(8)
C(31)-P(1)-Pt(1)	104.7(3)	C(18)-C(17)-C(16)	113.9(8)
C(6)-P(2)-C(7)	106.6(4)	C(18)-C(17)-P(3)	115.0(6)
C(6)-P(2)-C(11)	105.0(4)	C(16)-C(17)-P(3)	103.7(6)
C(7)-P(2)-C(11)	95.4(4)	C(20)-C(19)-C(27)	116.6(6)
C(6)-P(2)-Pt(1)	108.0(3)	C(20)-C(19)-Pt(1)	116.9(6)
C(7)-P(2)-Pt(1)	123.7(2)	C(27)-C(19)-Pt(1)	126.4(6)
C(11)-P(2)-Pt(1)	116.3(2)	C(19)-C(20)-C(21)	124.0(8)
C(1)-P(3)-C(13)	105.8(4)	C(22)-C(21)-C(20)	119.2(8)
C(1)-P(3)-C(17)	103.8(4)	C(21)-C(22)-C(26)	118.6(7)
C(13)-P(3)-C(17)	95.5(4)	C(21)-C(22)-C(23)	132.6(8)
C(1)-P(3)-Pt(1)	108.2(3)	C(26)-C(22)-C(23)	108.5(7)
C(13)-P(3)-Pt(1)	123.2(3)	C(22)-C(23)-C(24)	103.7(6)
C(17)-P(3)-Pt(1)	118.1(3)	C(25)-C(24)-C(23)	104.8(6)
C(2)-C(1)-C(6)	121.0(7)	C(30)-C(25)-C(26)	119.0(7)
C(2)-C(1)-P(3)	122.0(6)	C(30)-C(25)-C(24)	133.0(7)
C(6)-C(1)-P(3)	116.7(6)	C(26)-C(25)-C(24)	108.0(8)
C(1)-C(2)-C(3)	119.9(8)	C(25)-C(26)-C(22)	112.2(7)
C(4)-C(3)-C(2)	119.3(8)	C(25)-C(26)-C(27)	124.7(8)
C(5)-C(4)-C(3)	121.0(8)	C(22)-C(26)-C(27)	123.0(7)
C(4)-C(5)-C(6)	121.3(8)	C(26)-C(27)-C(19)	117.5(7)
C(1)-C(6)-C(5)	117.4(8)	C(26)-C(27)-C(28)	113.7(7)
C(1)-C(6)-P(2)	118.7(6)	C(19)-C(27)-C(28)	128.7(7)
C(5)-C(6)-P(2)	123.9(7)	C(29)-C(28)-C(27)	121.2(7)
C(8)-C(7)-C(9)	117.4(6)	C(29)-C(28)-C(31)	116.9(8)
C(8)-C(7)-P(2)	116.7(6)	C(27)-C(28)-C(31)	121.8(7)
C(9)-C(7)-P(2)	105.5(6)	C(28)-C(29)-C(30)	122.6(8)
C(10)-C(9)-C(7)	106.9(6)	C(25)-C(30)-C(29)	118.5(8)
C(9)-C(10)-C(11)	110.4(7)	C(28)-C(31)-P(1)	114.7(6)
C(12)-C(11)-C(10)	111.7(7)	C(33)-C(32)-C(37)	118.8(7)

C(33)-C(32)-P(1)	121.9(7)	F(1)-P(4)-F(3)	90.1(4)
C(37)-C(32)-P(1)	119.0(7)	F(1)-P(4)-F(5)	91.4(4)
C(32)-C(33)-C(34)	119.9(9)	F(3)-P(4)-F(5)	91.8(5)
C(35)-C(34)-C(33)	120.9(9)	F(1)-P(4)-F(4)	179.1(4)
C(34)-C(35)-C(36)	119.7(8)	F(3)-P(4)-F(4)	90.0(4)
C(37)-C(36)-C(35)	120.3(9)	F(5)-P(4)-F(4)	89.4(4)
C(36)-C(37)-C(32)	120.4(9)	F(1)-P(4)-F(6)	91.3(4)
C(39)-C(38)-C(43)	120.5(8)	F(3)-P(4)-F(6)	178.0(4)
C(39)-C(38)-P(1)	120.4(7)	F(5)-P(4)-F(6)	89.6(4)
C(43)-C(38)-P(1)	118.9(7)	F(4)-P(4)-F(6)	88.5(4)
C(38)-C(39)-C(40)	119.9(9)	F(1)-P(4)-F(2)	90.2(4)
C(39)-C(40)-C(41)	120.2(9)	F(3)-P(4)-F(2)	89.4(4)
C(42)-C(41)-C(40)	119.8(8)	F(5)-P(4)-F(2)	178.0(4)
C(41)-C(42)-C(43)	120.8(9)	F(4)-P(4)-F(2)	89.0(3)
C(42)-C(43)-C(38)	118.8(9)	F(6)-P(4)-F(2)	89.2(4)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Pt(1)	12(1)	11(1)	10(1)	2(1)	-1(1)	0(1)
P(1)	11(1)	15(1)	13(1)	2(1)	-1(1)	-3(1)
P(2)	13(1)	11(1)	11(1)	2(1)	-1(1)	0(1)
P(3)	19(1)	17(1)	13(1)	1(1)	-3(1)	6(1)
C(1)	14(5)	16(4)	18(4)	-5(3)	-2(3)	2(3)
C(2)	17(5)	16(4)	27(4)	-9(3)	-6(4)	2(4)
C(3)	14(5)	21(5)	26(4)	-9(3)	3(3)	5(4)
C(4)	24(5)	23(5)	19(4)	-5(3)	4(4)	3(4)
C(5)	21(5)	31(5)	17(4)	-6(4)	1(3)	5(4)
C(6)	18(5)	13(4)	18(4)	-3(3)	0(3)	0(4)
C(7)	16(4)	24(4)	9(3)	2(3)	-2(3)	-2(4)
C(8)	27(6)	23(5)	22(4)	-6(3)	1(4)	0(4)
C(9)	16(5)	30(5)	13(3)	4(3)	-2(3)	6(4)
C(10)	24(5)	24(4)	14(3)	6(4)	-1(3)	-2(4)
C(11)	15(4)	13(4)	13(3)	-1(3)	4(3)	-2(3)
C(12)	32(6)	11(4)	24(4)	-2(3)	2(4)	-4(4)
C(13)	27(5)	16(4)	29(4)	6(4)	-2(5)	7(4)
C(14)	40(7)	15(5)	39(5)	10(4)	-2(5)	-1(4)
C(15)	23(6)	38(6)	23(4)	15(4)	-10(4)	1(4)
C(16)	19(5)	35(5)	32(5)	2(4)	-5(4)	0(4)
C(17)	28(5)	23(5)	17(4)	1(3)	-1(3)	-1(4)
C(18)	26(6)	34(5)	25(4)	-2(4)	8(4)	-8(5)
C(19)	11(4)	13(4)	13(3)	-2(2)	-3(3)	3(4)
C(20)	17(5)	22(5)	14(3)	3(3)	0(3)	-3(4)
C(21)	14(4)	28(4)	16(3)	0(4)	-6(3)	9(4)
C(22)	17(5)	21(4)	12(3)	-1(3)	-1(3)	5(4)
C(23)	29(6)	27(5)	14(4)	1(3)	1(3)	5(4)
C(24)	20(5)	20(4)	12(3)	4(3)	0(3)	2(4)
C(25)	21(4)	16(4)	11(3)	-2(3)	6(4)	7(4)
C(26)	18(5)	12(4)	12(3)	1(3)	2(3)	3(3)
C(27)	12(4)	12(4)	12(3)	-2(3)	1(3)	0(3)
C(28)	16(5)	15(4)	9(3)	-2(3)	0(3)	0(4)
C(29)	17(5)	16(4)	16(4)	-1(3)	6(3)	-3(4)
C(30)	26(5)	12(4)	16(4)	4(3)	8(3)	1(4)

Table 4. Anisotropic displacement parameters (Å² x 10³) for [Pt((*R*,*R*)-Me-DuPhos)(κ^2 -(P,C)-5-PPh₂CH₂-6-C₁₂H₈)] [PF₆], glu421. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ...+ 2 h k a^{*} b^{*} U¹²]

C(31)	17(5)	27(5)	18(4)	5(3)	1(3)	-5(4)
C(32)	6(4)	24(5)	16(4)	2(3)	0(3)	0(3)
C(33)	17(5)	25(5)	16(3)	2(3)	1(3)	-5(4)
C(34)	14(5)	43(6)	21(4)	-2(5)	-4(3)	-8(5)
C(35)	20(5)	42(6)	16(4)	4(4)	-4(4)	9(4)
C(36)	21(5)	30(5)	21(4)	9(4)	4(3)	19(5)
C(37)	20(5)	22(5)	23(4)	-1(3)	5(3)	7(4)
C(38)	18(5)	26(5)	11(3)	1(3)	1(3)	1(4)
C(39)	21(5)	34(6)	21(4)	-2(4)	-4(3)	7(4)
C(40)	18(5)	41(6)	29(5)	-8(4)	4(4)	17(5)
C(41)	37(6)	27(5)	24(4)	-14(4)	-8(4)	11(5)
C(42)	29(6)	28(5)	35(5)	-10(4)	-14(5)	0(5)
C(43)	17(5)	23(5)	29(4)	-6(3)	-8(4)	2(4)
P(4)	27(2)	24(1)	28(1)	0(1)	-9(1)	-6(1)
F(1)	67(5)	72(5)	41(4)	-21(3)	-13(3)	-12(4)
F(2)	49(4)	36(4)	44(4)	10(3)	16(3)	4(3)
F(3)	48(5)	59(5)	79(5)	-6(4)	-22(4)	26(4)
F(4)	82(6)	46(4)	33(3)	-2(3)	-16(3)	-22(4)
F(5)	100(7)	28(4)	63(4)	1(3)	7(4)	-21(4)
F(6)	36(4)	56(5)	54(4)	4(3)	12(3)	5(3)

	X	у	Z	U(eq)
H(02)	9347	3125	1495	24
H(03)	9720	2905	346	24
H(04)	8476	3390	-470	26
H(05)	6860	4036	-162	28
H(07)	3984	4497	755	20
H(08A)	5169	3354	51	36
H(08B)	3816	3491	53	36
H(08C)	4447	3213	726	36
H(09A)	5502	4749	-358	23
H(09B)	4185	5002	-305	23
H(10A)	4584	5931	480	25
H(10B)	5627	6007	-40	25
H(11)	6918	5540	692	16
H(12A)	5226	6070	1633	34
H(12B)	6167	6595	1281	34
H(12C)	6550	5962	1813	34
H(13)	8473	2743	2401	29
H(14A)	6882	2884	3472	47
H(14B)	7545	2135	3244	47
H(14C)	6567	2483	2772	47
H(15A)	9558	3017	3306	34
H(15B)	8646	3605	3609	34
H(16A)	10104	3850	2463	34
H(16B)	10060	4356	3134	34
H(17)	8385	4916	2841	27
H(18A)	9498	4732	1571	42
H(18B)	9742	5401	2097	42
H(18C)	8534	5353	1720	42
H(20)	7012	4818	3496	21
H(21)	7323	4573	4643	23
H(23A)	5762	4016	5789	28
H(23B)	6697	3371	5627	28
H(24B)	5330	2468	5503	21

Table 5. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å² x 10³) for [Pt((*R*,*R*)-Me-DuPhos)(κ^2 -(P,C)-5-PPh₂CH₂-6-C₁₂H₈)][PF₆], glu421.

H(24A)	4485	3052	5877	21
H(29)	2223	2958	3788	20
H(30)	2851	2546	4862	21
H(31A)	2324	3776	2877	24
H(31B)	3294	3292	2510	24
H(33)	2271	3677	1595	23
H(34)	1255	3928	596	31
H(35)	1244	5126	136	31
H(36)	2135	6127	710	29
H(37)	3087	5906	1723	26
H(39)	1772	5246	3100	30
H(40)	1453	6297	3794	35
H(41)	2985	7079	4109	35
H(42)	4820	6819	3718	37
H(43)	5167	5748	3042	27

References

- 1. R. L. Letsinger, J. A. Gilpin, and W. J. Vullo, J. Org. Chem., 1962, 27, 672-674.
- 2. (a) K. S. Feldman, R. F. Campbell, J. C. Saunders, C. Ahn and K. M. Masters, J. Org. Chem., 1997,

62, 8814-8820. (b) K. S. Feldman, personal communication, 2008.

- 3. (a) R. J. Bailey, P. Card, and H. Shechter, J. Am. Chem. Soc., 1983, 105, 6096-6103. (b) Ref 2
- 4. C. R. Hilliard, N. Bhuvanesh, J. A. Gladysz and J. Blumel, Dalton Trans., 2012, 41, 1742-1754.
- 5. D. K. Wicht, M. A. Zhuravel, R. V. Gregush, D. S. Glueck, I. A. Guzei, L. M. Liable-Sands and A.
- L. Rheingold, Organometallics, 1998, 17, 1412-1419.