Three Bonding Modes of Bis(2-picolyl)phenylphosphine at Iron: Isolation of a Dinuclear Iron Complex Featuring Dearomatized Pyridine Moieties.

Guanghua Jin, Laure Vendier, Yannick Coppel, Sylviane Sabo-Etienne* and Sébastien Bontemps*

CNRS, LCC (Laboratoire de Chimie de Coordination), BP 44099, 205 route de Narbonne, F-31077 Toulouse Cedex 4, France. Université de Toulouse, UPS, INPT, F-31077 Toulouse, France.

Content

	Figure S1. ¹ H NMR spectrum (500.4 MHz, 230 K, Tol-D ₈) of complex 1	2
	Figure S2. ¹ H NMR spectrum (500.4 MHz, 230 K, Tol-D ₈) of complex 1 (increased intensity)	2
	Figure S3. MAS ³¹ P NMR spectra (161.8 MHz) of NPN (280 K), compounds 3 (280 K), 2 (289 K), and 1 (from top to bottom) in the solid state	1 (289 K)
	Figure S4. MAS ³¹ P NMR spectrum (161.8 MHz, 289 K) of 1 in the solid state, the peak for 1 is at linewidth is 13.7 KHz.	39 ppm,
	Figure S5. ATR IR spectrum of 1	4
	Figure S6. ¹ H NMR spectrum (500.4 MHz, Tol-D ₈ , 301 K) of complex 2	4
	Figure S7. MAS ³¹ P NMR spectrum (161.8 MHz, 289 K) of 2 in the solid state, the peak for 2 is at 4 linewidth is 13.0 KHz.	1.4 ppm,
	Figure S8. Time dependence of MAS ³¹ P NMR spectra (161.8 MHz, 289 K) of 2 in the solid state. Within the signal for free NPN decreased while the signal for compound 3 increased	n 5 hours, 5
	Figure S9. MAS ¹³ C NMR spectrum (100.5 MHz, 289 K) for 2 in the solid state	6
	Figure S10. ATR IR spectrum of 2	6
	Figure S11. ¹ H NMR spectrum (500.3 MHz, Tol-D ₈ , 240K) of complex 3	7
	Figure S12. ¹³ C{ ¹ H} NMR spectrum (125.8 MHz) of complex 3 , in Tol-D ₈ , at 240 K	7
	Figure S13. MAS ³¹ P{ ¹ H} NMR spectrum (161.8 MHz, 280K) of 3 in the solid state	8
	Figure S14. ATR IR spectrum of 3	8
X-Ray Da	ta	9
	Table 1. Selected bond lengths (Å) and angles (deg) for complexes 1, 2 ^a , and 3.	9

Figure S1.¹H NMR spectrum (500.4 MHz, 230 K, Tol-D₈) of complex 1

Figure S2. ¹H NMR spectrum (500.4 MHz, 230 K, Tol-D₈) of complex 1 (increased intensity)

Figure S3. MAS ³¹P NMR spectra (161.8 MHz) of NPN (280 K), compounds **3** (280 K), **2** (289 K), and **1** (289 K) (from top to bottom) in the solid state

Figure S4. MAS ³¹P NMR spectrum (161.8 MHz, 289 K) of **1** in the solid state, the peak for **1** is at 39 ppm, linewidth is 13.7 KHz

Figure S6. ¹H NMR spectrum (500.4 MHz, Tol-D₈, 301 K) of complex 2

Figure S7. MAS ³¹P NMR spectrum (161.8 MHz, 289 K) of **2** in the solid state, the peak for **2** is at 41.4 ppm, linewidth is 13.0 KHz

Figure S8. Time dependence of MAS ³¹P NMR spectra (161.8 MHz, 289 K) of **2** in the solid state. Within 5 hours, the signal for free NPN decreased while the signal for compound **3** increased

Figure S9. MAS ¹³C NMR spectrum (100.5 MHz, 289 K) for 2 in the solid state

Figure S10. ATR IR spectrum of 2

− 5555 − 55555 − 200

Figure S12. ¹³C{¹H} NMR spectrum (125.8 MHz) of complex **3**, in Tol-D₈, at 240 K

Figure S13. MAS ${}^{31}P{}^{1}H$ NMR spectrum (161.8 MHz, 280K) of **3** in the solid state

Figure S14. ATR IR spectrum of 3

X-Ray Data

	Co	omplex1					
Fe(1)-N(1)	2.2236(12)	Fe(1)-N(2)	1.9663(11)				
Fe(1)-N(3)	1.9799(11)	Fe(1)-P(1)	2.5579(4)				
C(1)-C(2)	1.500(2)	C(7-C(8)	1.498(2)				
N(1)-Fe(1)-N(2)	122.52(5)	N(1)-Fe(1)-N(3)	99.66(5)				
N(1)-Fe(1)-P(1)	75.03(3)	N(2)-Fe(1)-N(3)	124.28(5)				
N(2)-Fe(1)-P(1)	100.73(3)	N(3)-Fe(1)-P(1)	125.98(4)				
C(2)-C(1)-P(1)	109.04(10)	C(8)-C(7)-P(1)	116.36(10)				
Complex 2							
Fe(1)-N(1)	2.0654(15)	Fe(1)-N(2)	2.1548(15)				
Fe(1)-N(3)	1.9499(15)	Fe(1)-P(1)	2.4387(5)				
C(5)-C(6)	1.389(3)	C(6)-P(1)	1.7524(19)				
C(17)-C(18)	1.502(2)	C(18)-P(1) ^{#1}	1.8530(18)				
N(1)-Fe(1)-N(2)	101.50(6)	N(1)-Fe(1)-N(3)	132.71(6)				
N(1)-Fe(1)-P(1)	82.49(4)	N(2)-Fe(1)-N(3)	105.72(6)				
N(2)-Fe(1)-P(1)	121.53(4)	N(3)-Fe(1)-P(1)	113.30(5)				
C(5)-C(6)-P(1)	119.47(14)	C(17)-C(18)-P(1) ^{#1}	113.51(12)				
Complex 3							
Fe(1)-P(1)	2.1564(9)	P(2)-Fe(1)	2.1547(9)				
N(1)-Fe(1)	2.046(2)	N(2)-Fe(1)	2.011(2)				
N(3)-Fe(1)	2.013(2)	N(4)-Fe(1)	2.058(2)				
C(1)-C(2)	1.499(4)	C(7)-C(8)	1.396(4)				
C(19)-C(20)	1.399(4)	C(25)-C(26)	1.491(4)				
P(2)-Fe(1)-P(1)	96.80(3)	N(1)-Fe(1)-P(1)	82.28(7)				
N(2)-Fe(1)-P(1)	84.75(7)	N(3)-Fe(1)-P(1)	93.34(8)				
N(4)-Fe(1)-P(1)	177.73(8)	N(1)-Fe(1)-P(2)	179.07(8)				
N(2)-Fe(1)-P(2)	93.50(7)	N(3)-Fe(1)-P(2)	85.12(8)				

Table 1. Selected bond lengths (Å) and angles (deg) for complexes $1, 2^{a}$, and 3.

N(4)-Fe(1)-P(2)	81.13(7)	N(2)-Fe(1)-N(1)	86.27(10)
N(3)-Fe(1)-N(1)	95.07(10)	N(1)-Fe(1)-N(4)	99.79(10)
N(2)-Fe(1)-N(3)	177.51(10)	N(2)-Fe(1)-N(4)	96.30(10)
N(3)-Fe(1)-N(4)	85.56(10)		

^aSymmetry codes: #1 –x+1, -y, -z