Supporting Information

Meso enyne substituted BODIPYs: synthesis, structure

and properties

Bhausaheb Dhokale, Thaksen Jadhav, Shaikh M. Mobin, and Rajneesh Misra*

*E-mail: rajneeshmisra@iiti.ac.in

Department of Chemistry, Indian Institute of Technology Indore, Indore- 452 017, India.

Table of Contents

I.	Experimental Details S3
II.	Photophysical Data·····S4
III.	Electrochemical Data S9
IV.	Crystallographic data·····S11
V.	Theoretical CalculationsS22
VI.	Copies of ¹ H NMR, ¹³ C NMR, ¹⁹ F NMR, ¹¹ B NMR and HRMS Spectra······S30

Table S1. Optimization of reaction conditions for synthesis of BODIPY 3a (Method B)^a.

Sr. No.	Solvent	Base	$Pd(PPh_3)_2Cl_2$	CuI	Yield
1	Tetrahydrofuran	TEA	5 mol %	10 mol %	60 % (89 mg)
2	Toluene	TEA	5 mol %	10 mol %	57 % (84 mg)
3	Dichloromethane	TEA	5 mol %	10 mol %	57 % (84 mg)
4	Tetrahydrofuran	TEA	-	10 mol %	No expected product
5	Tetrahydrofuran	TEA	5 mol %	-	No expected product

[a] Pd-Cu catalyzed hydroalkynylation reaction across –C=C– bond; all reactions were performed in inert atmosphere.

Figure S1. Electronic absorption spectra of BODIPYs 1, 2b, 3b and 4b recorded in toluene.

Figure S2. Electronic absorption spectra of BODIPYs 1, 2c and 4c recorded in toluene.

Figure S3. Normalized emission spectra of BODIPYs 1, 2b, 3b and 4b recorded in toluene.

Figure S4. Normalized electronic absorption spectra of BODIPY 2a in different solvents (Insec shows enlarged view).

Figure S5. Normalized electronic absorption spectra of BODIPY 3a in different solvents (Insec shows enlarged view).

Figure S6. Normalized electronic absorption spectra of BODIPY 4a in different solvents (Insec shows enlarged view).

Figure S7. Normalized emission spectra of BODIPY 2a in different solvents.

Figure S8. Normalized emission spectra of BODIPY 3a in different solvents.

Figure S9. Normalized emission spectra of BODIPY 4a in different solvents.

Electrochemical Data

Figure S10. CV and DPV plots of BODIPY 3a.

Figure S11. CV and DPV plots of BODIPY 3b.

Figure S12. CV and DPV plots of BODIPY 4a.

Figure S13. CV and DPV plots of BODIPY 4b.

Single Crystal X-ray Diffraction Studies.

Single crystal X-ray structural studies of 2a, 3b and 3a were performed on a CCD Agilent Technologies (Oxford Diffraction) SUPER NOVA diffractometer. Data were collected at 293(2) K using graphite-monochromated Mo K α radiation ($\lambda_{\alpha} = 0.71073$ Å). The strategy for the Data collection was evaluated by using the CrysAlisPro CCD software. The data were collected by the standard 'phi-omega scan techniques, and were scaled and reduced using CrysAlisPro RED software. The structures were solved by direct methods using SHELXS-97, and refined by full matrix least-squares with SHELXL-97, refining on $F^{2.1}$. The positions of all the atoms were obtained by direct methods. All non-hydrogen atoms were refined anisotropically. The remaining hydrogen atoms were placed in geometrically constrained positions, and refined with isotropic temperature factors, generally $1.2U_{eq}$ of their parent atoms. The crystal, and refinement data are summarized in Table 1. The CCDC numbers 1018403 – 1018405 for 2a, 3b and 4a respectively and 1041639 for 2d contain the supplementary crystallographic data. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 union Road, Cambridge CB21 EZ, UK; Fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).

BODIPY	2a	3b	4a	2d
Empirical formula	C ₆₉ H ₄₅ B ₃ F ₆ N ₆	C ₃₃ H ₂₁ B F ₂ N ₂	C ₃₅ H ₂₅ B F ₂ Fe N ₂	C ₁₇ H ₁₁ B F ₂ N ₂
Formula weight	1104.54	494.33	578.23	292.09
Temperature/K	150(2) K	150(2) K	150(2) K	273(2)
Crystal system	Monoclinic	Triclinic	Triclinic	Monoclinic
Space group	<i>C</i> 2/c	<i>P</i> -1	<i>P</i> -1	$P2_{1}/c$
Unit cell dimensions				
a/Å	a = 17.0474(6)	a = 9.3787(5)	a = 9.0180(3)	a = 8.9615(3)
α/°	90	97.430(5)	75.968(4)	90
b/ Å	b = 13.3497(4)	b = 9.6798(8)	b = 9.7850(4)	b = 10.2059(2)
β/°	91.859 (3)	90.537(4)	86.559(3)	105.796(3)
c/ Å	c = 49.6003(15)	c = 14.6648(8)	c = 17.3902(7)	c = 15.7879(4)
$\gamma/^{\circ}$	90	107.816(6)	70.319(4)	90
Volume/ Å ³	11282.0(6)	1255.15(14)	1401.38(9)	1389.44(6)
Z	8	2	2	4
Calculated density/ Mg/m ³	1.301	1.308	1.370	1.396
Absorption coefficient/mm ⁻¹	0.090	0.086	0.579	0.840
F(000)	4560	512	596	600
Crystal size/mm	0.31 x 0.18 x 0.13	0.23 x 0.18 x 0.13	0.33 x 0.26 x 0.21	0.33 x 0.26 x 0.21
θ range from data collection/°	3.08 to 25.00	3.09 to 25.00	3.15 to 25.00	5.13 to 71.34
Deflections collected/unique	38792 / 9903	9380 / 4415	9666 / 4930	8592 / 2672
Reflections conected/unique	[R(int) = 0.0571]	[R(int) = 0.0355]	[R(int) = 0.0227]	[R(int) = 0.0204]
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents
Data/restraints/parameters	9903 / 0 / 758	4415/0/343	4930 / 0 / 370	2672/0/199
Goodness-of-fit on F^2	1.040	1.044	1.080	1.075
	$R_1 = 0.0626$,	$R_1 = 0.0500$,	$R_1 = 0.0347$,	$R_1 = 0.0363$,
Final <i>R</i> indices $[I > 2\sigma(I)]$	$wR_2 = 0.1305$	$wR_2 = 0.1044$	$wR_2 = 0.0911$	$wR_2 = 0.0956$
$\mathbf{D} = 1 + $	$R_1 = 0.0984$,	$R_1 = 0.0938$,	$R_1 = 0.0380$,	$R_1 = 0.0377$,
k indices (all data)	$wR_2 = 0.1526$	$wR_2 = 0.1259$	$wR_2 = 0.0942$	$wR_2 = 0.0968$
Largest diff. peak and hole/e Å ⁻³	0.195 and -0.164	0.139 and -0.169	0.275 and -0.340	0.220 and -0.231
CCDC number	1018403	1018404	1018405	1041639

Table S2. Crystal structure and data refinement parameters

Figure S14. Crystal structure of BODIPY **2a** showing three molecules (**A**, **B**, **C**) in an

asymmetric unit

Crystal structure of BODIPY **3b**

Figure S18. Crystal Structure of BODIPY 2d.

Figure S20. Comparison of selected bond lengths of the crystal structures of BODIPYs 2a, 3b, 4a and 2d (A, B and C represent three different molecules in an asymmetric unit of 2a).

Figure S21. Comparison of selected bond angles of the crystal structures of BODIPYs 2a, 3b, 4a and 2d (A, B and C represent three different molecules in an asymmetric unit of 2a).

Table S3. Selected bond lengths [A] and angles [deg] for the crystal structure of 2a.

B(1)-F(1)	1.380(4)	F(1)-B(1)-F(2)	109.2(3)	N(5)-C(47)-C(48)	110.5(3)
B(1)-F(2)	1.391(4)	F(1)-B(1)-N(2)	110.1(3)	C(49)-C(48)-C(47)	106.9(3)
B(1)-N(2)	1.540(5)	F(2)-B(1)-N(2)	110.2(3)	C(48)-C(49)-C(50)	107.4(3)
B(1)-N(1)	1.541(4)	F(1)-B(1)-N(1)	110.5(3)	N(5)-C(50)-C(51)	120.4(3)
B(2)-F(4)	1.369(3)	F(2)-B(1)-N(1)	109.8(3)	N(5)-C(50)-C(49)	108.1(3)
B(2)-F(3)	1.388(4)	N(2)-B(1)-N(1)	107.0(2)	C(51)-C(50)-C(49)	131.5(3)
B(2)-N(4)	1.545(4)	F(4)-B(2)-F(3)	110.0(2)	C(52)-C(51)-C(50)	120.9(3)
B(2)-N(3)	1.546(4)	F(4)-B(2)-N(4)	111.0(3)	C(52)-C(51)-C(56)	119.9(3)
B(3)-F(6)	1.376(4)	F(3)-B(2)-N(4)	109.2(3)	C(50)-C(51)-C(56)	119.2(3)
B(3)-F(5)	1.393(4)	F(4)-B(2)-N(3)	110.9(3)	N(6)-C(52)-C(51)	120.4(3)
B(3)-N(5)	1.538(4)	F(3)-B(2)-N(3)	109.7(2)	N(6)-C(52)-C(53)	108.1(3)
B(3)-N(6)	1.544(4)	N(4)-B(2)-N(3)	105.8(2)	C(51)-C(52)-C(53)	131.4(3)
N(1)-C(1)	1.341(4)	F(6)-B(3)-F(5)	109.4(3)	C(54)-C(53)-C(52)	107.4(3)
N(1)-C(4)	1.395(3)	F(6)-B(3)-N(5)	110.7(3)	C(53)-C(54)-C(55)	107.2(3)
N(2)-C(9)	1.343(4)	F(5)-B(3)-N(5)	109.6(3)	N(6)-C(55)-C(54)	110.2(3)
N(2)-C(6)	1.386(4)	F(6)-B(3)-N(6)	111.2(3)	C(57)-C(56)-C(51)	177.6(3)
N(3)-C(32)	1.337(4)	F(5)-B(3)-N(6)	109.6(3)	N(4)-C(24)-C(25)	111.0(3)
N(3)-C(29)	1.392(3)	N(5)-B(3)-N(6)	106.4(2)	C(26)-C(25)-C(24)	106.8(3)
N(4)-C(24)	1.349(4)	C(1)-N(1)-C(4)	106.8(2)	C(25)-C(26)-C(27)	107.2(3)

N(4)-C(27)	1.384(3)	C(1)-N(1)-B(1)	127.5(3)	N(4)-C(27)-C(26)	108.9(3)
N(5)-C(47)	1.342(4)	C(4)-N(1)-B(1)	125.7(3)	N(4)-C(27)-C(28)	120.4(3)
N(5)-C(50)	1.389(3)	C(9)-N(2)-C(6)	107.2(3)	C(26)-C(27)-C(28)	130.7(3)
N(6)-C(55)	1.351(4)	C(9)-N(2)-B(1)	127.1(3)	C(29)-C(28)-C(27)	120.6(2)
N(6)-C(52)	1.386(3)	C(6)-N(2)-B(1)	125.7(3)	C(29)-C(28)-C(33)	121.1(3)
C(1)-C(2)	1.393(4)	C(32)-N(3)-C(29)	107.6(2)	C(27)-C(28)-C(33)	118.3(3)
C(2)-C(3)	1.369(4)	C(32)-N(3)-B(2)	126.8(3)	C(28)-C(29)-N(3)	120.2(2)
C(3)-C(4)	1.408(4)	C(29)-N(3)-B(2)	125.4(2)	C(28)-C(29)-C(30)	131.8(3)
C(3)-H(3)	0.9500	C(24)-N(4)-C(27)	106.1(3)	N(3)-C(29)-C(30)	107.8(2)
C(4)-C(5)	1.394(4)	C(24)-N(4)-B(2)	128.3(3)	C(31)-C(30)-C(29)	107.1(3)
C(5)-C(6)	1.409(4)	C(27)-N(4)-B(2)	125.1(2)	C(30)-C(31)-C(32)	107.5(3)
C(5)-C(10)	1.421(4)	C(47)-N(5)-C(50)	107.1(3)	N(3)-C(32)-C(31)	110.0(3)
C(6)-C(7)	1.397(4)	C(47)-N(5)-B(3)	127.3(3)	C(34)-C(33)-C(28)	174.2(3)
C(7)-C(8)	1.375(5)	C(50)-N(5)-B(3)	125.5(3)	C(33)-C(34)-C(35)	178.1(3)
C(8)-C(9)	1.382(5)	C(55)-N(6)-C(52)	107.1(3)		
C(25)-C(26)	1.373(5)	C(55)-N(6)-B(3)	127.3(3)		
C(26)-C(27)	1.394(4)	C(52)-N(6)-B(3)	125.5(3)		
C(27)-C(28)	1.413(4)	N(1)-C(1)-C(2)	110.6(3)		
C(28)-C(29)	1.389(4)	C(3)-C(2)-C(1)	107.2(3)		
C(28)-C(33)	1.419(4)	C(2)-C(3)-C(4)	107.2(3)		
C(47)-C(48)	1.391(5)	C(5)-C(4)-N(1)	120.1(3)		
C(48)-C(49)	1.373(5)	C(5)-C(4)-C(3)	131.6(3)		
C(49)-C(50)	1.403(4)	N(1)-C(4)-C(3)	108.2(3)		
C(50)-C(51)	1.397(4)	C(4)-C(5)-C(6)	121.1(3)		
C(51)-C(52)	1.392(4)	C(4)-C(5)-C(10)	121.0(3)		
C(51)-C(56)	1.428(4)	C(6)-C(5)-C(10)	117.9(3)		
		N(2)-C(6)-C(7)	108.3(3)		
		N(2)-C(6)-C(5)	120.2(3)		
		C(7)-C(6)-C(5)	131.4(3)		
		C(8)-C(7)-C(6)	107.0(3)		
		C(7)-C(8)-C(9)	107.5(4)		
		N(2)-C(9)-C(8)	110.1(3)		
		C(11)-C(10)-C(5)	172.0(3)		
		C(10)-C(11)-C(12)	174.9(3)		

 Table S4.
 Selected bond lengths [A] and angles [deg] for the crystal structure of 3b.

F(1)-B(1)	1.393(3)	F(2)-B(1)-F(1)	109.52(19)
F(2)-B(1)	1.377(3)	F(2)-B(1)-N(1)	110.8(2)
B(1)-N(1)	1.541(4)	F(1)-B(1)-N(1)	109.8(2)
B(1)-N(2)	1.546(4)	F(2)-B(1)-N(2)	110.9(2)
N(1)-C(9)	1.341(3)	F(1)-B(1)-N(2)	109.6(2)
N(1)-C(6)	1.396(3)	N(1)-B(1)-N(2)	106.14(18)
N(2)-C(1)	1.346(3)	C(9)-N(1)-C(6)	107.1(2)
N(2)-C(4)	1.396(3)	C(9)-N(1)-B(1)	126.9(2)
C(1)-C(2)	1.394(3)	C(6)-N(1)-B(1)	126.0(2)
C(2)-C(3)	1.373(3)	C(1)-N(2)-C(4)	107.3(2)
C(3)-C(4)	1.405(3)	C(1)-N(2)-B(1)	127.3(2)
C(4)-C(5)	1.395(3)	C(4)-N(2)-B(1)	125.2(2)
C(5)-C(6)	1.401(3)	N(2)-C(1)-C(2)	110.5(2)
C(5)-C(10)	1.468(3)	C(3)-C(2)-C(1)	106.6(2)
C(6)-C(7)	1.403(3)	C(2)-C(3)-C(4)	108.1(2)
C(7)-C(8)	1.377(3)	C(5)-C(4)-N(2)	121.3(2)
C(8)-C(9)	1.390(4)	C(5)-C(4)-C(3)	131.1(2)
C(10)-C(11)	1.349(3)	N(2)-C(4)-C(3)	107.5(2)

C(11)-C(12)	1.435(3)	C(4)-C(5)-C(6)	120.1(2)
		C(4)-C(5)-C(10)	117.3(2)
		C(6)-C(5)-C(10)	122.5(2)
		N(1)-C(6)-C(5)	120.3(2)
		N(1)-C(6)-C(7)	107.7(2)
		C(5)-C(6)-C(7)	131.7(2)
		C(8)-C(7)-C(6)	107.9(2)
		C(7)-C(8)-C(9)	106.4(3)
		N(1)-C(9)-C(8)	110.9(2)
		C(11)-C(10)-C(5)	126.98(19)
		C(10)-C(11)-C(12)	122.62(19)
		C(13)-C(12)-C(11)	177.0(3)

 Table S5.
 Selected bond lengths [A] and angles [deg] for the crystal structure of 4a.

P(1) E(1)	1 278(2)	E(1) B(1) E(2)	108 66(16)
B(1)-F(1) B(1)-F(2)	1.378(3) 1.387(3)	F(1)-B(1)-F(2) F(1)-B(1)-N(2)	103.00(10) 111.25(18)
B(1)-N(2)	1.507(3) 1 544(3)	F(2)-B(1)-N(2)	110.34(18)
B(1) - N(1)	1.547(3)	F(1)-B(1)-N(1)	110.34(10) 110.22(17)
E(1) - C(34)	2.013(3)	F(2)-B(1)-N(1)	110.22(17) 110.46(18)
Fe(1)-C(35)	2.015(3) 2.016(3)	N(2)-B(1)-N(1)	105 89(15)
Fe(1)-C(33)	2.010(3) 2.023(3)	C(1)-N(1)-C(4)	107.21(17)
Fe(1)- $C(31)$	2.028(3)	C(1)-N(1)-B(1)	126 95(17)
Fe(1)- $C(30)$	2.020(3) 2.032(2)	C(4)-N(1)-B(1)	125.71(17)
Fe(1)-C(26)	2.0326(19)	C(9)-N(2)-C(6)	107.52(18)
Fe(1)-C(27)	2.035(2)	C(9)-N(2)-B(1)	127.05(17)
Fe(1)-C(32)	2.033(3)	C(6)-N(2)-B(1)	125.34(17)
Fe(1)-C(29)	2.036(2)	N(1)-C(1)-C(2)	110.59(19)
Fe(1)-C(28)	2.038(2)	C(3)-C(2)-C(1)	106.9(2)
N(1)-C(1)	1.341(3)	C(2)-C(3)-C(4)	107.87(19)
N(1)-C(4)	1.399(2)	C(5)-C(4)-N(1)	120.37(18)
N(2)-C(9)	1.339(3)	C(5)-C(4)-C(3)	131.87(18)
N(2)-C(6)	1.396(2)	N(1)-C(4)-C(3)	107.45(18)
C(1)-C(2)	1.389(3)	C(4)-C(5)-C(6)	120.20(17)
C(1)-H(1)	0.9500	C(4)-C(5)-C(10)	121.90(18)
C(2)-C(3)	1.371(3)	C(6)-C(5)-C(10)	117.80(18)
C(2)-H(2)	0.9500	N(2)-C(6)-C(5)	121.19(18)
C(3)-C(4)	1.404(3)	N(2)-C(6)-C(7)	107.66(18)
C(3)-H(3)	0.9500	C(5)-C(6)-C(7)	131.14(18)
C(4)-C(5)	1.394(3)	C(8)-C(7)-C(6)	107.40(19)
C(5)-C(6)	1.399(3)	C(7)-C(8)-C(9)	107.0(2)
C(5)-C(10)	1.475(2)	N(2)-C(9)-C(8)	110.43(19)
C(6)-C(7)	1.406(3)	C(11)-C(10)-C(5)	127.06(18)
C(7)-C(8)	1.379(3)	C(10)-C(11)-C(12)	122.32(17)
C(7)-H(7)	0.9500	C(10)-C(11)-C(14)	120.86(17)
C(8)-C(9)	1.390(3)	C(12)-C(11)-C(14)	16.58(17)
C(8)-H(8)	0.9500	C(13)-C(12)-C(11)	173.6(2)
C(9)-H(9)	0.9500	C(12)-C(13)-C(26)	178.5(3)
C(10)-C(11)	1.344(3)		
C(10)-H(10)	0.9500		
C(11)-C(12)	1.437(3)		
C(11)-C(14)	1.493(2)		
C(12)-C(13)	1.193(3)		

F(1)-B(1)	1.3831(15)	F(1)-B(1)-F(2)	109.47(10)
F(2)-B(1)	1.3858(15)	F(1)-B(1)-N(2)	110.26(10)
B(1)-N(2)	1.5476(16)	F(2)-B(1)-N(2)	109.91(10)
B(1)-N(1)	1.5538(16)	F(1)-B(1)-N(1)	110.87(10)
N(2)-C(9)	1.3420(16)	F(2)-B(1)-N(1)	110.34(10)
N(2)-C(6)	1.3854(14)	N(2)-B(1)-N(1)	105.94(9)
N(1)-C(1)	1.3394(16)	C(9)-N(2)-C(6)	107.35(10)
N(1)-C(4)	1.3913(14)	C(9)-N(2)-B(1)	126.45(10)
C(1)-C(2)	1.4024(18)	C(6)-N(2)-B(1)	126.17(10)
C(2)-C(3)	1.3735(18)	C(1)-N(1)-C(4)	107.28(10)
C(3)-C(4)	1.4095(17)	C(1)-N(1)-B(1)	126.97(10)
C(4)-C(5)	1.3947(17)	C(4)-N(1)-B(1)	125.72(9)
C(5)-C(6)	1.4070(17)	N(1)-C(1)-C(2)	110.33(11)
C(5)-C(10)	1.4226(16)	C(3)-C(2)-C(1)	106.97(11)
C(6)-C(7)	1.4013(17)	C(2)-C(3)-C(4)	107.19(11)
C(7)-C(8)	1.3810(19)	N(1)-C(4)-C(5)	120.89(10)
C(8)-C(9)	1.3964(18)	N(1)-C(4)-C(3)	108.23(10)
C(10)-C(11)	1.2007(18)	C(5)-C(4)-C(3)	130.88(11)
		C(4)-C(5)-C(6)	120.44(10)
		C(4)-C(5)-C(10)	120.56(11)
		C(6)-C(5)-C(10)	118.91(11)
		N(2)-C(6)-C(7)	108.43(10)
		N(2)-C(6)-C(5)	120.37(10)
		C(7)-C(6)-C(5)	130.94(11)
		C(8)-C(7)-C(6)	107.17(11)
		C(7)-C(8)-C(9)	106.77(11)
		N(2)-C(9)-C(8)	110.27(11)
		C(11)-C(10)-C(5)	175.46(13)

 Table S6.
 Selected bond lengths [A] and angles [deg] for the crystal structure of 2d.

Figure S22. Frontier molecular orbital plots of BODIPYs **2a**, **3a**, **4a**, **2b**, **3b**, **4b**, **2c** and **4c** calculated at B3LYP/6-31G* level for C, N, B, F, H, and Lanl2DZ level for Fe¹

BODIPY 3a

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	5	0	-2.489139	3.954147	-0.064316
2	9	0	-3.232064	2.954298	-0.692262
3	9	0	-3.264221	5.048936	0.251381
4	7	0	-1.816524	3.360293	1.212754
5	7	0	-1.288014	4.363032	-0.980079
6	б	0	-2.366753	3.193190	2.424065
7	1	0	-3.347816	3.595426	2.638774
8	6	0	-1.492293	2.466583	3.258384
9	1	0	-1.674420	2.205716	4.291819
10	6	0	-0.364096	2.179120	2.500890
11	1	0	0.525949	1.654313	2.817365
12	б	0	-0.569608	2.740611	1.213474
13	6	0	0.297413	2.866899	0.110044
14	6	0	-0.044373	3.736992	-0.946616
15	б	0	0.691966	4.166873	-2.078903
16	1	0	1.698154	3.859610	-2.329816
17	6	0	-0.113295	5.062417	-2.775337
18	1	0	0.132761	5.601420	-3.679881
19	6	0	-1.330069	5.144883	-2.070541
20	1	0	-2.221048	5.713498	-2.301155
21	6	0	1.568480	2.139778	0.063286
22	1	0	2.455862	2.721777	-0.168005
23	6	0	1.688774	0.780629	0.159332
24	6	0	0.526012	-0.041109	0.181560
25	б	0	-0.497629	-0.697752	0.125612
26	6	0	3.016420	0.113494	0.125504
27	6	0	4.178800	0.770055	0.564653
28	1	0	4.110741	1.774735	0.971741
29	6	0	5.418717	0.144697	0.508977
30	1	0	6.301401	0.686013	0.837090
31	б	0	5.553058	-1.166970	0.020181
32	6	0	4.386282	-1.826149	-0.402463
33	1	0	4.449735	-2.851241	-0.755898
34	6	0	3.144657	-1.202839	-0.346761
35	1	0	2.257098	-1.736616	-0.671956
36	6	0	6.877300	-1.833452	-0.038184
37	б	0	7.835343	-1.629035	0.969802
38	1	0	7.591940	-0.995920	1.818529
39	6	0	9.079378	-2.255172	0.913324
40	1	0	9.801163	-2.089145	1.708711
41	6	0	9.393991	-3.099800	-0.152849
42	1	0	10.363831	-3.587719	-0.197004
43	б	0	8.452788	-3.312623	-1.161777
44	1	0	8.690179	-3.961234	-2.000886
45	б	0	7.208612	-2.686883	-1.104784
46	1	0	6.494508	-2.838848	-1.909361
47	б	0	-1.743861	-1.378636	0.056657

Standard orientation:

48	б	0	-1.828173	-2.770851	0.255359
49	б	0	-2.926801	-0.659009	-0.217747
50	б	0	-3.053308	-3.420358	0.183000
51	1	0	-0.925373	-3.331671	0.478020
52	6	0	-4.145116	-1.322624	-0.287488
53	1	0	-2.882882	0.413939	-0.382603
54	б	0	-4.238191	-2.712672	-0.090420
55	1	0	-3.099756	-4.489671	0.367693
56	1	0	-5.039625	-0.755351	-0.526973
57	6	0	-5.544486	-3.411383	-0.168508
58	6	0	-5.643628	-4.698415	-0.725162
59	6	0	-6.718167	-2.804685	0.311690
60	6	0	-6.870829	-5.355024	-0.798925
61	1	0	-4.755177	-5.175530	-1.129331
62	6	0	-7.945333	-3.461453	0.238662
63	1	0	-6.662390	-1.821087	0.769454
64	6	0	-8.027580	-4.739724	-0.316823
65	1	0	-6.924541	-6.345884	-1.242314
66	1	0	-8.838160	-2.975985	0.623846
67	1	0	-8.984529	-5.251280	-0.374071

Total energy (Sum of electronic and zero-point energies): -1759.1599841 Hartree

BODIPY 3b

Standard	orientation:

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	5	0	3.305221	-2.938519	-0.067081
2	9	0	3.742837	-1.811028	-0.761545
3	9	0	4.347077	-3.782310	0.251595
4	7	0	2.545618	-2.481985	1.217829
5	7	0	2.220428	-3.682662	-0.914741
6	б	0	3.075798	-2.123568	2.396032
7	1	0	4.135463	-2.244029	2.577615
8	6	0	2.071150	-1.617684	3.246833
9	1	0	2.215560	-1.273524	4.261665
10	б	0	0.880265	-1.670416	2.534154
11	1	0	-0.104781	-1.385753	2.875207
12	б	0	1.179964	-2.212910	1.256953
13	б	0	0.337995	-2.607946	0.198969
14	б	0	0.858303	-3.400673	-0.845436
15	б	0	0.220734	-4.054225	-1.929580
16	1	0	-0.838916	-4.029455	-2.144848
17	б	0	1.207230	-4.738244	-2.632704
18	1	0	1.079174	-5.360099	-3.508008
19	б	0	2.427101	-4.472301	-1.980435
20	1	0	3.426967	-4.799753	-2.232192
21	б	0	-1.082172	-2.246109	0.192679
22	1	0	-1.788172	-3.055284	0.030872
23	б	0	-1.557506	-0.965032	0.247278

24	6	0	-0.653178	0.134219	0.186158
25	б б	0	0.154968	1.036262	0.064153
26	б	0	-3.015239	-0.674592	0.254302
27	б	0	-3.491509	0.544638	-0.198925
28	б б	0	-3.952994	-1.640359	0.727200
29	б	0	-4.877503	0.839890	-0.227688
30) 1	0	-2.788850	1.293820	-0.552497
31	. б	0	-5.301154	-1.382445	0.714649
32	1	0	-3.593183	-2.580658	1.133199
33	б б	0	-5.372940	2.084349	-0.703650
34	б	0	-5.809612	-0.144457	0.234656
35	5 1	0	-6.000640	-2.126065	1.089105
36	б б	0	-6.724971	2.343274	-0.720615
37	1 1	0	-4.663639	2.829343	-1.055986
38	б б	0	-7.196474	0.153484	0.206560
39	6	0	-7.645198	1.369297	-0.261059
40) 1	0	-7.092244	3.297807	-1.087340
41	. 1	0	-7.901208	-0.595498	0.560064
42	1	0	-8.709779	1.585981	-0.279527
43	б б	0	1.177314	2.014203	-0.087168
44	б	0	0.907534	3.367785	0.074643
45	б б	0	2.506603	1.592612	-0.414914
46	б б	0	1.923311	4.341453	-0.079176
47	1 1	0	-0.099987	3.688116	0.325829
48	б б	0	3.503378	2.522802	-0.568513
49	1	0	2.717949	0.534550	-0.538624
50	б	0	1.668293	5.731174	0.083298
51	. б	0	3.251661	3.913865	-0.409291
52	2 1	0	4.510619	2.198044	-0.817569
53	б б	0	2.676335	6.654865	-0.073753
54	1	0	0.660026	6.051938	0.334621
55	б б	0	4.267387	4.892606	-0.564711
56	б б	0	3.988318	6.231698	-0.401255
57	1 1	0	2.469443	7.714025	0.052870
58	1	0	5.273719	4.566028	-0.815805
59	1	0	4.775686	6.970557	-0.523188
				·	
	1 -	· ·			

Total energy (Sum of electronic and zero-point energies): -1604.333007 Hartree

BODIPY 4a

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	5	0	-3.718796	2.882950	0.019948
2	26	0	-2.814565	-2.931940	-0.266684
3	9	0	-4.296953	1.792286	-0.632094
4	9	0	-4.668114	3.820597	0.370440
5	7	0	-2.942440	2.389816	1.279288
6	7	0	-2.620280	3.515344	-0.892902
7	б	0	-3.462877	2.099635	2.481527
8	1	0	-4.512375	2.272956	2.678394

9	6	0	-2.459678	1.596008	3.335096
10	1	0	-2.593282	1.304934	4.367970
11	б	0	-1.279182	1.585220	2.600053
12	1	0	-0.298146	1.286223	2.939136
13	6	0	-1.584958	2.077901	1.305485
14	6	0	-0.747930	2.404228	0.216076
15	б	0	-1.270101	3.179029	-0.846409
16	6	0	-0.637907	3.761195	-1.974324
17	1	0	0.412251	3.684221	-2.220438
18	6	0	-1.615307	4,455909	-2.680808
19	1	0	-1 485983	5 034280	-3 585203
20	6	0	-2.825191	4.270027	-1.985292
21	1	0	-3 817090	4 631195	-2 221554
22	± 6	0	0 658257	2 019092	0 169550
22	1	0	1 338556	2.019092	-0 203019
23	1 6	0	1 179602	0 770614	0 303019
27 25	6	0	0 251065	0.770014	0.592999
20	6	0	0.351005	-0.337323	0.042397
20	6	0	-0.374900	-1.321100	0.004/51
27	6	0	2.043/05	0.529218	0.278357
28	0	0	3.5/8481	1.548121	0.532889
29		0	3.230520	2.528208	0.851881
30	6	0	4.943522	1.315/80	0.409496
31	l	0	5.638900	2.128944	0.596465
32	6	0	5.438145	0.054700	0.031424
33	6	0	4.501559	-0.965636	-0.208367
34	1	0	4.850094	-1.960454	-0.470406
35	6	0	3.135922	-0.736786	-0.080880
36	1	0	2.434640	-1.546131	-0.257852
37	6	0	6.895314	-0.192605	-0.096996
38	6	0	7.810983	0.403704	0.787688
39	1	0	7.443704	1.032905	1.593689
40	б	0	9.180059	0.169952	0.666711
41	1	0	9.868573	0.634277	1.367770
42	6	0	9.664755	-0.665031	-0.342217
43	1	0	10.731752	-0.847159	-0.436635
44	6	0	8.767503	-1.264415	-1.228697
45	1	0	9.134398	-1.909294	-2.022830
46	6	0	7.398416	-1.031153	-1.107063
47	1	0	6.711940	-1.481608	-1.818503
48	б	0	-1.296502	-2.369472	1.037303
49	б	0	-2.587983	-2.214374	1.663822
50	1	0	-2.991325	-1.279124	2.026399
51	6	0	-3.211543	-3.491224	1.703918
52	1	0	-4.199297	-3.699953	2.092942
53	б	0	-2.333938	-4.440423	1.095024
54	1	0	-2.542829	-5.490898	0.941938
55	б	0	-1.156769	-3.758344	0.679245
56	1	0	-0.307236	-4.189667	0.167536
57	6	0	-2.675841	-3.286725	-2.309996
58	1	0	-1.903104	-3.888846	-2.770012
59	-	0	-3.927309	-3.762945	-1.811982
60	1	0 0	-4 269255	-4.789659	-1 826981
61	- 6	0 0	-4 626539	-2.651946	-1 248888
62	1	0	-5 591432	-2 691990	-0 760401
5 2	±	0	J.J/14J0	2.071770	0.,00491

Total energy	(Sum of	electronic an	d zero-point	energies):	-1806.3436029
66	1	0	-1.766232	-1.238796	-2.269464
65	б	0	-2.607461	-1.884243	-2.052701
64	1	0	-4.045825	-0.489006	-1.051870
63	6	0	-3.812070	-1.488242	-1.396633

BODIPY 4b

Standard orientation:

Center Number	Atomic Number	Atomic Type	Coorc X	dinates (Ang Y	stroms) Z
1	5	0	-2.419238	3.357416	0.162518
2	26	0	-2.986511	-2.513793	-0.238216
3	9	0	-3.124343	2.516568	-0.700249
4	9	0	-3.225938	4.344662	0.686978
5	7	0	-1.776058	2.503494	1.299444
б	7	0	-1.198468	3.976108	-0.596387
7	б	0	-2.364277	2.065630	2.423488
8	1	0	-3.361786	2.395202	2.682228
9	б	0	-1.496189	1.197871	3.118393
10	1	0	-1.703272	0.721535	4.066881
11	б	0	-0.330834	1.110219	2.363543
12	1	0	0.568142	0.558493	2.599186
13	б	0	-0.509964	1.931926	1.221075
14	б	0	0.398810	2.324404	0.216535
15	б	0	0.064863	3.389045	-0.642799
16	б	0	0.827608	4.069375	-1.625982
17	1	0	1.851550	3.844995	-1.892206
18	б	0	0.018365	5.071064	-2.151310
19	1	0	0.277783	5.795654	-2.910802
20	б	0	-1.226476	4.970280	-1.497234
21	1	0	-2.126989	5.552285	-1.641257
22	б	0	1.703616	1.663519	0.092537
23	1	0	2.585160	2.297999	0.114957
24	б	0	1.860964	0.330892	-0.169989
25	б	0	0.730527	-0.469143	-0.499032
26	б	0	-0.261263	-1.061026	-0.885232
27	б	0	-1.457553	-1.652180	-1.354189
28	б	0	-1.661237	-3.024016	-1.750141
29	1	0	-0.922267	-3.810679	-1.681350
30	б	0	-2.997079	-3.149958	-2.221832
31	1	0	-3.462385	-4.064179	-2.565904
32	6	0	-3.632634	-1.873479	-2.114940
33	1	0	-4.663142	-1.656311	-2.362724
34	б	0	-2.697782	-0.947131	-1.578701
35	1	0	-2.868628	0.098286	-1.354768
36	б	0	-3.696232	-1.714908	1.543771
37	1	0	-3.841938	-0.656215	1.709987
38	6	0	-4.653436	-2.623706	0.998218
39	1	0	-5.657730	-2.374638	0.681357
40	6	0	-4.035384	-3.906683	0.893427
41	1	0	-4.490255	-4.800073	0.485800

42	б	0	-2.695143	-3.791420	1.375053
43	1	0	-1.958483	-4.583625	1.401633
44	б	0	-2.487879	-2.437489	1.778062
45	1	0	-1.561657	-2.013791	2.142425
46	б	0	3.209561	-0.293401	-0.239262
47	б	0	4.257993	0.177595	0.534847
48	б	0	3.439780	-1.401520	-1.105619
49	б	0	5.551484	-0.398241	0.465135
50	1	0	4.091522	0.991575	1.235901
51	б	0	4.682818	-1.979185	-1.196688
52	1	0	2.614575	-1.777518	-1.702012
53	б	0	6.634184	0.078143	1.254972
54	б	0	5.774999	-1.500566	-0.423275
55	1	0	4.845438	-2.818161	-1.869104
56	б	0	7.879470	-0.501738	1.165263
57	1	0	6.461720	0.912562	1.930743
58	б	0	7.070918	-2.076972	-0.491215
59	б	0	8.100293	-1.589204	0.283335
60	1	0	8.699645	-0.127407	1.771673
61	1	0	7.237480	-2.912528	-1.166951
62	1	0	9.087856	-2.038191	0.222083

Total energy (Sum of electronic and zero-point energies): -1728.9296497 Hartree

BODIPY 4c

Standard orientation:

Center	Atomic	Atomic	ic Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	5	0	-5.009916	2.862190	0.403328
2	26	0	-4.145991	-2.927077	-0.226669
3	9	0	-5.685694	1.793316	-0.188255
4	9	0	-5.891547	3.786289	0.925549
5	7	0	-4.051868	2.329188	1.512420
б	7	0	-4.062055	3.527144	-0.645023
7	б	0	-4.384209	1.999752	2.770169
8	1	0	-5.392020	2.160772	3.128765
9	б	0	-3.262772	1.477415	3.446564
10	1	0	-3.238213	1.154115	4.478205
11	б	0	-2.206900	1.496228	2.541524
12	1	0	-1.185455	1.193222	2.719119
13	6	0	-2.705488	2.025386	1.323731
14	6	0	-2.041899	2.392579	0.132038
15	б	0	-2.719653	3.198756	-0.813056
16	6	0	-2.265426	3.821990	-2.002900
17	1	0	-1.264018	3.760719	-2.406344
18	б	0	-3.339317	4.532709	-2.531102
19	1	0	-3.348584	5.141199	-3.424875
20	6	0	-4.430405	4.315822	-1.668543
21	1	0	-5.447237	4.677659	-1.740684
22	б	0	-0.657039	2.022930	-0.134439
23	1	0	-0.044380	2.799795	-0.580434
24	б	0	-0.098841	0.774460	-0.024601

25	б	0	-0.879485	-0.368178	0.302791
26	б	0	-1.575204	-1.340200	0.534124
27	б	0	1.336487	0.551845	-0.341390
28	б	0	2.287188	1.581999	-0.214298
29	1	0	1.983014	2.555255	0.159384
30	6	0	3.625775	1.364892	-0.512112
31	1	0	4.335370	2.175378	-0.374782
32	б	0	4.083344	0.107511	-0.949972
33	б	0	3.132503	-0.919571	-1.075005
34	1	0	3.443709	-1.897174	-1.431027
35	б	0	1.792989	-0.706530	-0.767103
36	1	0	1.081899	-1.520396	-0.868251
37	б	0	-2.457153	-2.396905	0.863084
38	б	0	-3.646951	-2.261439	1.670377
39	1	0	-3.996102	-1.336382	2.107400
40	б	0	-4.260500	-3.540484	1.763702
41	1	0	-5.184321	-3.761426	2.281748
42	б	0	-3.479725	-4.471005	1.010937
43	1	0	-3.710324	-5.517254	0.859900
44	б	0	-2.371758	-3.775522	0.451904
45	1	0	-1.604024	-4.190834	-0.186604
46	б	0	-4.300390	-3.217618	-2.278975
47	1	0	-3.601698	-3.801454	-2.863940
48	б	0	-5.467525	-3.715176	-1.622113
49	1	0	-5.807360	-4.742695	-1.619653
50	6	0	-6.079731	-2.625621	-0.930610
51	1	0	-6.965075	-2.685389	-0.311008
52	6	0	-5.294827	-1.454130	-1.156037
53	1	0	-5.477720	-0.467531	-0.749855
54	6	0	-4.196495	-1.823528	-1.990048
55	1	0	-3.394845	-1.167230	-2.302696
56	6	0	5.501073	-0.124008	-1.274724
57	26	0	7 103203	-0 186048	0 068607
58	6	0	6.480772	0.877896	-1.598720
59	6	0	6 170601	-1 394034	-1 341932
60	6	0	7 719703	0 230742	-1 873805
61	6	0	7 528335	-1 174265	-1 713464
62	6	0	7 005609	-1 133886	1 918071
63	6	0	8 368637	-0 936344	1 540334
64	6	0	8 583111	0 465622	1 378024
65	6 6	0	7 352247	1 134973	1 655164
65	6	0	6 377759	0 146166	1 989250
67	1	0	6 306661	1 944835	-1 633370
68	1	0	5 730377	-2 354305	-1 109134
69	1	0	8 649239	0 722679	-2 128026
70	1	0	8 289065	-1 936831	-1 8165020
71	1	0	6 524742	-2 087978	2 080282
72	1	0	9 101867	-1 714806	1 274472
72	1	0	9 506685	0 925714	1 066655
74	1	0	7 121925	2 201902	1 595499
75	1	0	5 334857	0 330584	2 211242
, ,	± 				

Total energy (Sum of electronic and zero-point energies): -2084.6118279 Hartree

S31

1 0 Chemical Shift (ppm)

3

2

4

5

-1 -1 -2

-3

-5

-4

¹H NMR of BODIPY **3b**

S39

¹³C NMR of BODIPY 4a

S44

¹³C NMR of BODIPY **4**c

¹ (a) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, revision A.02; Gaussian, Inc.: Wallingford, CT, **2009**; (b) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785–789; (c) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 1372–1377; (c) P. J. Hay and W. R. Wadt, *J. Chem. Phys.*, 1985, **82**, 270-283; (d) M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. Defrees and J. A. Pople, *J. Chem. Phys.*, 1982, **77**, 3654-3665.