Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Supporting Information for

Designed synthesis of a series of zwitterion-polyoxometalate hybrid materials for selective scavenging and photolysis of dyes

Sha Ou, Jun-Ping Zheng, Guo-Qiang Kong and Chuan-De Wu*

Center for Chemistry of High-Performance and Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China E-mail address: cdwu@zju.edu.cn

Figures:

Fig. S1. TGA result of 1.

Fig. S2. TGA result of 2.

Fig. S3. TGA result of 3.

Fig. S4. TGA result of 4.

Fig. S5. TGA result of 5.

Fig. S6. FT-IR spectra of H_2LCl_2 and H_2LPF_6 .

Fig. S7. FT-IR spectra of compound 1 and H₂LCl₂.

Fig. S8. FT-IR spectra for compounds 2-5 and H_2LPF_6 .

Fig. S9. Powder X-ray diffraction patterns for 1.

Fig. S10. Powder X-ray diffraction patterns for 2-5.

Fig. S11. (a) UV-Vis spectra of NR before (red line) and after (green line) addition of compound 2 (the inserted pictures highlight the scavenging effect); (b) neutral red capture capacities of 1-5.

Fig. S12. Photocatalytic property of compound **2** for degradation of MB in water under a 300 W Xe lamp irradiation.

Fig. S13. Photocatalytic property of compound **2** for degradation of CV in water under a 300 W Xe lamp irradiation.

Fig. S14. Photocatalytic property of compound **2** for degradation of NR in water under a 300 W Xe lamp irradiation.

Fig. S15. UV-Vis spectra of MO in water after irradiated with a 300 W Xe lamp in the presence of compound **2**.

Fig. S16. Photolysis of MB catalyzed by compound **2** under a 300 W Xe lamp irradiation (after 7 min, the solid catalyst was removed by centrifugation).

Fig. S17. The excitation spectrum of H_2L in the solid state at room temperature (monitored at 444 nm).

Fig. S18. The excitation spectrum of compound 1 in the solid state at room temperature (monitored at 444 nm).

Tables:

(Å) Bond angle Bond length (°) Bond angle (°) $O(1)^{i}$ -Zn(1)-O(1) Zn(1)-O(1) 1.970(5) 91.3(3) O(1)-Zn(1)-Cl(1) 106.18(17) Zn(1)-Cl(2) 2.260(3) $O(1)^{i}$ -Zn(1)-Cl(2) 113.44(17) Cl(2)-Zn(1)-Cl(1)121.81(11) Zn(1)-Cl(1) 2.279(3)

Table S1. Selected bond lengths (Å) and angles (°) for 1

Symmetry transformations used to generate equivalent atoms: i) x,-y+3/2, z.

Table S2. Selected bond lengths (Å) and angles (°) for 2

Bond length	(Å)	Bond angle	(°)	Bond angle	(°)
W(1)-O(6)	1.75(2)	O(6)-W(1)-O(17)	100.4(9)	O(4)-W(4)-O(16)	87.2(8)
W(1)-O(17)	1.851(17)	O(6)-W(1)-O(16)	101.3(9)	O(19)-W(4)-O(10)	103.3(9)
W(1)-O(16)	1.911(16)	O(6)-W(1)-O(9)	104.3(10)	O(16)-W(4)-O(10)	86.1(7)
W(1)-O(9)	1.926(19)	O(17)-W(1)-O(9)	87.6(6)	O(19)-W(4)-O(8)	101.0(9)
W(1)-O(13)	1.98(2)	O(16)-W(1)-O(9)	86.9(7)	O(4)-W(4)-O(8)	88.7(9)
W(2)-O(20)	1.58(2)	O(6)-W(1)-O(13)	103.8(10)	O(10)-W(4)-O(8)	87.8(9)
W(2)-O(9)	1.87(2)	O(17)-W(1)-O(13)	86.9(7)	O(4)-W(4)-O(2)	89.5(9)
W(2)-O(14)	1.88(2)	O(16)-W(1)-O(13)	88.2(7)	O(8)-W(4)-O(2)	93.9(7)
W(2)-O(10)	1.88(2)	O(16)-W(1)-O(1)	92.5(7)	O(16)-W(4)-O(22) ⁱ	94.3(7)
W(2)-O(18) ⁱ	1.93(2)	O(9)-W(1)-O(1)	91.0(8)	O(10)-W(4)-O(22) ⁱ	93.5(8)
W(3)-O(15)	1.729(18)	O(17)-W(1)-O(2)	93.2(7)	O(7)-W(5)-O(11)	102.9(9)
W(3)-O(8)	1.84(2)	O(13)-W(1)-O(2)	87.9(8)	O(7)-W(5)-O(12) ⁱ	100.6(9)
W(3)-O(18)	1.84(2)	O(20)-W(2)-O(9)	101.7(9)	O(7)-W(5)-O(4)	103.8(9)
W(3)-O(3) ⁱ	1.870(16)	O(20)-W(2)-O(14)	99.2(9)	O(11)-W(5)-O(4)	86.9(9)
W(3)-O(11)	1.93(2)	O(20)-W(2)-O(10)	103.2(9)	O(12) ⁱ -W(5)-O(4)	86.3(10)
W(4)-O(19)	1.615(19)	O(9)-W(2)-O(10)	85.8(7)	O(7)-W(5)-O(17) ⁱ	102.1(8)
W(4)-O(4)	1.84(2)	O(14)-W(2)-O(10)	87.9(8)	O(11)-W(5)-O(17) ⁱ	88.5(8)
W(4)-O(16)	1.885(18)	O(20)-W(2)-O(18) ⁱ	102.2(9)	O(12) ⁱ -W(5)-O(17) ⁱ	87.8(8)
W(4)-O(10)	1.90(2)	O(9)-W(2)-O(18) ⁱ	87.1(7)	$O(12)^{i}$ -W(5)-O(22)^{i}	92.5(8)
W(4)-O(8)	1.98(2)	O(14)-W(2)-O(18) ⁱ	90.1(8)	O(17) ⁱ -W(5)-O(22) ⁱ	92.5(7)
W(5)-O(7)	1.731(17)	O(9)-W(2)-O(21)	93.4(7)	O(11)-W(5)-O(1) ⁱ	92.4(8)
W(5)-O(11)	1.87(2)	O(10)-W(2)-O(21)	92.1(8)	$O(4)-W(5)-O(1)^{i}$	92.3(9)
W(5)-O(12) ⁱ	1.887(19)	O(15)-W(3)-O(8)	100.8(10)	O(5)-W(6)-O(3)	102.2(5)
W(5)-O(4)	1.91(2)	O(15)-W(3)-O(18)	103.6(9)	O(5)-W(6)-O(14)	100.6(6)
W(5)-O(17) ⁱ	1.954(18)	O(15)-W(3)-O(3) ⁱ	103.0(7)	O(3)-W(6)-O(14)	87.1(7)
W(6)-O(5)	1.72(3)	O(8)-W(3)-O(3) ⁱ	86.9(8)	O(3)-W(6)-O(21) ⁱ	91.9(7)
W(6)-O(3)	1.918(16)	O(18)-W(3)-O(3) ⁱ	87.6(8)	O(14)-W(6)-O(21) ⁱ	94.1(8)
W(6)-O(14)	1.97(2)	O(15)-W(3)-O(11)	101.3(8)	O(23)-W(7)-O(13)	104.5(6)
W(7)-O(23)	1.63(3)	O(8)-W(3)-O(11)	89.2(9)	O(23)-W(7)-O(12)	103.1(6)
W(7)-O(13)	1.75(3)	O(18)-W(3)-O(11)	86.2(9)	O(13)-W(7)-O(12)	87.8(8)
W(7)-O(12)	1.890(19)	O(18)-W(3)-O(22) ⁱ	90.3(8)	O(24) ⁱⁱ -Zn(1)-O(24) ⁱⁱⁱ	112.1(8)
Zn(1)-O(24) ⁱⁱ	1.975(13)	O(3) ⁱ -W(3)-O(22) ⁱ	93.3(7)	O(24) ⁱⁱ -Zn(1)-O(27)	106.4(7)
Zn(1)-O(27)	1.996(17)	O(19)-W(4)-O(4)	102.6(10)	O(24) ⁱⁱⁱ -Zn(1)-O(27)	102.8(7)

Symmetry transformations used to generate equivalent atoms: i) -x+1, y, -z+1/2; ii) -x+3/2, y+1/2, -z+1/2; iii) x-1/2, y+1/2, z.

Bond length	(Å)	Bond angle	(°)	Bond angle	(°)
W(1)-O(6)	1.73(3)	O(6)-W(1)-O(13)	100.7(13)	O(19)-W(4)-O(4)	100.9(10)
W(1)-O(13)	1.87(2)	O(6)-W(1)-O(17)	102.9(13)	O(16)-W(4)-O(4)	88.0(8)
W(1)-O(17)	1.868(17)	O(13)-W(1)-O(17)	87.8(7)	O(19)-W(4)-O(8)	100.1(8)
W(1)-O(9)	1.88(2)	O(6)-W(1)-O(9)	102.5(12)	O(4)-W(4)-O(8)	88.2(7)
W(1)-O(16)	1.922(19)	O(17)-W(1)-O(9)	88.6(6)	O(19)-W(4)-O(10)	99.5(10)
W(2)-O(20)	1.652(16)	O(6)-W(1)-O(16)	102.7(11)	O(16)-W(4)-O(10)	86.4(7)
W(2)-O(10)	1.845(19)	O(13)-W(1)-O(16)	87.7(7)	O(8)-W(4)-O(10)	89.5(7)
W(2)-O(9)	1.86(2)	O(9)-W(1)-O(16)	85.6(7)	O(4)-W(4)-O(2)	93.0(7)
W(2)-O(14)	1.93(2)	O(9)-W(1)-O(1)	90.6(9)	O(8)-W(4)-O(2)	95.1(6)
W(2)-O(18) ⁱ	1.93(2)	O(16)-W(1)-O(1)	90.7(8)	O(16)-W(4)-O(22) ⁱ	93.5(7)
W(3)-O(15)	1.613(17)	O(13)-W(1)-O(2)	92.1(8)	O(10)-W(4)-O(22) ⁱ	93.7(8)
$W(3)-O(3)^{i}$	1.825(18)	O(17)-W(1)-O(2)	93.6(10)	O(7)-W(5)-O(4)	100.4(8)
W(3)-O(8)	1.860(19)	O(20)-W(2)-O(10)	100.8(8)	O(7)-W(5)-O(17) ⁱ	101.5(10)
W(3)-O(18)	1.86(2)	O(20)-W(2)-O(9)	100.6(8)	O(7)-W(5)-O(11)	99.9(8)
W(3)-O(11)	1.899(17)	O(10)-W(2)-O(9)	86.0(8)	O(4)-W(5)-O(11)	87.6(8)
W(4)-O(19)	1.657(19)	O(20)-W(2)-O(14)	102.9(9)	O(17) ⁱ -W(5)-O(11)	89.4(7)
W(4)-O(16)	1.82(2)	O(10)-W(2)-O(14)	88.8(9)	O(7)-W(5)-O(12) ⁱ	99.3(9)
W(4)-O(4)	1.89(2)	O(20)-W(2)-O(18) ⁱ	99.4(9)	O(4)-W(5)-O(12) ⁱ	91.7(10)
W(4)-O(8)	1.936(17)	O(9)-W(2)-O(18) ⁱ	87.2(8)	$O(17)^{i}$ -W(5)-O(12)^{i}	84.1(8)
W(4)-O(10)	1.96(2)	O(14)-W(2)-O(18) ⁱ	89.8(7)	O(4)-W(5)-O(1) ⁱ	98.0(8)
W(5)-O(7)	1.704(16)	O(10)-W(2)-O(21)	97.2(8)	O(11)-W(5)-O(1) ⁱ	94.2(8)
W(5)-O(4)	1.86(2)	O(9)-W(2)-O(21)	91.0(8)	$O(17)^{i}$ -W(5)-O(22)^{i}	93.7(9)
W(5)-O(17) ⁱ	1.88(2)	O(15)-W(3)-O(3) ⁱ	101.8(9)	$O(12)^{i}$ -W(5)-O(22)^{i}	95.9(9)
W(5)-O(11)	1.887(19)	O(15)-W(3)-O(8)	103.7(8)	O(5)-W(6)-O(14)	99.8(7)
W(5)-O(12) ⁱ	1.92(2)	O(3) ⁱ -W(3)-O(8)	85.6(7)	O(5)-W(6)-O(3)	101.1(6)
W(6)-O(5)	1.74(2)	O(15)-W(3)-O(18)	97.0(10)	O(14)-W(6)-O(3)	88.7(8)
W(6)-O(14)	1.86(2)	O(3) ⁱ -W(3)-O(18)	91.7(8)	O(14)-W(6)-O(21) ⁱ	95.2(9)
W(6)-O(3)	1.974(17)	O(15)-W(3)-O(11)	98.2(9)	O(3)-W(6)-O(21) ⁱ	95.6(7)
W(7)-O(23)	1.62(3)	O(8)-W(3)-O(11)	87.6(7)	O(23)-W(7)-O(12)	100.5(7)
W(7)-O(12)	1.85(2)	O(18)-W(3)-O(11)	88.0(8)	O(23)-W(7)-O(13)	101.7(6)
W(7)-O(13)	1.90(2)	O(8)-W(3)-O(21) ⁱ	94.0(8)	O(12)-W(7)-O(13)	85.0(9)
Zn(1)-O(26)	1.911(18)	O(11)-W(3)-O(21) ⁱ	93.5(9)	O(26) ⁱ -Zn(1)-O(26)	123.3(12)
Zn(1)-O(24) ⁱⁱ	1.969(12)	$O(3)^{i}-W(3)-O(22)^{i}$	92.5(8)	O(26)-Zn(1)-O(24) ⁱⁱ	94.0(7)
		O(18)-W(3)-O(22) ⁱ	94.8(10)	O(26)-Zn(1)-O(24) ⁱⁱⁱ	118.5(7)
		O(19)-W(4)-O(16)	102.7(8)	O(24) ⁱⁱ -Zn(1)-O(24) ⁱⁱⁱ	109.8(8)

Table S3. Selected bond lengths (Å) and angles (°) for ${\bf 3}$

Symmetry transformations used to generate equivalent atoms: i) -x+1, y, -z+1/2; ii) x-1/2, y+1/2, z; iii) -x+3/2, y+1/2, -z+1/2.

Bond length	(Å)	Bond angle	(°)	Bond angle	(°)
W(1)-O(6)	1.59(2)	O(6)-W(1)-O(9)	103.8(10)	O(19)-W(4)-O(16)	98.1(8)
W(1)-O(9)	1.85(2)	O(6)-W(1)-O(17)	104.5(10)	O(10)-W(4)-O(16)	91.5(8)
W(1)-O(17)	1.86(2)	O(9)-W(1)-O(17)	86.4(7)	O(19)-W(4)-O(8)	103.2(8)
W(1)-O(13)	1.862(18)	O(6)-W(1)-O(13)	96.9(10)	O(10)-W(4)-O(8)	85.7(8)
W(1)-O(16)	1.924(17)	O(17)-W(1)-O(13)	88.9(7)	O(19)-W(4)-O(4)	106.6(10)
W(2)-O(20)	1.61(2)	O(6)-W(1)-O(16)	97.5(10)	O(16)-W(4)-O(4)	87.8(9)
W(2)-O(14)	1.88(2)	O(9)-W(1)-O(16)	88.5(7)	O(8)-W(4)-O(4)	85.0(9)
W(2)-O(9)	1.91(2)	O(13)-W(1)-O(16)	88.3(7)	O(10)-W(4)-O(22)	94.5(9)
W(2)-O(18) ⁱ	1.92(2)	O(9)-W(1)-O(1)	94.3(8)	O(16)-W(4)-O(22)	94.3(9)
W(2)-O(10)	1.97(2)	O(16)-W(1)-O(1)	92.3(8)	O(19)-W(4)-O(2)	157.6(7)
W(3)-O(15)	1.628(19)	O(17)-W(1)-O(2)	91.8(8)	O(8)-W(4)-O(2)	94.5(7)
W(3)-O(18)	1.77(2)	O(13)-W(1)-O(2)	94.3(8)	O(4)-W(4)-O(2)	88.1(8)
W(3)-O(3) ⁱ	1.794(18)	O(20)-W(2)-O(14)	98.9(9)	O(7)-W(5)-O(4)	104.7(10)
W(3)-O(8)	1.80(2)	O(20)-W(2)-O(9)	103.1(9)	O(7)-W(5)-O(12) ⁱ	99.5(9)
W(3)-O(11)	1.95(2)	O(20)-W(2)-O(18) ⁱ	104.9(9)	O(4)-W(5)-O(12) ⁱ	87.5(11)
W(4)-O(19)	1.594(19)	O(14)-W(2)-O(18) ⁱ	87.1(8)	O(7)-W(5)-O(11)	100.1(9)
W(4)-O(10)	1.77(2)	O(9)-W(2)-O(18) ⁱ	87.4(7)	O(4)-W(5)-O(11)	86.0(10)
W(4)-O(16)	1.84(2)	O(20)-W(2)-O(10)	101.8(9)	O(7)-W(5)-O(17) ⁱ	102.7(9)
W(4)-O(8)	1.915(19)	O(14)-W(2)-O(10)	86.5(7)	O(12) ⁱ -W(5)-O(17) ⁱ	89.4(8)
W(4)-O(4)	1.92(3)	O(9)-W(2)-O(10)	89.0(7)	O(11)-W(5)-O(17) ⁱ	87.9(8)
W(5)-O(7)	1.656(17)	O(9)-W(2)-O(21)	94.5(8)	O(12) ⁱ -W(5)-O(22)	93.6(9)
W(5)-O(4)	1.71(3)	O(10)-W(2)-O(21)	92.1(8)	O(17) ⁱ -W(5)-O(22)	94.5(9)
W(5)-O(12) ⁱ	1.82(2)	O(14)-W(2)-O(2)	95.8(8)	O(5)-W(6)-O(14)	101.0(6)
W(5)-O(11)	1.83(2)	$O(18)^{i}$ -W(2)-O(2)	89.5(8)	O(5)-W(6)-O(3)	102.2(5)
W(5)-O(17) ⁱ	1.85(2)	O(15)-W(3)-O(18)	102.7(9)	O(14)-W(6)-O(3)	88.1(7)
W(6)-O(5)	1.59(3)	O(15)-W(3)-O(3) ⁱ	101.1(8)	O(14)-W(6)-O(21) ⁱ	94.5(8)
W(6)-O(14)	1.86(2)	$O(18)-W(3)-O(3)^{i}$	89.2(8)	O(3)-W(6)-O(21) ⁱ	92.2(7)
W(6)-O(3)	1.933(19)	O(15)-W(3)-O(8)	102.2(9)	O(13)-W(7)-O(12)	88.7(8)
W(7)-O(23)	1.61(3)	O(3) ⁱ -W(3)-O(8)	86.5(8)	O(13) ⁱ -W(7)-O(1)	95.3(7)
W(7)-O(13)	1.87(2)	O(15)-W(3)-O(11)	101.0(9)	O(12) ⁱ -W(7)-O(1)	89.8(8)
W(7)-O(12)	1.92(2)	O(18)-W(3)-O(11)	87.1(9)	O(23)-W(7)-O(13)	101.8(6)
Zn(1)-O(27)	1.93(2)	O(8)-W(3)-O(11)	87.7(8)	O(23)-W(7)-O(12)	102.2(6)
Zn(1)-O(24) ⁱⁱ	1.992(13)	O(8)-W(3)-O(21) ⁱ	94.1(8)	$O(27)^{i}$ -Zn(1)-O(27)	127.1(11)
		O(11)-W(3)-O(21) ⁱ	94.4(8)	O(27)-Zn(1)-O(24) ⁱⁱ	105.1(7)
		O(18)-W(3)-O(22)	92.7(9)	O(27)-Zn(1)-O(24) ⁱⁱⁱ	104.1(8)
		O(3) ⁱ -W(3)-O(22)	94.0(8)	O(24) ⁱⁱ -Zn(1)-O(24) ⁱⁱⁱ	111.2(8)
		O(19)-W(4)-O(10)	100.6(9)		

Table S4. Selected bond lengths (Å) and angles (°) for 4

Symmetry transformations used to generate equivalent atoms: i) -x+1, y, -z+1/2; ii) x-1/2, y+1/2, z; iii) -x+3/2, y+1/2, -z+1/2.

Bond length	(Å)	Bond angle	(°)	Bond angle	(°)
W(1)-O(6)	1.60(2)	O(6)-W(1)-O(19)	93.6(14)	O(16)-W(4)-O(8)	99.0(12)
W(1)-O(19)	1.68(2)	O(6)-W(1)-O(4)	101.8(14)	O(10)-W(4)-O(8)	88.5(14)
W(1)-O(4)	1.82(3)	O(6)-W(1)-O(18)	96.6(13)	O(16)-W(4)-O(12)	101.2(13)
W(1)-O(18)	1.83(2)	O(19)-W(1)-O(18)	94.0(11)	O(17)-W(4)-O(12)	88.2(14)
W(1)-O(17)	1.89(3)	O(4)-W(1)-O(18)	84.2(11)	O(8)-W(4)-O(12)	85.0(13)
W(1)-O(2)	2.09(4)	O(6)-W(1)-O(17)	103.8(13)	O(10)-W(4)-O(1)	94.0(13)
W(2)-O(20)	1.60(2)	O(19)-W(1)-O(17)	86.7(11)	O(17)-W(4)-O(1)	102.4(9)
W(2)-O(9)	1.81(3)	O(4)-W(1)-O(17)	89.8(11)	O(8)-W(4)-O(21)	103.3(13)
W(2)-O(14)	1.89(2)	O(4)-W(1)-O(2)	97.2(12)	O(12)-W(4)-O(21)	99.3(14)
W(2)-O(4)	1.91(3)	O(17)-W(1)-O(2)	95.7(11)	O(7)-W(5)-O(12)	103.0(12)
W(2)-O(10)	1.98(3)	O(19)-W(1)-O(21)	106.4(13)	O(7)-W(5)-O(11)	96.6(13)
W(3)-O(15)	1.57(2)	O(18)-W(1)-O(21)	105.2(12)	O(12)-W(5)-O(11)	86.4(14)
W(3)-O(3) ⁱ	1.78(3)	O(20)-W(2)-O(9)	106.3(12)	O(7)-W(5)-O(13) ⁱ	101.9(15)
W(3)-O(9) ⁱ	1.81(3)	O(20)-W(2)-O(14)	98.3(12)	O(12)-W(5)-O(13) ⁱ	90.7(15)
W(3)-O(8)	1.92(3)	O(9)-W(2)-O(14)	83.7(11)	O(7)-W(5)-O(18) ⁱ	97.2(11)
W(3)-O(11)	1.97(3)	O(20)-W(2)-O(4)	103.8(12)	O(11)-W(5)-O(18) ⁱ	89.7(10)
W(3)-O(1)	2.06(3)	O(9)-W(2)-O(4)	85.2(12)	O(13) ⁱ -W(5)-O(18) ⁱ	86.6(11)
W(4)-O(16)	1.616(19)	O(20)-W(2)-O(10)	102.9(11)	O(12)-W(5)-O(2) ⁱ	102.3(12)
W(4)-O(10)	1.73(3)	O(14)-W(2)-O(10)	89.2(12)	O(11)-W(5)-O(2) ⁱ	102.6(12)
W(4)-O(17)	1.78(3)	O(4)-W(2)-O(10)	90.8(12)	O(13) ⁱ -W(5)-O(1)	103.7(12)
W(4)-O(8)	1.85(3)	O(9)-W(2)-O(21)	96.6(13)	O(18) ⁱ -W(5)-O(1)	104.0(10)
W(4)-O(12)	1.88(4)	O(14)-W(2)-O(21)	102.3(13)	O(5)-W(6)-O(14)	99.2(8)
W(5)-O(7)	1.58(3)	O(4)-W(2)-O(22) ⁱ	100.8(10)	O(5)-W(6)-O(3)	101.4(7)
W(5)-O(12)	1.82(3)	O(10)-W(2)-O(22) ⁱ	97.6(10)	O(14)-W(6)-O(3)	85.6(9)
W(5)-O(11)	1.83(3)	O(15)-W(3)-O(3) ⁱ	102.2(13)	O(14)-W(6)-O(22)	99.5(11)
W(5)-O(13) ⁱ	1.95(4)	O(15)-W(3)-O(9) ⁱ	104.7(12)	O(3)-W(6)-O(22)	100.9(10)
W(5)-O(18) ⁱ	2.01(2)	O(3) ⁱ -W(3)-O(9) ⁱ	87.0(11)	O(23)-W(7)-O(13)	99.9(12)
W(6)-O(14)	1.88(2)	O(15)-W(3)-O(8)	102.5(12)	O(23)-W(7)-O(19)	100.2(6)
W(6)-O(3)	1.96(3)	O(3) ⁱ -W(3)-O(8)	88.6(10)	O(13)-W(7)-O(19)	87.7(12)
W(6)-O(22)	2.06(3)	O(15)-W(3)-O(11)	98.1(13)	O(13) ⁱ -W(7)-O(2)	99.8(14)
W(7)-O(23)	1.57(4)	O(9) ⁱ -W(3)-O(11)	88.8(12)	O(19) ⁱ -W(7)-O(2)	103.7(12)
W(7)-O(13)	1.78(4)	O(8)-W(3)-O(11)	86.1(11)	O(2)-Co(1)-O(21) ⁱ	114(2)
W(7)-O(19)	2.18(2)	O(3) ⁱ -W(3)-O(1)	94.0(13)	O(2)-Co(1)-O(1)	112.9(14)
Co(1)-O(2)	1.914(10)	O(9) ⁱ -W(3)-O(1)	96.6(12)	O(21) ⁱ -Co(1)-O(1)	111.6(17)
Co(1)-O(21)	1.921(10)	O(8)-W(3)-O(22)	97.7(11)	O(21)-Co(1)-O(22)	103.3(18)
Co(1)-O(1)	1.923(10)	O(11)-W(3)-O(22)	105.1(11)	O(1) ⁱ -Co(1)-O(22)	100.8(15)
Co(1)-O(22)	1.924(10)	O(16)-W(4)-O(10)	102.6(13)	O(24) ⁱⁱ -Zn(1)-O(24) ⁱⁱⁱ	112.7(12)
Zn(1)-O(24) ⁱⁱ	1.945(19)	O(16)-W(4)-O(17)	102.9(11)	O(24) ⁱⁱ -Zn(1)-O(27)	104.1(10)
Zn(1)-O(27)	1.96(3)	O(10)-W(4)-O(17)	89.3(12)	$O(27)^{iv}-Zn(1)-O(27)$	127.6(17)

Table S5. Selected bond lengths (Å) and angles (°) for ${\bf 5}$

Symmetry transformations used to generate equivalent atoms: i) -x+1, y, -z+1/2; ii) -x+3/2, y-1/2, -z+3/2; iii) x+1/2, y-1/2, z; iv) -x+2, y, -z+3/2.