Electronic Supplementary Information

Amino-ether macrocycle that forms Cu^{II} templated threaded heteroleptic complexes: A detailed selectivity, structural and theoretical investigations

Saikat Santra, Sandip Mukherjee, Somnath Bej, Subrata Saha and Pradyut Ghosh*

Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S.

C. Mullick Road, Kolkata 700032, India. E-mail: icpg@iacs.res.in

Table of Contents

Figure 1S. ¹ H-NMR spectrum of compound I	4S
Figure 2S. ¹³ C-NMR spectrum of compound I	4S
Figure 3S. ESI-MS of compound II	58
Figure 4S. ¹ H-NMR spectrum of compound II	58
Figure 5S. ¹³ C-NMR spectrum of compound II	6S
Figure 6S. DEPT-135 NMR spectrum of compound II	68
Figure 7S. ESI-MS of compound MC	78
Figure 8S. ¹ H-NMR spectrum of compound MC	78
Figure 9S. ¹³ C-NMR spectrum of compound MC	8S
Figure 10S. DEPT-135 NMR spectrum of compound MC	8S
Scheme 1S. Synthetic route for the preparation of the $MC-Cu^{II} \cdot 2ClO_4^{-1}$ complex	98
Scheme 2S. Synthetic route for the preparation of the complexes PRT1-PRT4	98
Figure 11S . ESI-MS of compound (MC)Cu ^{II} (ClO ₄) ₂	98
Figure 12S . UV/Vis spectrum of the $(MC)Cu^{II}(ClO_4)_2$ complex in methanol	
Figure 13S . UV/Vis spectrum of the $(MC)Cu^{II}(ClO_4)_2$ complex in acetonitrile	
Figure 14S . (a) UV/Vis Titration profile of MC $(1 \times 10^{-3} \text{ M})$ with the aliquots of Cu(ClO ₄) ₂ ·6H ₂ $(1 \times 10^{-2} \text{ M})$ in methanol and equivalent plot of the (MC)Cu ^{II} (ClO ₄) ₂ complex	0 115
Figure 14S. (b) Benesi-Hildebrand plot of the $(MC)Cu^{II}(ClO_4)_2$ complex	118
Figure 15S. UV/Vis spectrum of PRT1-PRT4 having ClO ₄ ⁻ counter anions in acetonitrile	

Figure 16S . Benesi-Hildebrand plot of the PRT1 \cdot 2ClO ₄ ⁻ complex 12S
Figure 17S . Benesi-Hildebrand plot of the PRT2 · 2 ClO ₄ ⁻ complex
Figure 18S . UV/Vis titration profile of $(MC)Cu^{II}(ClO_4)_2$ complex with L313S
Figure 19S . Equivalent plot of the PRT3 ·2ClO ₄ $^-$ complex13S
Figure 20S. Benesi-Hildebrand plot of the PRT3 complex
Figure 21S. UV/Vis titration profile of $(MC)Cu^{II}(ClO_4)_2$ complex with L414S
Figure 22S . Equivalent plot of the PRT4 ·2ClO ₄ $^-$ complex
Figure 23S. Benesi-Hildebrand plot of the PRT4·2ClO ₄ ⁻ complex
Figure 24S . EPR Spectrum of PRT3 ·2ClO ₄ ^{$-$} in acetonitrile at 80K
Figure 25S . EPR Spectrum of PRT4 ·2ClO ₄ ^{$-$} in acetonitrile at 80K
Figure 26S . ESI-MS of compound PRT1 with ClO_4^- counter anion
Figure 27S. ESI-MS of compound PRT1 with OTf ⁻ counter anion
Figure 28S . ESI-MS of compound PRT2 with ClO_4^- counter anion
Figure 29S. ESI-MS of compound PRT2 with OTf counter anion
Figure 30S . ESI-MS of compound PRT3 with ClO_4^- counter anion
Figure 31S. ESI-MS of compound PRT3 with OTf ⁻ counter anion
Figure 32S . ESI-MS of compound PRT4 with ClO_4^- counter anion
Figure 33S. ESI-MS of compound PRT4 with OTf ⁻ counter anion
Table 1S. Bond Length and bond angle values of MC-Cu ^{II} and [2] Pseudorotaxanes
Chart 1S: Chemical Structure of L5
Figure 34S . ESI-MS spectrum of solution after mixing 1:1 (MC)Cu ^{II} (ClO ₄) ₂ and L522S
Figure 35S. ESI-MS spectrum of solution after mixing 1:1 (MC)Cu ^{II} (OTf) ₂ and L523S
Figure 36S . UV/Vis spectra of the titration between mixing of 1:1 (MC)Cu ^{II} (ClO ₄) ₂ and L5 in acetonitrile
Figure 37S. (a) UV/Vis Spectrum of the ligand substitution from PRT3
Figure 37S. (b) UV/Vis Spectrum the (i) solution containing equivalent amount of MC , L1 and each of the transition metal ions (Cu^{II} , Co^{II} , Ni^{II} and Zn^{II}); (ii) solution containing equivalent amount of MC , L1-L5 and each of the transition metal ions (Cu^{II} , Co^{II} , Ni^{II} and Zn^{II}); (iii) solution containing equivalent amount of MC , L1-L5 and each of the transition metal ions (Cu^{II} , Co^{II} , Ni^{II} and Zn^{II})
Figure 38S . ESI-MS spectrum of solution after titrating the solution of PRT2 ·2ClO ₄ with L1 in acetonitrile

Figure 39S. ESI-MS spectrum of solution after titrating the solution of PRT3·2ClO ₄ with L1 in acetonitrile
Figure 40S . ESI-MS spectrum of solution after titrating the solution of PRT4 ·2ClO ₄ with L1 in acetonitrile
Figure 41S . ESI-MS spectrum of the isolated solid after mixing all the bidentate chelating ligands (L1-L5), four divalent transition metal ion and MC
Figure 42S . UV/Vis spectra of the product isolated after mixing of all the bidentate chelating ligands (L1-L5), four divalent transition metal ion and MC in acetonitrile
Figure 43S (a) UV/Vis spectrum and (b) ESI-MS spectrum of the complex isolated from the mixture of 1:1 MC: Cu ^{II} and equimolar mixture of each of the bidentate chelating ligands (L1-L4) in acetonitrile278
Figure 44S (a) UV/Vis spectrum and (b) ESI-MS spectrum of the complex isolated from the mixture of 1:1 MC : L1 and equimolar mixture of each of the divalent transition metal ion (Co ^{II} , Ni ^{II} , Cu ^{II} , Zn ^{II}) in acetonitrile
Chart 2S. Possible ternary complexes for guest ligand selectivity study
Chart 3S. Possible ternary complexes for templating metal ion selectivity study
Chart 4S. Possible ternary complexes for both guest ligand and templating ion selectivity study
Figure 45S. Comparison of the optimized and solid-state geometry of PRT2
Figure 46S. Comparison of the optimized and solid-state geometry of PRT3
Figure 47S. Comparison of the optimized and solid-state geometry of PRT4
Table 2S. Mulliken atomic spin-densities
Coordinates of the computed geometry

Figure 2S. ¹³C-NMR Spectrum of Compound I in CDCl₃ (75 MHz).

Figure 3S. ESI-MS Spectrum of Compound II.

Figure 4S. ¹H-NMR Spectrum of Compound **II** in CDCl₃ (400 MHz).

Figure 6S. DEPT-135 NMR Spectrum of Compound II in CDCl₃ (300 MHz).

Figure 8S. ¹H-NMR Spectrum of Compound MC in CDCl₃ (400 MHz).

Figure 10S. DEPT-135 NMR Spectrum of Compound MC in CDCl₃ (300 MHz).

Scheme 1S. Synthetic route for the preparation of the $MC-Cu^{II} \cdot 2ClO_4$ complex.

Scheme 2S. Synthetic route for the preparation of the complexes PRT1-PRT4.

Figure 11S. ESI-MS of compound (MC)Cu^{II}(ClO₄)₂.

Figure 12S. UV/Vis spectrum of the $(MC)Cu^{II}(ClO_4)_2$ complex in methanol.

Figure 13S. UV/Vis spectrum of the $(MC)Cu^{II}(ClO_4)_2$ complex in acetonitrile.

Figure 14S. (a) UV/Vis Titration profile of **MC** $(1 \times 10^{-3} \text{ M})$ with the aliquots of Cu(ClO₄)₂.6H₂O $(1 \times 10^{-2} \text{ M})$ in methanol (selected UV/Vis spectra are shown for clarity whereas equivalent plot shows more point) and equivalent plot of the (**MC**)Cu^{II}(ClO₄)₂ complex, (b) Benesi-Hildebrand Plot of the (**MC**)Cu^{II}(ClO₄)₂ complex.

Figure 15S. UV/Vis Spectrum of PRT1-PRT4 having ClO₄⁻ counter anions in acetonitrile.

Figure 16S. Benesi-Hildebrand plot of the **PRT1** \cdot 2ClO₄⁻ complex.

Figure 17S. Benesi-Hildebrand plot of the **PRT2** \cdot 2ClO₄⁻ complex.

Figure 18S. UV/Vis titration profile of (MC)Cu^{II}(ClO₄)₂ complex with **L3** (selected UV/Vis spectra are shown for clarity).

Figure 19S. Equivalent plot of the **PRT3**·2ClO₄⁻ complex.

Figure 20S. Benesi-Hildebrand plot of the **PRT3** \cdot 2ClO₄⁻ complex.

Figure 21S. UV/Vis titration profile of (**MC**)Cu^{II}(ClO₄)₂ complex with **L4** (selected UV/Vis spectra are shown for clarity).

Figure 22S. Equivalent plot of the **PRT4** \cdot 2ClO₄⁻complex.

Figure 23S. Benesi-Hildebrand plot of the **PRT4** \cdot 2ClO₄⁻ complex.

Figure 24S. EPR Spectrum of **PRT3** \cdot 2ClO₄⁻ in acetonitrile at 80 K.

Figure 25S. EPR Spectrum of **PRT4**·2ClO₄⁻ in acetonitrile at 80 K.

Figure 26S. ESI-MS of compound PRT1 with ClO₄⁻ counter anion.

Figure 27S. ESI-MS of compound PRT1 with OTf⁻ counter anion.

Figure 28S. ESI-MS of compound PRT2 with ClO_4^- counter anion.

Figure 29S. ESI-MS of compound PRT2 with OTf⁻ counter anion.

Figure 30S. ESI-MS of compound PRT3 with ClO₄⁻ counter anion.

Figure 31S. ESI-MS of compound PRT3 with OTf⁻ counter anion.

Figure 32S. ESI-MS of compound PRT4 with ClO_4^- counter anion.

Figure 33S. ESI-MS of compound PRT4 with OTf⁻ counter anion.

MC-Cu ^{II}							
Cu1-N1	2.052(10)	Cu1-N2	1.990(12)	Cu1-N3	2.064(10)		
Cu1-N4	1.963(13)	Cu1-N5	2.292(14)	N1-C17	1.498(20)		
N1-C18	1.520(20)	N2-C19	1.471(18)	N2-C20	1.504(19)		
N3-C21	1.485(18)	N3-C22	1.493(19)				
N1-Cu1-N2	84.6(5)	N2-Cu1-N3	83.7(5)	N3-Cu1-N4	94.3(5)		
N4-Cu1-N1	91.9(5)	N5-Cu1-N1	98.4(5)	N5-Cu1-N2	98.1(5)		
N5-Cu1-N3	94.9(5)	N5-Cu1-N4	104.4(5)	N1-Cu1-N3	163.4(4)		
N2-Cu1-N4	157.5(5)						
		PR	RT1				
Cu1-N1	2.133(4)	Cu1-N2	1.994(4)	Cu1-N3	2.137(4)		
Cu1-N4	2.000(3)	Cu1-N5	2.115(4)	N1-C17	1.497(6)		
N1-C18	1.479(6)	N2-C19	1.473(8)	N2-C20	1.448(8)		
N3-C21	1.485(6)	N3-C22	1.456(8)				
N1-Cu1-N2	84.03(17)	N2-Cu1-N3	83.69(18)	N3-Cu1-N4	95.76(15)		
N4-Cu1-N1	94.27(14)	N5-Cu1-N1	109.77(14)	N5-Cu1-N2	102.81(16)		
N5-Cu1-N3	106.16(16)	N5-Cu1-N4	81.01(15)	N1-Cu1-N3	143.77(16)		
N2-Cu1-N4	176.15(17)						
		PR	RT2				
Cu1-N1	2.125(4)	Cu1-N2	2.014(4)	Cu1-N3	2.154(3)		
Cu1-N4	2.020(3)	Cu1-N5	2.118(3)	N1-C17	1.492(6)		
N1-C18	1.504(7)	N2-C19	1.471(7)	N2-C20	1.478(6)		
N3-C21	1.489(7)	N3-C22	1.479(6)				
N1-Cu1-N2	82.75(15)	N2-Cu1-N3	82.36(14)	N3-Cu1-N4	94.40(12)		
N4-Cu1-N1	99.02(13)	N5-Cu1-N1	111.24(13)	N5-Cu1-N2	103.11(14)		
N5-Cu1-N3	109.94(13)	N5-Cu1-N4	79.05(13)	N1-Cu1-N3	138.37(13)		
N2-Cu1-N4	176.55(14)						
		PR	RT3				
Cu1-N1	2.081(3)	Cu1-N2	2.005(4)	Cu1-N3	2.137(3)		
Cu1-N4	1.989(3)	Cu1-N5	2.169(3)	N1-C17	1.481(5)		
N1-C18	1.481(8)	N2-C19	1.476(7)	N2-C20	1.461(6)		
N3-C21	1.484(5)	N3-C22	1.479(5)	Cu2-N6	2.075(3)		
Cu2-N7	2.016(3)	Cu2-N8	2.183(3)	Cu2-N9	1.985(3)		
Cu2-N10	2.099(3)	N6-C57	1.503(6)	N6-C58	1.480(6)		
N7-C59	1.487(6)	N7-C60	1.464(6)	N8-C61	1.475(5)		
N8-C62	1.486(5)						
N1-Cu1-N2	83.40(13)	N2-Cu1-N3	82.73(12)	N3-Cu1-N4	96.08(11)		
N4-Cu1-N1	97.64(12)	N5-Cu1-N1	109.31(12)	N5-Cu1-N2	101.16(13)		
N5-Cu1-N3	105.16(11)	N5-Cu1-N4	79.06(11)	N1-Cu1-N3	144.69(11)		
N2-Cu1-N4	178.81(13)	N6-Cu2-N7	84.82(14)	N7-Cu2-N8	83.09(13)		
N8-Cu2-N9	96.06(11)	N9-Cu2-N6	97.36(12)	N10-Cu2-N6	127.86(12)		
N10-Cu2-N7	97.24(13)	N10-Cu2-N8	102.44(11)	N10-Cu2-N9	80.82(11)		
N6-Cu2-N8	129.34(12)	N7-Cu2-N9	177.69(13)				
		PF	RT4				
Cu1-N1	2.154(8)	Cu1-N2	2.008(8)	Cu1-N3	2.169(8)		
Cu1-N4	1.978(7)	Cu1-N5	2.103(8)	N1-C17	1.466(14)		
N1-C18	1.496(15)	N2-C19	1.456(14)	N2-C20	1.472(15)		
N3-C21	1.481(14)	N3-C22	1.49614)				

Table 1S. Selected Bond	Distances (Å) and	Angles (deg) for	: MC-Cu ^{II} a	nd PRT1-PRT4

N1-Cu1-N2	83.7(3)	N2-Cu1-N3	83.2(3)	N3-Cu1-N4	96.9(3)	
N4-Cu1-N1	98.0(3)	N5-Cu1-N1	119.6(3)	N5-Cu1-N2	97.8(3)	
N5-Cu1-N3	119.5(3)	N5-Cu1-N4	80.4(3)	N1-Cu1-N3	120.6(3)	
N2-Cu1-N4	178.0(3)					

Figure 34S. ESI-MS spectrum of solution after mixing 1:1:1 of MC, Cu(ClO₄)₂·6H₂O and L5.

Figure 35S. ESI-MS spectrum of solution after mixing 1:1 of (MC)Cu^{II}(OTf)₂ and L5.

Figure 36S. UV/Vis spectra of the titration between mixing of 1:1 of $(MC)Cu^{II}(ClO_4)_2$ and L5 in acetonitrile.

Figure 37S. (a) UV/Vis Spectrum the ligand substitution from PRT3·2ClO₄ by L1.

Figure 37S. (b) UV/Vis Spectrum the (i) solution containing equivalent amount of MC, L1 and each of the transition metal ions (Cu^{II} , Co^{II} , Ni^{II} and Zn^{II}); (ii) solution containing equivalent amount of MC, L1-L5 and each of the transition metal ions (Cu^{II} , Co^{II} , Ni^{II} and Zn^{II}).

Figure 38S. ESI-MS spectrum of solution after titrating the solution of $PRT2 \cdot 2ClO_4$ with L1 in

acetonitrile.

Figure 39S. ESI-MS spectrum of solution after titrating the solution of $\mathbf{PRT3} \cdot 2\mathrm{ClO}_4$ with L1 in acetonitrile.

Figure 40S. ESI-MS spectrum of solution after titrating the solution of $\mathbf{PRT4} \cdot 2\mathrm{ClO}_4$ with L1 in acetonitrile.

Figure 41S. ESI-MS spectrum of the isolated solid after mixing all the bidentate chelating ligands (L1-L5), four divalent transition metal ions and MC in equimolar amount.

Figure 42S. UV/Vis spectra of the product isolated after mixing of all the bidentate chelating ligands (L1-L5), four divalent transition metal ions and **MC** in equivalent amount in acetonitrile.

Fig. 43S (a) UV/Vis spectrum and (b) ESI-MS spectrum of the complex isolated from the mixture of 1:1 $MC:Cu^{II}$ and equimolar mixture of each of the bidentate chelating ligands (L1-L4) in acetonitrile. [experimental and simulated ESI-MS (+ve mode) spectrum are shown in blue and gray colour respectively]

Figure 44S (a) UV/Vis spectrum and (b) ESI-MS spectrum of the complex isolated from the mixture of 1:1 **MC:L1** and equimolar mixture of each of the divalent transition metal ion $(Co^{II}, Ni^{II}, Cu^{II}, Zn^{II})$ in acetonitrile. [Experimental and simulated spectrum ESI-MS (+ve mode) are shown in blue and gray color respectively]

Chart2S. Possible ternary complexes for Guest ligand selectivity study.

Chart3S. Possible ternary complexes for templating metal ion selectivity study.

Chart4S. Possible ternary complexes for both Guest ligand and templating ion selectivity study.

Figure 45S. Comparison between the crystal structure and the optimized structure for **PRT2** [Color Code: Green, Cu; Blue, N; Gray, C; Purple, H; Red, O; Orange, Centroid]. (a) Structural view perpendicular to the π - π stacking planes, (b) Structural view showing the centroids of the aromatic rings used for measuring important stacking distances, (c) View highlighting the coordination sphere of the copper ion, (d) Spin density map obtained from the analysis of the optimized structure showing that the unpaired electron resides in the $d_{(x^2-y^2)}$ orbital (supporting the experimental EPR results) of the Cu^{II} ion with the roughly square pyramidal geometry. The isodensity surfaces correspond to a value of 0.01 e/b³.

Figure 46S. Comparison between the crystal structure and the optimized structure for **PRT3** [Color Code: Green, Cu; Blue, N; Gray, C; Purple, H; Red, O; Orange, Centroid]. (a) Structural view perpendicular to the π - π stacking planes, (b) Structural view showing the centroids of the aromatic rings used for measuring important stacking distances, (c) View highlighting the coordination sphere of the copper ion, (d) Spin density map (H atoms removed for clarity) obtained from the analysis of the optimized structure showing that the unpaired electron resides in an orbital best described as an linear combination of $d_{(x^2-y^2)}$ and d_{z^2} orbital (supporting the experimental EPR results) of the Cu^{II} ion with the roughly trigonal bipyramidal geometry. The isodensity surfaces correspond to a value of 0.01 e/b³.

Figure 47S. Comparison between the crystal structure and the optimized structure for **PRT4** [Color Code: Green, Cu; Blue, N; Gray, C; Purple, H; Red, O; Orange, Centroid]. (a) Structural view perpendicular to the π - π stacking planes, (b) Structural view showing the centroids of the aromatic rings used for measuring important stacking distances, (c) View highlighting the coordination sphere of the copper ion, (d) Spin density map (H atoms removed for clarity) obtained from the analysis of the optimized structure showing that the unpaired electron resides in an orbital best described as an linear combination of $d_{(x^2-y^2)}$ and d_{z^2} orbital (supporting the experimental EPR results) of the Cu^{II} ion with the roughly trigonal bipyramidal geometry. The isodensity surfaces correspond to a value of 0.01 e/b³.

Tuble 15. Maniken Pitoline Spin Densities (in uu).							
Atoms	PRT1	PRT2	PRT3	PRT4			
Cu1	0.543169	0.496678	0.518941	0.573335			
N1	0.105075	0.084891	0.076622	0.087739			
N2	0.112033	0.109067	0.110948	0.119906			
N3	0.090990	0.098968	0.057206	0.025895			
N4	0.103096	0.106742	0.114045	0.123844			
N5	0.010462	0.013574	0.045048	0.072223			

 Table 2S. Mulliken Atomic Spin-Densities (in au).

Initial Geometry of MC (part of PRT1, Conf. I)

DFT/B3LYP/631g(d)

Energy = -1553.0894346 a.u.

Center		Atomic	Coord	linates (Ang	stroms)
Number	Number	Туре	X	Y	Z
		·		1 241704	
1	8	0	3.909312	-1.341/94	-0.4//912
3	6	0	-1.838426	-3.359106	-0.797476
4	1	Ő	-2.481533	-3.383882	-1.678048
5	6	0	5.193139	0.638623	0.030319
6	6	0	-0.140938	-3.471456	1.431080
7	1	0	0.535878	-3.542083	2.276739
8	6	0	-0.163376	3.460963	1.524475
9	1	0	0.404789	3.494361	2.448780
10	6	0	5.147674	-0.772665	-0.123150
11	6	0	-0.444891	-3.396956	-0.992786
12	1	0	-0.045310	-3.430634	-2.001226
13	6	0	-6.707174	-0.939212	-0.482090
14	1	0	-6.380042	-0.681801	-1.49515/
15		0	-7.798730	-1.056321	-0.508334
17	0	0	-3.892038	-3.230143	0.721473
18	1	0	-4.300909	-3 167861	1 791550
19	6	0	-1 525877	-3 411369	1 605065
20	1	Ő	-1.934823	-3.441169	2.613234
21	6	Ő	0.541534	3.469214	0.300369
22	6	0	2.487083	-3.149700	-1.192020
23	1	0	2.002385	-2.351742	-1.770166
24	1	0	2.473487	-4.086429	-1.765871
25	6	0	-2.397480	-3.318972	0.496646
26	6	0	-6.036103	-2.230619	-0.019341
27	1	0	-6.381219	-2.503284	0.985677
28	1	0	-6.309700	-3.058298	-0.689612
29	6	0	-2.285850	3.327371	0.316818
30	6	0	-1.559362	3.378714	1.526534
31	1	0	-2.087787	3.352874	2.477697
32	6	0	6.317798	-1.527345	0.080100
33	Ĺ	0	6.309314 1 574626	-2.604297	-0.046007
35	1	0	-2 109675	3.440431	-1 844992
36	6	0	3 912830	-2 756344	-0 856555
37	1	Ő	4.273826	-3.382228	-0.030102
38	1	Ő	4.561892	-2.902451	-1.732152
39	6	0	6.402276	1.258318	0.394552
40	1	0	6.454222	2.334818	0.517098
41	6	0	-0.171101	3.513071	-0.918958
42	1	0	0.343632	3.610379	-1.868747
43	6	0	-5.528023	1.952283	-1.093695
44	1	0	-5.718945	2.966549	-1.469456
45	1	0	-5.532720	1.281236	-1.960468
46	6	0	7.566007	0.493493	0.603198
4 /		0	8.491211	0.988510	0.882288
48	0	0	-3./89411	3.142333 2 101012	1 224616
49	1	0	-4.1/0024	3 982390	-0 200542
51	6	0	-6 624821	1 554457	-0 102171
52	1	Ő	-7.610934	1.569631	-0.585395
53	1	0	-6.652532	2.257191	0.737665
54	6	0	4.115010	2.801862	-0.369004
55	1	0	4.859454	3.024486	-1.146885
56	1	0	4.418173	3.283540	0.569895
57	6	0	7.523891	-0.897889	0.443560
58	1	0	8.416850	-1.496891	0.594751
59	6	0	2.755375	3.320133	-0.795598
60	1	0	2.844759	4.320930	-1.238981
61	1	0	2.312696	2.626656	-1.521584
62	'/	0	-4.188525	1.859908	-0.422804
63 64	/	U	-4.548055	-2.040953	0.046330
65	/ Q	0	-0.314985 1 701360	-3 3561/5 -3 3561/5	U.442653 0 001155
00	0	U	T . / J T J O J	J.JJUIIJ	0.001100

67 8 0 3.999590 1.35 68 1 0 -6.807666 0.05 69 1 0 -4.174279 -1.98 70 1 0 -3.463828 1.69	00965-0.199014009651.3312410008791-0.90879100281-1.127262
---	---

Optimized Geometry of MC (Conf. III)

DFT/B3LYP/631g(d)

Energy = -1553.1302307 a.u.

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	8	 0	4.264591	1.033985	0.759388
2	6	0	0.682646	2.804224	-0.087779
3	6	0	-1.421526	3.468176	0.891334
4	1	0	-1.970925	3.864777	1.742612
5	6	0	5.311157	-0.942691	0.032757
6	6	0	0.004062	2.465317	-1.269977
7	1	0	0.581407	2.079283	-2.104684
8	6	0	-0.632611	-1.413423	-0.666015
9	1	0	-0.160956	-0.519820	-1.061805
10	6	0	5.401599	0.449732	0.283864
11	6	0	-0.035769	3.309010	0.999207
12	1	0	0.461392	3.580132	1.923656
13	6	0	-6.477801	0.958955	0.132711
14	1	0	-6.079577	0.742142	1.131660
15	1	0	-7.551667	1.201884	0.271019
16	6	0	-3.609672	3.319370	-0.368815
17	1	0	-3.951505	3.921653	0.497014
18	1	0	-3.860719	3.910438	-1.262120
19	6	0	-1.372233	2.628373	-1.355069
20	1	0	-1.890575	2.354083	-2.270125
21	6	0	0.184993	-2.473409	-0.243052
22	6	0	2.770235	2.846028	1.086916
23	1	0	2.363816	2.251667	1.915749
24	1	0	2.730855	3.909967	1.365505
25	6	0	-2.112040	3.138365	-0.274931
26	6	0	-5.769848	2.203570	-0.399775
27	1	0	-6.157630	2.460310	-1.398752
28	1	0	-6.057846	3.043584	0.262818
29	6	0	-2.617274	-2.677046	-0.055294
30	6	0	-2.012885	-1.516019	-0.568284
31	1	0	-2.641797	-0.689514	-0.891243
32	6	0	6.600420	1.115933	0.036654
33	1	0	6.682269	2.178504	0.236591
34	6	0	-1.790903	-3.710178	0.384557
35	1	0	-2.235890	-4.616159	0.791882
36	6	0	4.209836	2.449349	0.830426
37	1	0	4.552997	2.900343	-0.110065
38	1	0	4.844038	2.822675	1.648911
39	6	0	6.414247	-1.618443	-0.485103
40	1	0	6.350937	-2.680627	-0.693568
41	6	0	-0.396028	-3.620836	0.303266
42	1	0	0.211718	-4.447883	0.653212
43	6	0	-6.155396	-1.961304	1.096470
44	1	0	-6.547818	-2.982490	1.278973
45	1	0	-6.459012	-1.356729	1.959756
46	6	0	7.611825	-0.935993	-0.740060
47	1	0	8.460605	-1.480419	-1.143745
48	6	0	-4.123116	-2.788654	0.002352
49	1	0	-4.537166	-2.481042	-0.963800
50	1	0	-4.410558	-3.848411	0.151459
51	6	0	-6.856239	-1.439835	-0.174632
52	1	0	-7.933926	-1.341358	0.070242
53	1	0	-6.789280	-2.197096	-0.964306
54	6	0	3.841566	-2.810497	-0.182019
55	1	0	4.527429	-3.559317	0.242713
56	1	0	3.958384	-2.813342	-1.274522
57	6	0	7.705887	0.423087	-0.475816

58	1	0	8.630557	0.960296	-0.666093
59	6	0	2.425437	-3.197802	0.193478
60	1	0	2.253342	-4.228561	-0.151662
61	1	0	2.299068	-3.173084	1.284983
62	7	0	-4.698809	-1.902179	1.017672
63	7	0	-4.319089	2.043614	-0.474535
64	7	0	-6.262810	-0.215916	-0.697907
65	8	0	2.035683	2.614339	-0.105308
66	8	0	1.530269	-2.293343	-0.427267
67	8	0	4.111181	-1.518758	0.335999
68	1	0	-6.615779	-0.037622	-1.635751
69	1	0	-4.005848	1.405827	0.255431
70	1	0	-4.302585	-2.142675	1.924727

DFT/B3LYP/LanL2DZ

Energy = -2320.20804522 a.u.

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	20		2 417476	0 000722	0 401000
1	29	0	3.41/4/6	-0.006/33	-0.421862
2	8	0	-4.590512	-1.342318	0.2202/1
3	6	0	-0.426542	-3.651061	-1.384501
4	L	0	-1.003679	-3./969/0	-2.292053
5	8	0	-2.496616	-3.4/1596	-0.265021
6	6	0	0.401381	0.002901	2.692354
7	6	0	1.233412	0.008923	1.534112
8	6	0	-0.2511/5	3.635622	-1.410069
9	Ţ	0	-0.766013	3.752580	-2.358523
10	6	0	1.009259	-3.335519	1.004495
11	Ţ	0	1.558081	-3.240244	1.939459
12	6	0	-1.11/815	-3.524678	-0.157248
13	6	0	3.207980	-3.177069	-0.268447
14	1	0	3.697331	-4.089051	-0.646580
15	1	0	3.607679	-2.974576	0.729511
16	6	0	1.706024	-3.360262	-0.216282
17	6	0	-5.739475	0.714706	-0.329215
18	6	0	-4.686904	-2.790014	0.447258
19	1	0	-4.955413	-3.308818	-0.481381
20	1	0	-5.454080	-2.987351	1.209477
21	6	0	-0.393778	-3.433098	1.049521
22	1	0	-0.898500	-3.426749	2.009488
23	6	0	0.967901	-3.578483	-1.406303
24	1	0	1.478772	-3.706246	-2.361415
25	6	0	1.143076	3.577402	-1.335485
26	1	0	1.717245	3.683229	-2.256490
27	6	0	-1.024493	3.532553	-0.230783
28	6	0	-5.758816	-0.702600	-0.249202
29	6	0	-6.920150	-1.400354	-0.629547
30	1	0	-6.962037	-2.481620	-0.567311
31	6	0	-0.385220	3.477569	1.024749
32	1	0	-0.952521	3.488331	1.948819
33	6	0	-6.878752	1.397452	-0.793507
34	1	0	-6.886668	2.479326	-0.860694
35	6	0	5.949446	-1.529414	-0.595383
36	1	0	5.894256	-2.110312	0.330979
37	1	0	6.995403	-1.532541	-0.928695
38	6	0	6.009465	0.903512	-1.264773
39	1	0	5.751339	0.586756	-2.281396
40	1	0	7.104309	0.973990	-1.206987
41	6	0	3.299731	3.256346	-0.009820
42	1	0	3.792504	4.186215	-0.338829
43	1	0	3.608572	3.069055	1.023146
44	6	0	-3.307501	3.349365	0.716610
45	1	0	-3.432230	4.346788	1.159149
46	1	0	-2.911781	2.658291	1.469871
47	6	0	1.797641	3.396235	-0.093285
48	6	0	-3.338304	-3.293607	0.925119
49	1	0	-2.889510	-2.570316	1.615838

50	1	0	-3.450398	-4.264070	1.427003
51	6	0	-4.635317	2.835311	0.194201
52	1	0	-5.438952	3.096850	0.896909
53	1	0	-4.843849	3.291361	-0.781749
54	6	0	5.035714	-2.137952	-1.662913
55	1	0	5.136874	-1.598837	-2.612250
56	1	0	5.320672	-3.182291	-1.848884
57	6	0	-8.033305	0.689729	-1.177996
58	1	0	-8.902684	1.234275	-1.533461
59	6	0	5.369409	2.248880	-0.928296
60	1	0	5.676739	3.012887	-1.654637
61	1	0	5.715024	2.586711	0.056237
62	6	0	1.017553	3.393854	1.076963
63	1	0	1.501852	3.327590	2.049426
64	6	0	-8.054295	-0.708244	-1.094706
65	1	0	-8.940752	-1.264692	-1.383356
66	7	0	5.486213	-0.126937	-0.299151
67	7	0	3.611187	-2.032787	-1.198135
68	7	0	3.868316	2.122189	-0.860871
69	7	0	1.443679	0.068034	-0.879141
70	7	0	2.607632	-0.023523	1.614596
71	6	0	-0.508118	0.087145	-2.309075
72	1	0	-0.900601	0.102806	-3.319765
73	6	0	0.625153	0.045024	0.225421
74	6	0	0.890428	0.089538	-2.108815
75	1	0	1.565000	0.112674	-2.960314
76	6	0	-0.793369	0.050462	0.103177
77	6	0	-1.356715	0.068806	-1.202125
78	1	0	-2.437444	0.073011	-1.309558
79	6	0	-1.614495	0.038506	1.291079
80	1	0	-2.694362	0.042652	1.157624
81	6	0	3.185867	-0.054787	2.830155
82	1	0	4.271310	-0.081255	2.867748
83	6	0	1.043693	-0.028225	3.962681
84	1	0	0.445639	-0.031831	4.870174
85	6	0	2.436103	-0.056059	4.033093
86	1	0	2.952855	-0.080862	4.986447
87	8	0	-4.555764	1.373010	0.074323
88	8	0	-2.393682	3.453847	-0.428659
89	6	0	-1.034210	0.021045	2.538078
90	1	0	-1.651339	0.016145	3.433156
91	1	0	2.977568	-2.062902	-2.002903
92	1	0	3.473665	2.217484	-1.804356
93	1	0	5.773777	0.138668	0.648983

DFT/B3LYP/LanL2DZ

Energy = -2243.98202231 a.u.

Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	29	0	-3.312374	-0.011626	-0.438381
2	6	0	1.079138	3.588193	-0.141744
3	6	0	0.324575	3.725623	-1.330459
4	1	0	0.854968	3.874629	-2.265782
5	6	0	1.243132	-3.572144	-0.063223
6	6	0	-0.984151	3.402536	1.128124
7	1	0	-1.485340	3.308899	2.089764
8	6	0	0.419331	3.495473	1.101516
9	1	0	0.972952	3.489732	2.034376
10	6	0	-0.923792	-3.344569	1.016190
11	1	0	-1.506701	-3.230687	1.928133
12	6	0	-1.574307	-3.384406	-0.229292
13	6	0	0.596134	-3.720992	-1.312529
14	1	0	1.205736	-3.890232	-2.194462
15	6	0	-0.794794	-3.634513	-1.387365
16	1	0	-1.272711	-3.773694	-2.357746
17	6	0	5.788089	0.738123	-0.266616
18	6	0	0.476403	-3.450502	1.114638

19	1	0	0.947350	-3.434261	2.092039
20	6	0	-1.743089	3.429174	-0.055139
21	6	0	4.773527	-2.750505	0.602232
22	1	0	5.525770	-2.882473	1.393068
23	1	0	5.073455	-3.324415	-0.283494
24	6	0	5.819674	-0.678085	-0.171341
25	6	0	3.340584	3.327262	0.832271
26	1	0	2.928180	2.581153	1.523587
27	1	0	3.457894	4.288107	1.351052
28	6	0	-1.069259	3.654808	-1.280574
29	1	0	-1.629689	3.784461	-2.207036
30	6	0	6.994100	-1.367995	-0.525094
31	1	0	7.044526	-2.448320	-0.450656
32	6	0	8.095649	0.727428	-1.077832
33	1	0	8.965411	1.276691	-1.425126
34	6	0	4.675415	2.842096	0.299734
35	1	0	4.893788	3.348152	-0.649181
36	1	0	5.472059	3.066996	1.022855
37	6	0	3.420921	-3.246684	1.076850
38	1	0	3.531580	-4.171386	1.658706
39	1	0	2.936696	-2.477419	1.692280
40	6	0	6.927835	1.427351	-0.719962
41	1	0	6.924122	2.508716	-0.799139
42	6	0	8.129009	-0.669485	-0.978858
43	1	0	9.025673	-1.219971	-1.246847
44	6	0	-5.792073	-1.565309	-0.902280
45	1	0	-5.815559	-2.176588	0.005843
46	1	0	-6.801384	-1.571814	-1.333916
47	6	0	-5.247349	2.229487	-1.055906
48	1	0	-5.659508	2.522084	-0.082475
49	1	0	-5.520177	3.018626	-1.769302
50	6	0	-3.243600	3.254962	-0.012733
51	1	0	-3.578695	3.044717	1.007660
52	1	0	-3.749115	4.176868	-0.344251
53	6	0	-5.841836	0.890626	-1.487298
54	1	0	-5.500611	0.611883	-2.490548
55	1	0	-6.938588	0.947452	-1.513756
56	6	0	-4.770949	-2.125385	-1.895991
57	1	0	-4.790521	-1.555882	-2.832802
58	1	0	-5.020120	-3.166634	-2.141520
59	6	0	-0.593939	0.037493	0.530104
60	6	0	-1.385308	-0.013346	1.787063
61	6	0	-0.650282	0.129724	-1.826715
62	1	0	-1.257623	0.178464	-2.726009
63	6	0	0.748393	0.115439	-1.911261
64	1	0	1.232091	0.148810	-2.881253
65	6	0	0.812049	0.023050	0.501834
66	1	0	1.382614	-0.024051	1.421245
67	6	0	-3.531165	-0.137022	2.752963
68	1	0	-4.604394	-0.193155	2.595168
69	6	0	1.498866	0.061208	-0.722523
70	1	0	2.585349	0.052795	-0.726805
71	6	0	-3.007883	-0.126837	4.055162
72	1	0	-3.671201	-0.174441	4.912016
73	6	0	-1.610572	-0.052017	4.209538
74	1	0	-1.166439	-0.037730	5,200252
75	7	0	-1.306098	0.090067	-0.638224
76	7	0	-2.746192	-0.081022	1.647709
77	8	0	2.449735	3.519550	-0.319730
78	8	0	2.623549	-3.533299	-0.122184
79	8	0	4.592525	1.389028	0.108960
80	8	0	4 650065	-1 324263	0 282456
81	7	0	-5 383360	-0 166906	-0 517623
82	7	0	-3 399221	-2 016609	-1 295361
83	7	0	-3 752653	2 119079	-0 899578
84	, 6	0	-3 069172	-3,173262	-0 349659
85	1	0	-3 558281	-4 073648	-0 754424
86 86	⊥ 1	0	-3 511120	-2 06//62	0 629071
87	± 6	0	-0 705/75	0 005/01	3 067214
0 / Q Q	1	0	0.720040	0.000401	3 170102
20	⊥ 1	0	-2 6020040	-2 025070	-2 036077
90	⊥ 1	0	-3 305/25	2.023910	-1 818/30
91	⊥ 1	0	-5 763/03	2.224072 0 058788	T.010430
	±				

DFT/B3LYP/LanL2DZ

Energy = -2322.62140813 a.u.

Center Number	Atomic Number	Atomic Type	Coord X	dinates (Ang: Y	stroms) Z	
		·	2 211771	0 004050	0 (20001	
1	29	0	3.311/61 -4 995738	0.024253 1 341814	-0.632891	
3	6	0	-1.460525	3.440671	-0.407437	
4	6	0	0.598610	3.457207	-1.702817	
5	1	0	1.083896	3.525796	-2.677189	
6	6	0	-6.158696	-0.676081	0.131502	
.7	6	0	-0.699946	3.457460	0.781997	
8	1	0	-1.225151	3.485028 -3.472241	1./3152/	
10	1	0	-1.007202	-3.549996	1.592737	
11	6	0	-6.151729	0.740614	0.030109	
12	6	0	-0.808179	3.481370	-1.659473	
13	1	0	-1.372255	3.547930	-2.584210	
14	6	0	5.471247	1.101300	-2.308766	
15	1	0	4.980273	0.878304	-3.262075	
10	I 6	0	0.341/30 2 880381	3 306880	-2.513279	
18	1	0	3.295895	4.238018	-0.977221	
19	1	0	3.278749	3.200639	0.457171	
20	6	0	0.694966	3.411773	0.718190	
21	1	0	1.267688	3.408789	1.643668	
22	6	0	-1.504242	-3.443882	-0.499317	
23	6	0	-3.729590	3.197413	-1.373069	
24	1	0	-3.342493	2.429874 4 155728	-2.056415	
2.6	6	0	1.368070	3.375577	-0.523761	
27	6	0	4.876813	2.363487	-1.687689	
28	1	0	5.384027	2.602309	-0.744710	
29	1	0	5.026508	3.220531	-2.360176	
30	6	0	1.284172	-3.259771	-0.952466	
31	6	0	0.772392	-3.368899	0.359024	
32 33	1	0	1.455508 -7 277233	-3.3/181/ 1 468977	0 457625	
34	1	0	-7.299266	2.550004	0.375797	
35	6	0	0.379681	-3.342635	-2.032908	
36	1	0	0.747740	-3.357369	-3.059382	
37	6	0	-5.075024	2.769729	-0.819070	
38	1	0	-5.296888	3.357624	0.081058	
39	1	0	-3.863372	2.939688 _1 327724	-1.566468	
41	1	0	-7.305266	-2.408823	0.753871	
42	6	0	-1.006928	-3.429710	-1.821818	
43	1	0	-1.673510	-3.498043	-2.674765	
44	6	0	4.230489	-1.781994	-2.830627	
45	1	0	4.363964	-2.777949	-3.274068	
46		0	4.083356	-1.0//940	-3.65/841	
47	1	0	-9 262940	-1 108797	1 510624	
49	6	0	2.763955	-3.051885	-1.201399	
50	1	0	3.319605	-3.044955	-0.258921	
51	1	0	3.170194	-3.863841	-1.824135	
52	6	0	5.475271	-1.406158	-2.022162	
53	1	0	6.365944	-1.387629	-2.664434	
54	1	0	5.650078	-2.140336	-1.228214	
56	1	0	-6.007915	-3.009288	-1.181093	
57	1	0	-5.281456	-3.327783	0.425141	
58	6	0	-8.399440	0.807657	0.992683	
59	1	0	-9.259204	1.386707	1.316016	
60	6	0	-3.872295	-3.286243	-1.200697	
61	1	0	-4.026617	-4.270392	-1.663090	
62	1	0	-3.364192 1 116210	-2.338558 0 033046	-T.APTA3T	
64	7	0	3.022468	-1.736023	-1.940990	
65	, 7	õ	3.422777	2.148801	-1.380667	
66	7	0	3.735459	-0.138061	1.456736	

67	7	0	5.250050	-0.062381	-1.377721
68	6	0	-2.506086	-0.052721	1.856141
69	1	0	-3.095896	-0.873910	1.428888
70	1	0	-3.050268	0.865466	1.597632
71	1	0	-2.483206	-0.156231	2.945160
72	6	0	3.968683	-0.338339	5.793430
73	1	0	4.439550	-1.277274	6.112674
74	1	0	2.983588	-0.278093	6.264821
75	1	0	4.585580	0.478098	6.189784
76	8	0	-2.830497	3.364911	-0.224329
77	8	0	-2.844549	-3.408615	-0.156692
78	8	0	-5.014858	-1.360777	-0.323919
79	6	0	2.588873	-0.127690	2.209563
80	6	0	4.932580	-0.214776	2.095913
81	1	0	5.827703	-0.227235	1.481521
82	6	0	3.882579	-0.267600	4.288148
83	6	0	5.050365	-0.280996	3.487302
84	1	0	6.034468	-0.342109	3.941633
85	6	0	2.645398	-0.189150	3.615143
86	1	0	1.730849	-0.175389	4.196661
87	6	0	1.317444	-0.053496	1.445732
88	6	0	-0.955025	0.057253	-0.145050
89	1	0	-1.822594	0.097446	-0.795339
90	6	0	0.045538	-0.079916	2.042777
91	1	0	-0.049642	-0.148110	3.120647
92	6	0	0.330628	0.090489	-0.685715
93	1	0	0.475705	0.170238	-1.756823
94	6	0	-1.125794	-0.026722	1.256748
95	1	0	5.884291	0.042304	-0.579951
96	1	0	2.893914	2.120346	-2.261024
97	1	0	2.188009	-1.550332	-2.506159

DFT/B3LYP/LanL2DZ

Energy = -2322.61702581 a.u.

					``
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	туре	Х	¥	
1	29	0	-3.095114	0.222324	-0.423979
2	8	0	2.502204	-3.280208	-0.886476
3	6	0	-4.196434	-0.443662	2.440613
4	8	0	4.658056	-1.498483	0.263628
5	8	0	4.784322	1.197250	0.647782
6	8	0	2.866865	3.421549	-0.052559
7	6	0	1.490584	3.547511	-0.144935
8	6	0	1.116953	-3.352883	-0.921155
9	6	0	4.897527	2.625908	0.963589
10	6	0	0.597375	3.461331	0.943942
11	6	0	7.094962	-1.587741	-0.180666
12	6	0	0.532991	-3.197120	-2.199224
13	6	0	-0.388531	3.724871	-1.677138
14	6	0	3.216563	-3.442699	0.385955
15	6	0	7.227430	1.180726	0.227969
16	6	0	5.920714	-0.878798	0.133339
17	6	0	0.990471	3.740384	-1.453543
18	6	0	-1.101810	-3.419681	0.069977
19	6	0	4.640534	-2.963658	0.180163
20	6	0	-1.297016	3.513521	-0.609544
21	6	0	5.987192	0.524974	0.337511
22	6	0	-3.185760	-2.949410	-1.308641
23	6	0	0.293603	-3.527731	0.210414
24	6	0	-1.694487	-3.168301	-1.179277
25	6	0	-0.857191	-3.112650	-2.321174
26	6	0	8.329800	-0.921397	-0.292784
27	6	0	3.507886	3.165347	1.243793
28	6	0	8.396174	0.462202	-0.087226
29	6	0	-0.747596	-0.114792	1.204090
30	6	0	-1.860425	-0.281965	2.161007
31	6	0	-0.151174	0.168510	-1.057832

32	6	0	1.228527	0.112982	-0.779495
33	6	0	-1.681164	-0.500758	3.542811
34	6	0	1.602098	-0.054177	0.574236
35	6	0	-2.793955	-0.691621	4.370118
36	6	0	-4.100292	-0.674293	3.825403
37	6	0	0.612574	-0.170673	1.559618
38	6	0 0	2 263618	0 221108	-1 867430
30	7	0	_1 107527	0.221100	_0 102962
10	7	0	-1.107327	0.000072	-0.102902
40	/	0	-3.122400	-0.244/92	1.030098
41	/	0	-5.160566	0.496/15	-0.620359
42	1	0	-3.502359	-1.553587	-1.833529
43	7	0	-3.003075	2.009354	-1.649478
44	6	0	-2.768776	3.325698	-0.898985
45	6	0	-4.940089	-1.404399	-2.238323
46	6	0	-5.756314	-0.809197	-1.085085
47	6	0	-5.455911	1.690750	-1.501622
48	6	0	-5.327416	-0.892010	4.679707
49	6	0	-0 787183	3 432034	0 697866
50	6	0	-1 279381	1 99/317	-2 136939
50	1	0	F 177070	1.22700	1 075055
51	1	0	-5.1//8/2	-0.432/99	1.9/5955
52	1	0	5.533/82	2.755031	1.850859
53	1	0	5.336383	3.173855	0.120169
54	1	0	0.958701	3.404781	1.965187
55	1	0	7.068580	-2.659610	-0.339740
56	1	0	1.184904	-3.141868	-3.065569
57	1	0	-0.757713	3.885664	-2.690083
58	1	0	3.211843	-4.506184	0.661797
59	1	0	2.737080	-2.855348	1.178827
60	1	0	7 304276	2 250178	0 386837
61	1	0	-1 720904	-3 533075	0.051036
C2	1	0	-1.729004 E 200220	-3.333273	0.951050
62	1	0	5.286236	-3.381381	0.965/58
63	1	0	5.001543	-3.298185	-0.800865
64	1	0	-3.629220	-3.681585	-2.002697
65	1	0	-3.679684	-3.070635	-0.339174
66	1	0	0.716343	-3.734164	1.187788
67	1	0	-1.288440	-3.016291	-3.317830
68	1	0	9.224242	-1.486770	-0.535805
69	1	0	3.570792	4.110084	1.800386
70	1	0	2.933828	2.432450	1.823917
71	1	0	9 343110	0 987216	-0 167218
72	1	0	_0 /00710	0.200212	-2 091799
72	1	0	-0.400712	0.290212	-2.001709
73	1	0	-0.685585	-0.525062	3.969360
/4	1	0	2.660053	-0.100356	0.823/64
75	1	0	-2.654406	-0.859173	5.434896
76	1	0	0.901697	-0.311831	2.594845
77	1	0	2.940326	1.059614	-1.662854
78	1	0	1.812365	0.362277	-2.855228
79	1	0	2.882692	-0.684074	-1.886298
80	1	0	-3.153192	4.139091	-1.533603
81	1	0	-3.355615	3.313176	0.024540
82	1	0	-5 005124	-0 763111	-3 123675
83	1	0	-5 376666	-2 3729/9	-2 519354
0.0	1	0	6 270757	1 510721	2.01000
04	1	0	-0.370737	1.319/31	-2.062699
85	1	0	-5.642636	2.550437	-0.848867
86	1	0	-5.294811	-1.871302	5.173406
87	1	0	-6.250304	-0.844917	4.092111
88	1	0	-5.395585	-0.135329	5.471327
89	1	0	-1.470317	3.340135	1.540741
90	1	0	-4.451364	2.957346	-2.938498
91	1	0	-4.192766	1.231897	-3.217292
92	1	0	1.697456	3.8842.37	-2.264519
93	- 1	0 0	-5 748416	-1 498936	-0 232825
9.J	⊥ 1	0	-6 801077	-0 666644	-1 300725
24	1	0	-0.0U10//	-0.000044	-1.JU/ZJ
90	1	U	-J.JZ13/4	1 004760	0.314369
96	1	U	-2.20//95	1.094/63	-2.286353
97	Ţ	U	-2.897993	-1.39/938	-2.646144