Supporting Information

Dehydrogenation of Ammonia-Borane by Cationic Pd(II) and Ni(II) Complexes in Nitromethane Medium: Hydrogen Release and Spent Fuel Characterization

Sung-Kwan Kim,^a Sung-Ahn Hong,^a Ho-Jin Son,^{*a} Won-Sik Han,^d Artur Michalak,^c Son-Jong Hwang,^{*b} and Sang Ook Kang^{*a}

^aDepartment of Advanced Materials Chemistry, Korea University, Sejong 339-700, Korea. ^bDepartment of Chemistry, Seoul Women's University, Hwarang-ro 621, Seoul, Korea. ^cDepartment of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, R. Ingardena 3, 30-060 Kraków, Poland.

^dDivision of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.

Table of Contents

Fig. S1. X-ray photoelectron spectroscopy (XPS) of spent fuel

Fig. S2 IR spectra of AB and the spent fuel

Fig. S3 Experimental ¹¹B MAS NMR spectrum of spent fuels

Fig. S4 Digestion procedures of spent fuels (CNH_xBO_y/PdNPs) remaining after AB dehydrogenation by Pd catalyst 1

Fig. S5 ¹³C MAS and CPMAS NMR spectra of the precipitates produced from AB dehydrogenation

Fig. S6 1D ¹¹B MAS and 2D ¹¹B MQMAS NMR spectra of spent fuels

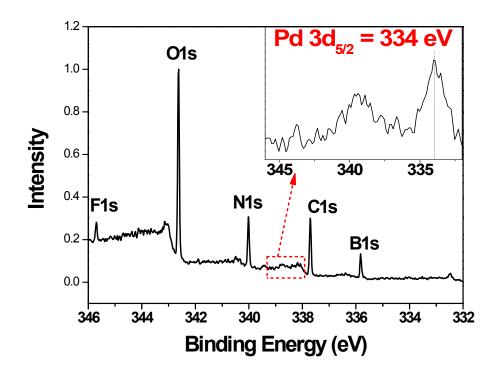


Fig. S1 X-ray photoelectron spectroscopy (XPS) of spent fuel.

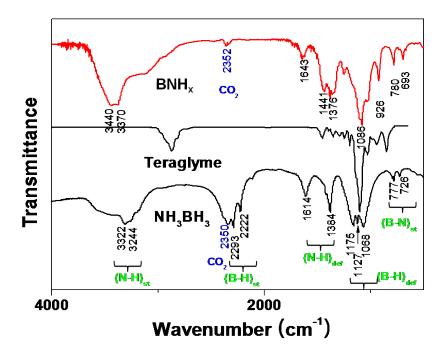
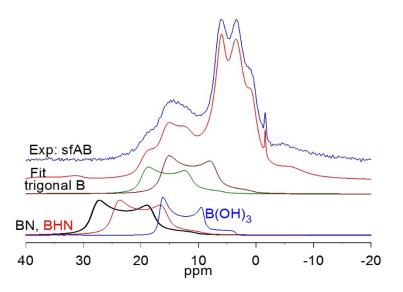



Fig. S2 IR spectra of AB and the spent fuel.

Fig. S3 Experimental ¹¹B MAS NMR spectrum of spent fuels and fit of the trigonal borons(sp^2 parts) (see Figure 1). Simulated spectra of BN, BN₂H using reported quadrupole parameters (ref), and experimental ¹¹B MAS spectrum of boric acid are provided for reference.

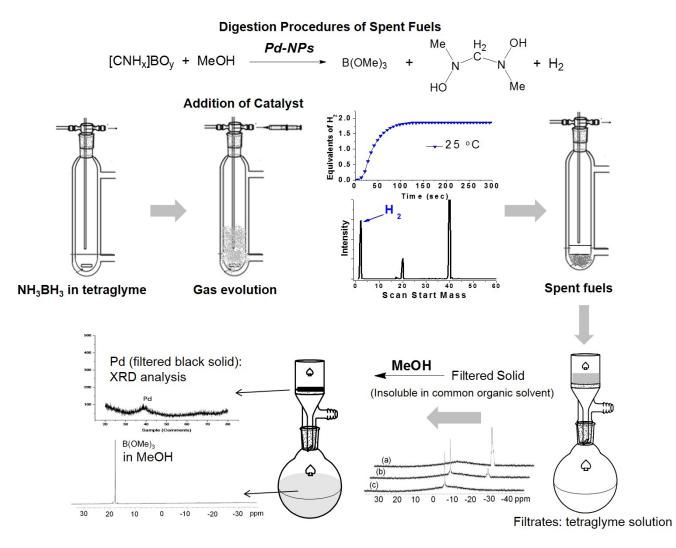
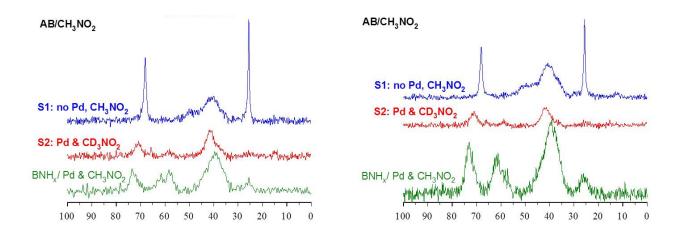



Fig. S4 Digestion procedures of spent fuels ($[CNH_x]BO_y/PdNPs$) remaining after AB dehydrogenation by Pd catalyst 1.

Fig. S5 ¹³C MAS (left) and CPMAS NMR (right) spectra of the precipitates (S1, blue line) produced from AB dehydrogenation without **1** and TG, precipitates (S2, red line) generated with **1** in CD₃NO₂ solvent, and AB spent fuels ([CNH_x]BO_y/Pd NPs, green line) generated with **1** and TG in CH₃NO₂ solvent: ¹³C MAS and CPMAS spectra comparison also provide additional information. TG and Pd particles are missing in S1, and in ¹³C spectra present strong signal near 40 ppm while the two peaks at 60 and 75 ppm are missing as shown in Figure S5. The 40 ppm signal can then be attributed to the MeNO₂ precipitated in the solids. The rest 60 and 75 ppm peaks are believed to be originated from the TG.

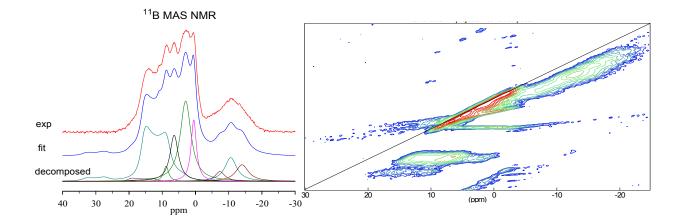


Fig. S6 1D ¹¹B MAS (left) and 2D ¹¹B MQMAS (right) NMR spectra of spent fuels from dehydrogenation of AB with MeNO₂ 80 $^{\circ}$ C