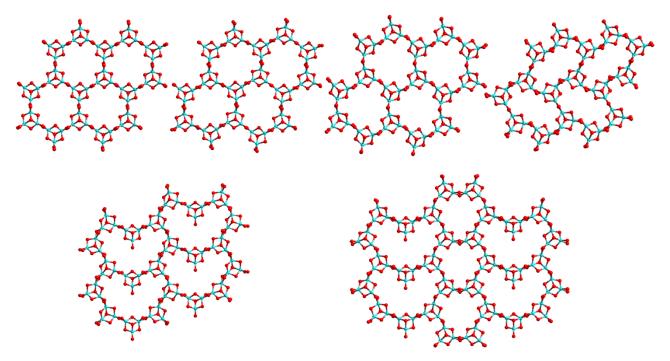
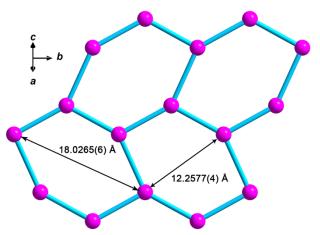
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Varied forms of lamellar $[Sn_3Se_7]_n^{2n}$ anion: the competitive and synergistic structural directing effects of metal-amine complex and imidazolium cations


Cheng–Feng Du, ^{a,b} Jian–Rong Li,**a Mei–Ling Feng, ^a Guo-Dong Zou, ^c Nan–Nan Shen ^{a,b} and Xiao–Ying Huang ^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China. Fax: (+86) 591-63173145

^b University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.

^c College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China E-mail: irli@fjirsm.ac.cn


Supporting Information

1. Structure details

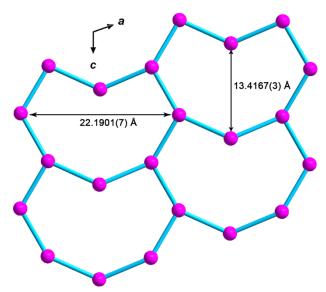
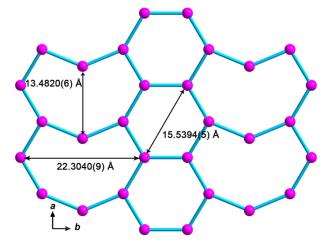
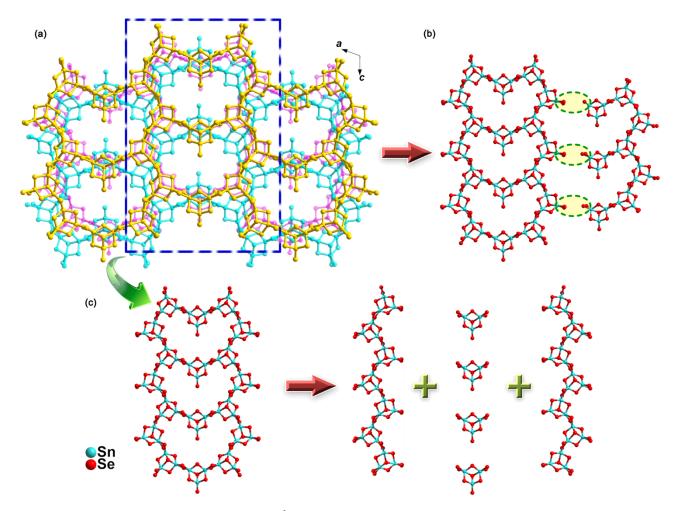
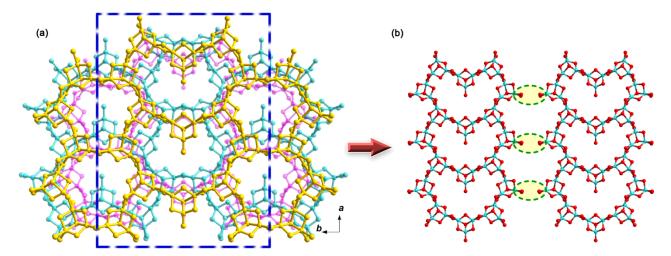


Figure S1. The four known lamellar $[Sn_3Se_7]_n^{2n}$ anions with six–membered rings (up) and two novel lamellar $[Sn_3Se_7]_n^{2n}$ anions with eight-membered heart-shaped rings (down) reported in this work.


When $[Sn_3Se_4]$ semi-cube was used as a node and $(\mu_2-Se)_2$ as a ligand, the lamellar $[Sn_3Se_7]_n^{2n}$ anions in compounds 1, 2, 3 and 4 can be simplified as those in Figs. S2-S4, that is, compounds 1 and 2 contains a simplified elliptic six-membered ring while a novel eight-membered heart shaped ring can be found in 3 and 4.


Figure S2. The simplified elliptic six-membered ring with $[Sn_3Se_4]$ semi-cube as a node and $(\mu_2-Se)_2$ as a ligand in 1 and 2.


Figure S3. The simplified eight-membered heart shaped ring with $[Sn_3Se_4]$ semi-cube as a node and $(\mu_2-Se)_2$ as a ligand in 3.

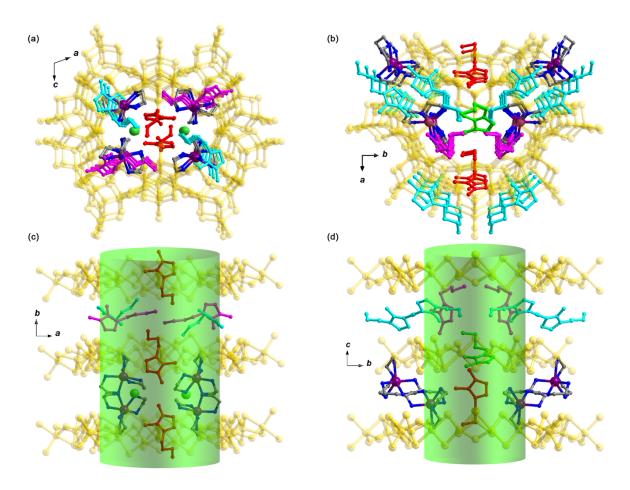
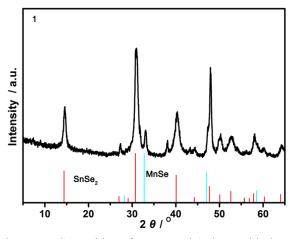
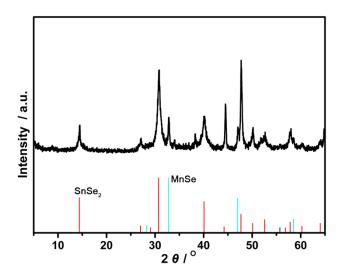
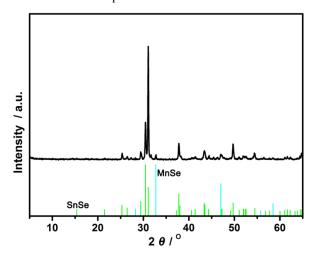

Figure S4. The simplified eight-membered heart shaped ring and six-membered ring with [Sn₃Se₄] semi-cube as a node and $(\mu_2$ –Se)₂ as a ligand in **4**.

Figure S5. (a) A view of the packing of $[Sn_3Se_7]_n^{2n}$ layers in **3** along the *b* axis, (b) the connecting mode of eight-membered heart shaped ring chain in **3** and (c) the eight-membered heart shaped ring chain constructed from the $[Sn_3Se_7]_n^{2n}$ single chain and $[Sn_3Se_9]$ SBUs.


Figure S6. (a) A view of the packing of $[Sn_3Se_7]_n^{2n}$ layers in 4 along the c axis and (b) the construction of eight-membered heart shaped ring chain in 4.


Figure S7. Perspective views of the mixed cations filling modes in compounds **3** (a) and **4** (b); the $[Sn_3Se_7]_n^{2n}$ layers are in a yellow ball-stick mode, and the $[Bmmim]^+$ cations in different positions are distinguished by different colors. (c) and (d) show the side views of the mixed cations located in the inter-lamellar space and voids; the green cylinders indicate the channels in **3** and **4**.

2. Physical measurements


3a). PXRD

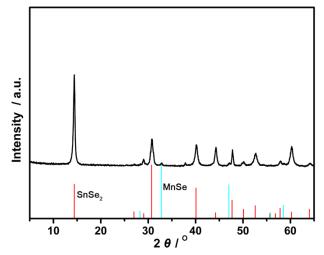

Figure S8. The PXRD pattern of the post-TGA residue of compound **1** along with the simulated ones of SnSe₂ and MnSe at bottom for comparison. The TGA residue of compound **1** is identified as a mixture of SnSe₂ and MnSe.

Figure S9. The PXRD pattern for the post-TGA residues of compound **2** along with the simulated ones of SnSe₂ and MnSe at bottom for comparison. The residue of compound **2** is identified as a mixture of SnSe₂ and MnSe.

Figure S10. The PXRD pattern for the post-TGA residue of compound **3** along with the simulated ones of SnSe and MnSe at bottom for comparison. The residue of compound **3** is identified as a mixture of SnSe and MnSe.

Figure S11. The PXRD pattern for the post-TGA residue of compound 4 along with the simulated ones of SnSe₂ and MnSe at bottom for comparison. The residue of compound 4 is identified as the mixture of SnSe₂ and MnSe.

3b). EDX spectra

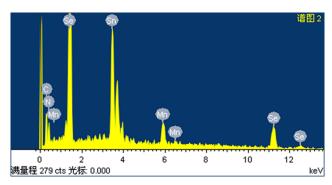


Figure S12. EDX spectrum of compound 1.

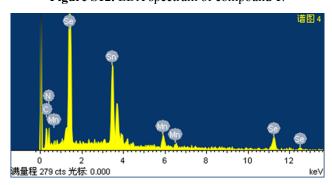


Figure S13. EDX spectrum of compound 2.

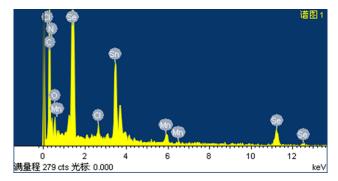


Figure S14. EDX spectrum of compound 3.

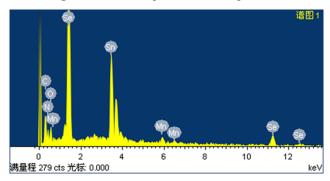


Figure S15. EDX spectrum of compound 4.