Supporting Information

Heteroleptic naphthalo-phthalocyaninates of lutetium: synthesis and spectral and conductivity properties

Tatiana V. Dubinina,*^{*a,b*} Anton D. Kosov,^{*a*} Elizaveta F. Petrusevich,^{*a*} Sergey S. Maklakov,^{*c*} Nataliya E. Borisova,^{*a*} Larisa G. Tomilova^{*a,b*} and Nikolay S. Zefirov^{*a,b*}

[a] Chemistry Department, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russian Federation Fax: +7 (495) 939 0290 E-mail: <u>dubinina.t.vid@gmail.com</u>

[b] Institute of Physiologically Active Compounds, Russian Academy of Sciences, 1 Severny proezd, 142432 Chernogolovka, Moscow Region, RussianFederation Fax: +7-496-524-9508 E-mail: tom@org.chem.msu.ru

[c] Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, 125412, 13 Izhorskaya St., Moscow, Russian Federation

Contents list

Table S1. High-resolution mass spectrometry MALDI TOF/TOF data.

Table S2. ¹H NMR data.

Figure S1. MALDI-TOF mass spectrum of a reaction mixture for synthesis of complex 3c.

Figure S2-S6. High-resolution MALDI-TOF/TOF mass spectrum of **3b-3f**, isotopic patterns for the molecular ion (inset A) and simulated MS patterns of the molecular ion (inset B).

Figure S7. ¹H NMR spectra of complexes **3b** and **3e**.

Figure S8. ¹H NMR spectra of complexes **3c** and **3f**.

Figure S9. UV-Vis spectra of reduced by N₂H₄·H₂O forms of heteroleptic complexes 3 in DMSO.

Figure S10. I-V curves for thin films of heteroleptic complexes **3**.

Figure S11. UV-Vis spectra of thin films and solutions in CCl₄ for heteroleptic complexes 3.

Figure S12-S17. Conductivity of a thin film of complexes **3a-f** as a function of temperature $(\ln(\sigma) \text{ vs. } 1/T)$.

Figure S18. Tauc plot for the Q-band of the thin film of phthalocyanine **3b**.

Figure S19. Tauc plot for the RV-band of phthalocyanine 3b.

Table S1. High-resolution mass spectrometry MALDI TOF/TOF data.

Compound	Mass found	Monoisotopic
(Molecular formula)		mass calculated
$3a (C_{128}H_{72}LuN_{16})$	2007.5519	2007.5534
3b (C ₁₂₈ H ₇₅ Cl ₈ LuN ₁₆)	2290.1597	2290.3277
3c (C ₁₇₆ H ₁₀₅ LuN ₁₆)	2616.8997	2616.8116
3d (C ₁₂₈ H ₇₃ LuN ₁₆ O ₈)	2136.4387	2136.5205
3e (C ₁₂₈ H ₇₆ Cl ₈ LuN ₁₆ O ₈)	2419.2322	2419.2943
$3f(C_{176}H_{106}LuN_{16}O_{16})$	2873.7937	2873.7375

Table S2. ¹H NMR data.

Compound	H _{Ph} (or H _{PhO})	β -H _{Pc}	β -H _{Nc}	α -H _{Pc}	α -H _{Nc}	Solvent
NcLuPc ¹⁰	-	8.13	8.72	8.72	9.32	[D ₆]DMSO
^{Ph} PcLu ^{Ph} Pc ⁴	7.35-7.43	-	-	9.02	-	[D ₆]DMSO–CDCl ₃ (3:1, V/V)
39	7.40-7.56	8.17	8.72	8.81	9.42	[D ₆]DMSO
Ja	7.38-7.54	8.16	8.67	8.83	9.40	[D ₆]DMSO:CDCl ₃ (3:1, V:V)
3b	7.40-7.54	-	8.72	8.77	9.45	[D ₆]DMSO:CDCl ₃ (3:1, V:V)
3c	7.72-7.75 and 7.87-7.90	-	8.54	9.26	9.56	[D ₆]DMSO
3d	7.18-7.28 and 7.44-7.50	7.94	8.08	8.81	9.15	[D ₈]THF
3e	7.55-7.74	-	8.14	8.61-8.73	9.16	[D ₆]DMSO
3f	7.51-7.59 and 7.67-7.75	-	8.15	8.17	9.27	[D ₆]DMSO

Figure S1. MALDI-TOF mass spectrum of a reaction mixture for synthesis of complex 3c.

Figure S2. High-resolution MALDI-TOF/TOF mass spectrum of **3b**, isotopic patterns for the molecular ion (inset A) and simulated MS patterns of the molecular ion (inset B).

Figure S3. High-resolution MALDI-TOF/TOF mass spectrum of **3c**, isotopic patterns for the molecular ion (inset A) and simulated MS patterns of the molecular ion (inset B).

Figure S4. High-resolution MALDI-TOF/TOF mass spectrum of **3d**, isotopic patterns for the molecular ion (inset A) and simulated MS patterns of the molecular ion (inset B).

Figure S5. High-resolution MALDI-TOF/TOF mass spectrum of **3e**, isotopic patterns for the molecular ion (inset A) and simulated MS patterns of the molecular ion (inset B).

Figure S6. High-resolution MALDI-TOF/TOF mass spectrum of **3f**, isotopic patterns for the molecular ion (inset A) and simulated MS patterns of the molecular ion (inset B).

Figure S7. ¹H NMR spectra of complexes **3b** and **3e**.

Figure S8. ¹H NMR spectra of complexes **3c** and **3f**.

Figure S9. UV-Vis spectra of reduced by N2H4 •H2O forms of heteroleptic complexes 3 in DMSO.

Figure S10. I-V curves for thin films of heteroleptic complexes 3.

Figure S11. UV-Vis spectra of thin films and solutions in CCl_4 for heteroleptic complexes **3**. The Q-band:B-band intensity ratios for thin films are given in brackets.

Figure S12. Conductivity of a thin film of complex 3a as a function of temperature (ln(σ) vs. l/T).

Figure S13. Conductivity of a thin film of complex **3b** as a function of temperature $(ln(\sigma) \text{ vs. } l/T)$.

Figure S14. Conductivity of a thin film of complex 3c as a function of temperature (ln(σ) vs. l/T).

Figure S15. Conductivity of a thin film of complex 3d as a function of temperature (ln(σ) vs. l/T).

Figure S16. Conductivity of a thin film of complex 3e as a function of temperature (ln(σ) vs. l/T).

Figure S17. Conductivity of a thin film of complex **3f** as a function of temperature $(ln(\sigma) \text{ vs. } l/T)$.

Figure S18. Tauc plot for the Q-band of the thin film of phthalocyanine $\mathbf{3b}$.

Figure S19. Tauc plot for the RV-band of phthalocyanine 3b.