Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015 Introduction of luminescent rhenium(I), ruthenium(II), iridium(III) and rhodium(III) systems into rhodamine-tethere ligands for the construction of bichromophoric chemosensors Chunyan Wang, a,b Ho-Chuen Lam,b Nianyong Zhub, and Keith Man-Chung Wonga,b* ^a Department of Chemistry, South University of Science and Technology of China, No. 1088, Tangchang Boulevard, Nanshan District, Shenzhen 518055, Guangdong, P.R. China ## **Electronic supplementary information (ESI)** ^b Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China Figure S1 Electronic absorption spectra of 4–6 in acetonitrile at 298 K Figure S2 Electronic absorption spectra of 7–9 in acetonitrile at 298 K Figure S3 Electronic absorption spectra of 10–12 in acetonitrile at 298 K Figure S4 The normalized emission spectrum of 4 in acetonitrile at 298 K Figure S5 The normalized emission spectrum of 12 in acetonitrile at 298 K Figure S6 Electronic absorption of 1 in CH₃CN (concentration = 11.8 μ M) at 298 K upon addition of various concentrations of Pb²⁺. Inset shows the plots of the absorbance at 530 nm as a function of the concentration of Pb²⁺. Figure S7 Electronic absorption of 1 in CH_3CN (concentration = 11.8 μ M) at 298 K upon addition of various concentrations of Cu^{2+} . Inset shows the plots of the absorbance at 530 nm as a function of the concentration of Cu^{2+} . Figure S8 Electronic absorption of 1 in CH_3CN (concentration = 11.8 μ M) at 298 K upon addition of various concentrations of Zn^{2+} . Inset shows the plots of the absorbance at 530 nm as a function of the concentration of Zn^{2+} . Figure S8 Electronic absorption of 4 in CH₃CN (concentration = 11.8 μ M) at 298 K upon addition of various concentrations of Hg²⁺. Inset shows the plots of the absorbance at 530 nm as a function of the concentration of Hg²⁺. Figure S9 Electronic absorption of 4 in CH₃CN (concentration = 11.8 μ M) at 298 K upon addition of various concentrations of Pb²⁺. Inset shows the plots of the absorbance at 530 nm as a function of the concentration of Pb²⁺. Figure S10 Electronic absorption of 4 in CH_3CN (concentration = 11.8 μ M) at 298 K upon addition of various concentrations of Cu^{2+} . Inset shows the plots of the absorbance at 530 nm as a function of the concentration of Cu^{2+} . Figure S11 Electronic absorption of 4 in CH₃CN (concentration = 11.8 μ M) at 298 K upon addition of various concentrations of Zn²⁺. Inset shows the plots of the absorbance at 530 nm as a function of the concentration of Zn²⁺. Figure S12 Electronic absorption of 7 in CH₃CN (concentration = 11.7 μ M) at 298 K upon addition of various concentrations of Hg²⁺. Inset shows the plots of the absorbance at 530 nm as a function of the concentration of Hg²⁺. Figure S13 Electronic absorption of 7 in CH₃CN (concentration = 11.7 μ M) at 298 K upon addition of various concentrations of Pb²⁺. Inset shows the plots of the absorbance at 530 nm as a function of the concentration of Pb²⁺. Figure S14 Electronic absorption of 7 in CH_3CN (concentration = 11.7 μ M) at 298 K upon addition of various concentrations of Cu^{2+} . Inset shows the plots of the absorbance at 530 nm as a function of the concentration of Cu^{2+} . Figure S15 Corrected emission spectra of 1 (9.66 μ M) in acetonitrile at 298 K upon addition of various concentrations of Hg²⁺. Inset shows the plots of the emission intensity at 560 nm as a function of the concentration of Hg²⁺. Figure S16 Corrected emission spectra of 1 (11.8 μ M) in acetonitrile at 298 K upon addition of various concentrations of Pb²⁺. Inset shows the plots of the emission intensity at 560 nm as a function of the concentration of Pb²⁺. Figure S17 Corrected emission spectra of 1 (11.8 μ M) in acetonitrile at 298 K upon addition of various concentrations of Cu²⁺. Inset shows the plots of the emission intensity at 560 nm as a function of the concentration of Cu²⁺. Figure S18 Corrected emission spectra of 1 (11.8 μ M) in acetonitrile at 298 K upon addition of various concentrations of Zn²⁺. Inset shows the plots of the emission intensity at 560 nm as a function of the concentration of Zn²⁺. Figure S19 Corrected emission spectra of 4 (11.8 μ M) in acetonitrile at 298 K upon addition of various concentrations of Hg²⁺. Figure S20 Corrected emission spectra of 4 (11.8 μ M) in acetonitrile at 298 K upon addition of various concentrations of Pb²⁺. Inset shows the plots of the emission intensity at 560 nm as a function of the concentration of Pb²⁺. Figure S21 Corrected emission spectra of 4 (11.8 μ M) in acetonitrile at 298 K upon addition of various concentrations of Cu²⁺. Inset shows the plots of the emission intensity at 560 nm as a function of the concentration of Cu²⁺. Figure S22 Corrected emission spectra of 4 (11.8 μ M) in acetonitrile at 298 K upon addition of various concentrations of Zn²⁺. Inset shows the plots of the emission intensity at 560 nm as a function of the concentration of Zn²⁺. Figure S23 Corrected emission spectra of 7 (11.7 μ M) in acetonitrile at 298 K upon addition of various concentrations of Hg²⁺. Inset shows the plots of the emission intensity at 560 nm as a function of the concentration of Hg²⁺. Figure S24 Corrected emission spectra of 7 (11.7 μ M) in acetonitrile at 298 K upon addition of various concentrations of Pb²⁺. Inset shows the plots of the emission intensity at 560 nm as a function of the concentration of Pb²⁺. Figure S25 Corrected emission spectra of 7 (11.7 μ M) in acetonitrile at 298 K upon addition of various concentrations of Cu²⁺. Inset shows the plots of the emission intensity at 560 nm as a function of the concentration of Cu²⁺.