Electronic Supporting Information

Stoichiometric and catalytic Si-N bond formation using the p-block base $Al(NMe_2)_3$

Lucy. K. Allen, Raul Garcia-Rodriguez and Dominic S. Wright

General Experimental Details of NMR Spectroscopic Studies

NMR spectra were acquired using a Bruker Avance BB500 MHz TCI Cryoprobe Spectrometer. Samples were dissolved in d₈-toluene or d₈-THF which had been dried over a sodium mirror.²⁹Si NMR spectra were referenced to an internal standard of TMS (δ = 0ppm). ²⁷Al NMR spectra were referenced to an internal standard of AlCl₃.6H₂O (δ = 0 ppm).

ESI 1a ¹H NMR spectrum (d₈-toluene) of the reaction between PhSiH₃ (1 equiv) and BnNH₂ (3 equiv) catalysed by Al(NMe₂)₃ (10 mol%) showing the formation of PhSiH(BnNH)₂.

ESI 1b (a) ²⁹Si proton coupled NMR spectrum showing doublet of novel product PhSiH(BnNH)₂. (b) ¹H-²⁹Si HSQC long range spectrum correlating the silicon signal bonded to Ph, H and NH groups. (c) ¹H-¹³C HMQC spectrum correlating the signals for the benzyl CH₂ group with a ¹³C signal at δ = 45 ppm. (d) ¹H-¹³C HMBC spectrum correlating the CH₂ ¹³C signal (δ = 45 ppm) to the SiH (see ESI 1c). (e) ¹H-¹H COSY spectrum showing the correlation between the CH₂ and NH groups.

ESI 2a (a) ¹H NMR spectrum (d₈-toluene) showing the silyl hydride region for the products PhSiH(HN^{*i*}Pr)₂, PHSiH(HN^{*i*}Pr)(NMe₂) and PhSiH(NMe₂)₂ formed by the reaction between PhSiH₃ (1 equiv) and ^{*i*}PrNH₂ (1.5 equiv) catalysed by Al(NMe₂)₃ (10 mol%). (b) ¹H-¹H COSY spectrum correlating the Si-H and N-H resonances.

ESI 2b (a) ${}^{1}\text{H}{}^{29}\text{Si}$ HSQC NMR spectrum (d₈-toluene) showing the three silyl hydride (SiH) signals correlating with the three ${}^{29}\text{Si}$ environments of the products PhSiH(HN^{*i*}Pr)₂, PHSiH(HN^{*i*}Pr)(NMe₂) and PhSiH(NMe₂)₂ formed by the reaction between PhSiH₃ (1 equiv) and ${}^{i}\text{PrNH}_2$ (1.5 equiv) catalysed by Al(NMe₂)₃ (10 mol%).

ESI 2c (a) ¹H NMR spectrum (d₈-toluene) showing the different regions of the products formed by the reaction between PhSiH₃ (1 equiv) and ^{*i*}PrNH₂ (1.5 equiv) catalysed by Al(NMe₂)₃ (10 mol%).

ESI 3a ¹H NMR spectrum (d₈-toluene) showing the silyl hydride region for the products PhSiH(HN^{*t*}Bu)(NMe₂), PhSiH₂(NMe₂) and PhSiH(NMe₂)₂ formed by the reaction between PhSiH₃ (1 equiv) and ^{*t*}BuNH₂ (2 equiv) catalysed by Al(NMe₂)₃ (10 mol%).

ESI 3b ¹H NMR spectrum (d_8 -toluene) showing the product PhSiH(NMe₂)₂ from the reaction between PhSiH₃ (1 equiv) and ^tBuNH₂ (2 equiv) catalysed by Al(NMe₂)₃ (10 mol%).

ESI 3c ¹H NMR spectrum (d₈-toluene) showing the product PhSiH(HN^tBu)(NMe₂) from the reaction between PhSiH₃ (1 equiv) and ^tBuNH₂ (2 equiv) catalysed by Al(NMe₂)₃ (10 mol%).

ESI 4a (a) ¹H NMR spectra (d₈-toluene) of the reaction between Ph₂SiH₂, Et₂NH and Al(NMe₂)₃ showing the formation of Ph₂SiH(NMe₂). (b) ²⁹Si DEPT45 spectrum showing diagnostic peak for Ph₂SiH(NMe₂) at -12ppm . (c) ¹H-²⁹Si HSQC spectrum correlating the diagnostic Si-H resonance at δ = 5.40 ppm with the ²⁹Si signal at δ = -12 ppm bond in Ph₂SiH(NMe₂).

ESI 4b (a) ¹H-¹³C HMQC correlating the CH₃ (¹H δ = 2.55 ppm) with the ¹³C signal (δ = 38.4 ppm) in Ph₂SiH(NMe₂). (b) ¹H-¹³C HMBC correlating the Si-H proton (δ = 5.40 ppm) and the NMe₂ ¹³C signal (38.4 ppm) in Ph₂SiH(NMe₂).

ESI 5a ¹H-²⁹Si HSQC NMR spectrum (d₈-toluene) showing the correlation of two ¹H silyl hydride (Si-H) signals and the ²⁹Si signals of the two products PhSiH(NMe₂)₂ and PHSiH(NMe₂) (δ = -22 ppm and -17 ppm respectively) formed by the stoichiometric reaction between PhSiH₃ and Al(NMe₂)₃.

ESI 5b Overlay of ²⁷Al spectra (toluene-d₈) (a) Al(NMe₂)₃ (b) Al(NMe₂)₃ and PhSiH₃. The broad signal (δ = 70 ppm) arises from the probe.

ESI 6 (a) Initial rates of loss of $PhSiH_3 vs.$ pre-catalyst loading for the 1 : 2 reaction of $PhSiH_3$ with Et_2NH , and (b) initial rates of loss of $PhSiH_3 vs.$ silane concentration with 10 mol % loading of precatalyst. The straight lines drawn are the best-fit ones.

ESI 7a Steady-state analysis of M-H reaction

Asssuming the second step in $\ensuremath{\text{ESI 1a}}$ is rate determining

$$\implies \frac{+d}{dt} \begin{bmatrix} R_2 N - Si \end{bmatrix} = k_2 \begin{bmatrix} MNR_2 \end{bmatrix} \begin{bmatrix} Si - H \end{bmatrix} - \frac{k_2}{H} \begin{bmatrix} M^2 N \\ N \end{bmatrix} eqn.ESI 3$$

 $\begin{bmatrix} MNR_2 \end{bmatrix}$ concentration (Steady State)

$$k_{1}\left[M-H\right]\left[\begin{array}{c}R_{2}NH\end{array}\right] + k_{-2}\left[\begin{array}{c}M^{-}R_{2}\\N^{-}N_{1}\\H\end{array}\right] = k_{2}\left[MNR_{2}\right]\left[Si-H\right] \qquad \text{eqn.ESI 4}$$

$$\implies \frac{+d}{dt} \Big[R_2 N - Si \Big] = k_1 \Big[M - H \Big] \Big[R_2 N H \Big] \qquad \text{by combining equations ESI 3 and ESI 4}$$

ESI 7b Steady-state analysis assuming the second step is rate determining.

$$M-H + Si-H \xrightarrow{k_{1}} M_{H}SiH$$

$$M_{H}SiH + R_{2}NH \xrightarrow{k_{2}} M_{K_{2}} + H_{2}$$

$$M_{H}SiH + R_{2}NH \xrightarrow{k_{2}} M_{K_{2}} + H_{2}$$

$$M_{H}N_{Si} + H_{2}$$

$$M_{H}N_{Si} + K_{3} + H_{2}N-Si$$

$$\frac{+d}{dt} \begin{bmatrix} R_2 N - Si \end{bmatrix} = k_3 \begin{bmatrix} N^{-} N_{-} \\ N^{-} N_{-} \\ H \end{bmatrix} - k_{-3} \begin{bmatrix} M - H \end{bmatrix} \begin{bmatrix} R_2 N - Si \end{bmatrix}$$
eqn.ESI 5

$$\begin{bmatrix} M-H \end{bmatrix} \text{ concentration (Steady State)}$$

$$k_{1} \begin{bmatrix} M-H \end{bmatrix} \begin{bmatrix} Si-H \end{bmatrix} = k_{3} \begin{bmatrix} M^{\prime} N_{\cdot} Si \\ H \end{bmatrix} - k_{-3} \begin{bmatrix} M-H \end{bmatrix} \begin{bmatrix} R_{2}N-Si \end{bmatrix} \text{ eqn.ESI 6}$$

$$\implies \frac{+d}{dt} \begin{bmatrix} R_{2}N-Si \end{bmatrix} = k_{1} \begin{bmatrix} M-H \end{bmatrix} \begin{bmatrix} Si-H \end{bmatrix} \text{ by combining equations ESI 5 and ESI 6}$$

ESI 8 Steady-state analysis of silyl mechanism.