A highly selective fluorescent sensor for Al³⁺ and use of the resultant complex as a secondary sensor for PPi in aqueous media: its applicability in live cell imaging

Chunshuang Liang,^{*a*} Wenhuan Bu,^{*b*} Chenglong Li,^{*a*} Guangwen Men,^{*a*} Mengyu Deng,^{*a*} Yukun Jiangyao,^{*a*} Hongchen Sun,^{*b*} Shimei Jiang*^{*a*}

(Electronic Supplementary Information)

^a State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun 130012, P. R. China. E-mail: smjiang@jlu.edu.cn, Tel: +86-431-85168474, Fax: +86-431-85193421

^b Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, P. R. China.

Scheme S1 The synthesis of sensor L.

Fig. S1 ¹H NMR spectrum of L in CDCl₃.

Fig. S2 ¹³C NMR spectrum of L in CDCl₃.

Fig. S3 FT-IR spectrum of L.

Fig. S4. ESI-MS spectrum of L in EtOH.

Fig. S5 Absorption spectra of L (40 μ M) upon addition of increasing amounts of Al³⁺ ion (0-11 equiv.) in HEPES buffer (20 mM, 10% EtOH, pH = 7.04). The arrows indicate the changes in the absorbance with the increased Al³⁺ ions.

Fig. S6 Relative fluorescence of **L** and its complexation with Al^{3+} in the presence of various metal ions in HEPES buffer (20 mM, 1% EtOH, pH = 7.04). Response of **L** was included as controls.

Conditions: L, 10 μ M; Al³⁺, 10 equiv.; other metal ions, 10 equiv. ($\lambda_{ex} = 420$ nm).

Fig. S7 Job's plot for the binding of L with Al³⁺. The total concentration of L and Al³⁺ was 20 μ M.

Fig. S8 Benesi-Hildebrand analysis of the emission changes for the complexation between L and Al³⁺.

Fig. S9 Absorption spectra of L-Al³⁺ ensemble upon addition of increasing amounts of PPi (0-5 equiv.) in HEPES buffer (20 mM, 10% EtOH, pH = 7.04). The arrows indicate the changes in the absorbance with the increased PPi ions.

Fig. S10 ESI-MS spectrum of PPi added L-Al³⁺ complex in EtOH-H₂O (v/v = 1/1).

Fig. S11 Fluorescence changes at 497 nm of L (10 μ M) and L-Al³⁺ (10 equiv.) in aqueous solution at different pH scale.

Table S1 Crystal data and structure refinement for L.

Table S2 Bond lengths [Å] and angles [deg] for L.

Scheme S1 The synthesis of sensor L.

Fig. S1 ¹H NMR spectrum of L in CDCl₃.

Fig. S3 FT-IR spectrum of L.

Fig. S4 ESI-MS spectrum of L in EtOH.

Fig. S5 Absorption spectra of L (40 μ M) upon addition of increasing amounts of Al³⁺ ion (0-11 equiv.) in HEPES buffer (20 mM, 10% EtOH, pH = 7.04). The arrows indicate the changes in the absorbance with the increased Al³⁺ ions.

Fig. S6 Relative fluorescence of **L** and its complexation with Al^{3+} in the presence of various metal ions in HEPES buffer (20 mM, 1% EtOH, pH = 7.04). Response of **L** was included as controls. Conditions: **L**, 10 μ M; Al^{3+} , 10 equiv.; other metal ions, 10 equiv. ($\lambda_{ex} = 420$ nm).

Fig. S7 Job's plot for the binding of L with Al³⁺. The total concentration of L and Al³⁺ was 20 μ M.

Fig. S8 Benesi-Hildebrand analysis of the emission changes for the complexation between L and Al^{3+} .

Fig. S9 Absorption spectra of L-Al³⁺ ensemble upon addition of increasing amounts of PPi (0-5 equiv.) in HEPES buffer (20 mM, 10% EtOH, pH = 7.04). The arrows indicate the changes in the absorbance with the increased PPi ions.

Fig. S10 ESI-MS spectrum of PPi added L-Al³⁺ complex in EtOH-H₂O (v/v = 1/1).

Fig. S11 Fluorescence changes at 497 nm of L (10 μ M) and L-Al³⁺ (10 equiv.) in aqueous solution at different pH scale.

Table S1 Crystal data and structure refinement for L.

Empirical formula	C ₂₁ H ₂₇ NO ₂
Formula weight	325.44
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	triclinic
Space group	P -1
Unit cell dimensions	$a= 9.781(2)$ Å $\alpha=101.66(3)^{\circ}$
	$b=10.651(2)$ Å $\beta=90.36(3)^{\circ}$
	$c=20.744(4)$ Å $y=114.08(3)^{\circ}$
Volume	1922.8(7) Å ³
Z	4
Density (calculated)	1.124 g cm^{-1}
Absorption coefficient	0.071 mm ⁻¹
Crystal size	$0.13 \times 0.12 \times 0.11 \mathrm{mm^3}$
Reflections collected	10917
Independent reflected	6731 [R(int) = 0.0885]
Data/restrains/parameters	6731/0/445
Goodness-of-fit on F^2	0.981
final R indices $[I > 2(I)]$	$R_1 = 0.0605$, $wR_2 = 0.0925$
R indices (all data)	$R_1 = 0.2117$, $wR_2 = 0.1188$
Largest diff. peak and hole	0.258 and -0.215 e Å ⁻³

Table S2 Bond lengths $[{\rm \AA}]$ and angles [deg] for L.

C(1)-O(1) 1.345(4)	
C(1) C(6) = 1.415(5)	
C(1)-C(0) 1.413(3)	
C(1)-C(2) 1.417(5)	
C(2)-C(3) 1.368(5)	
C(2)-C(14) 1.548(5)	
C(3)-C(4) 1.410(5)	
C(4)-C(5) 1.380(5)	
C(4)-C(18) 1.515(6)	
C(5)-C(6) 1.361(5)	
C(6)-C(7) 1.440(5)	
C(7)-N(1) 1.263(5)	
C(8)-C(13) 1.358(5)	
C(8)-C(9) 1.396(5)	
C(8)-N(1) 1.427(5)	
C(9)-C(10) 1.389(6)	
C(10)-C(11) 1.360(6)	
C(11)-C(12) 1.408(6)	
C(12)-C(13) 1.379(5)	
C(13)-O(2) 1.390(5)	
C(14)-C(17) 1.524(5)	
C(14)-C(15) 1.526(6)	
C(14)-C(16) 1.528(5)	
C(18)-C(20) 1.461(6)	
C(18)-C(19) 1.519(6)	
C(18)-C(21) 1.563(7)	
C(22)-O(3) 1.369(4)	
C(22)-C(23) 1.374(5)	
C(22)-C(27) 1.398(5)	
C(23)-C(24) 1.426(5)	
C(23)-C(28) 1.430(5)	
C(24)-C(25) 1.354(5)	
C(25)-C(26) 1.392(5)	
C(25)-C(35) 1.573(5)	
C(26)-C(27) 1.408(5)	
C(27)-C(39) 1.532(5)	
C(28)-N(2) 1.289(4)	
C(29)-C(34) 1.357(5)	
C(29)-N(2) 1.409(4)	
C(29)-C(30) 1.410(5)	
C(30)-C(31) 1.357(5)	
C(30)-O(4) 1.372(4)	
C(31)-C(32) 1.358(5)	

C(32)-C(33)	1.393(5)
C(33)-C(34)	1.373(5)
C(35)-C(37)	1.529(5)
C(35)-C(38)	1.529(5)
C(35)-C(36)	1.544(5)
C(39)-C(41)	1.536(5)
C(39)-C(40)	1.541(5)
C(39)-C(42)	1.550(5)
O(1)-C(1)-C(6)	120.7(4)
O(1)-C(1)-C(2)	117.9(4)
C(6)-C(1)-C(2)	121.4(4)
C(3)-C(2)-C(1)	114.8(4)
C(3)-C(2)-C(14)	122.8(4)
C(1)-C(2)-C(14)	122.3(4)
C(2)-C(3)-C(4)	125.7(4)
C(5)-C(4)-C(3)	116.6(4)
C(5)-C(4)-C(18)	121.2(4)
C(3)-C(4)-C(18)	122.2(4)
C(6)-C(5)-C(4)	121.7(4)
C(5)-C(6)-C(1)	119.8(4)
C(5)-C(6)-C(7)	118.0(4)
C(1)-C(6)-C(7)	122.2(4)
N(1)-C(7)-C(6)	123.5(4)
C(13)-C(8)-C(9)	119.6(4)
C(13)-C(8)-N(1)	118.2(4)
C(9)-C(8)-N(1)	122.2(4)
C(10)-C(9)-C(8)	119.7(5)
C(11)-C(10)-C(9)	120.8(5)
C(10)-C(11)-C(12)	119.1(5)
C(13)-C(12)-C(11)	119.8(5)
C(8)-C(13)-C(12)	120.9(5)
C(8)-C(13)-O(2)	122.0(4)
C(12)-C(13)-O(2)	117.0(5)
C(17)-C(14)-C(15)	106.5(4)
C(17)-C(14)-C(16)	106.5(4)
C(15)-C(14)-C(16)	111.2(4)
C(17)-C(14)-C(2)	112.6(4)
C(15)-C(14)-C(2)	109.6(4)
C(16)-C(14)-C(2)	110.3(4)
C(20)-C(18)-C(4)	112.6(4)
C(20)-C(18)-C(19)	111.8(5)
C(4)-C(18)-C(19)	112.6(4)
C(20)-C(18)-C(21)	108.7(5)

C(4)-C(18)-C(21)	107.1(5)
C(19)-C(18)-C(21)	103.4(5)
O(3)-C(22)-C(23)	119.3(4)
O(3)-C(22)-C(27)	120.0(4)
C(23)-C(22)-C(27)	120.7(4)
C(22)-C(23)-C(24)	119.0(4)
C(22)-C(23)-C(28)	120.9(4)
C(24)-C(23)-C(28)	119.4(4)
C(25)-C(24)-C(23)	123.0(4)
C(24)-C(25)-C(26)	115.8(4)
C(24)-C(25)-C(35)	123.8(4)
C(26)-C(25)-C(35)	120.0(4)
C(25)-C(26)-C(27)	124.5(4)
C(22)-C(27)-C(26)	116.9(4)
C(22)-C(27)-C(39)	121.1(4)
C(26)-C(27)-C(39)	122.0(4)
N(2)-C(28)-C(23)	125.9(4)
C(34)-C(29)-N(2)	122.4(4)
C(34)-C(29)-C(30)	119.0(4)
N(2)-C(29)-C(30)	118.6(4)
C(31)-C(30)-O(4)	117.1(4)
C(31)-C(30)-C(29)	121.2(4)
O(4)-C(30)-C(29)	121.8(4)
C(30)-C(31)-C(32)	119.8(5)
C(31)-C(32)-C(33)	119.4(4)
C(34)-C(33)-C(32)	121.2(4)
C(29)-C(34)-C(33)	119.4(4)
C(37)-C(35)-C(38)	110.7(4)
C(37)-C(35)-C(36)	106.6(4)
C(38)-C(35)-C(36)	109.7(4)
C(37)-C(35)-C(25)	111.3(3)
C(38)-C(35)-C(25)	108.3(3)
C(36)-C(35)-C(25)	110.3(4)
C(27)-C(39)-C(41)	109.4(4)
C(27)-C(39)-C(40)	109.9(3)
C(41)-C(39)-C(40)	111.0(3)
C(27)-C(39)-C(42)	111.2(3)
C(41)-C(39)-C(42)	108.5(3)
C(40)-C(39)-C(42)	106.8(4)
C(7)-N(1)-C(8)	119.5(4)
C(28)-N(2)-C(29)	119.1(3)
