Electronic Supplementary Material (ESI) for Dalton Trans. This journal is © The Royal Society of Chemistry 2013

Supplementary material

Study on the thermal conversion of scheelite-type ABO₄ into perovskite-type AB(O,N)₃

Wenjie Li,^a Duan Li,^b Xin Gao,^b Aleksander Gurlo,^c Stefan Zander,^e Philip Jones,^d Alexandra Navrotsky,^d Zhijian Shen,^b Ralf Riedel,^a and Emanuel Ionescu

[a] Fachbereich Material- und Geowissenschaften, Technische Universität Darmstadt, Jovanka-Bontschits-Strasse 2, 64287 Darmstadt, Hessen, Germany

[b] Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden

[c] Fachgebiet Keramische Werkstoffe, Institut für Werkstoffwissenschaften und -technologien Fakultät III Prozesswissenschaften, Technische Universität Berlin, Hardenbergstraße 40, 10623 Berlin

[d] Peter A. Rock Thermochemistry Laboratory and NEATORU, University of California Davis, Davis, CA 95616-8779, USA

[e] Helmholtz-Zentrum Berlin für Materialien und Energie, Department of Crystallography, Hahn-Meitner-Platz 1, 14109 Berlin, Germany

Figures

Figure S 1 XRD patterns of BaMoO₄ after heating at 600, 700 and 900 ^oC under an ammonia flow for 6 hours.

Electronic Supplementary Material (ESI) for Dalton Trans. This journal is © The Royal Society of Chemistry 2013

Figure S 2 Rietveld refinement of the X-ray powder diffraction patterns of the samples obtained from the ammonolysis of BaMoO₄ (a) 700 $^{\circ}$ C for 6 hours and (b) 900 $^{\circ}$ C for 6 hours. Blue tick marks are Bragg peak positions of related phase (bottom); (a) (1) Ba₃Mo₂(O,N)₈, (2) BaMoO₄, (3) Mo₃N₂ and (4) BaMoO₃; (b) (1) Ba₃Mo₂(O,N)₈ and (2) Mo₃N₂. Green line at the bottom denotes the difference intensities between the observed and calculated profiles. Table S1 summarizes the results of the structure refinement.

Figure S 3 XRD patterns of BaWO₄ after heating at 600, 700 and 850 ^oC under an ammonia flow for 6 hours.

Figure S 4 Rietveld refinement of the X-ray powder diffraction pattern of the sample obtained from the ammonolysis of BaWO₄ at 850 $^{\circ}$ C for 6 hours. Blue tick marks are Bragg peak positions of related phase (bottom) as (1) BaWO₄, (2) Ba₃W₂(O,N)₈ and (3) W_{4.6}N₄. Green line at the bottom denotes the difference intensities between the observed and calculated profiles. Error! Reference source not found. summarizes the results of the structure refinement.

Figure S 5 FTIR spectra of the as-synthesized scheelite oxides and the corresponding materials after their ammonolysis at different temperatures: (a) $BaMO_4$; (b) $BaWO_4$. NHx00 denotes the thermal treatment at different temperatures under ammonia flow for 6 hours.

Electronic Supplementary Material (ESI) for Dalton Trans. This journal is © The Royal Society of Chemistry 2013

Figure S 6 XRD patterns of CaMoO₄ and CaWO₄ after ammonolysis at 700 for 4 h (bottom) and 900 ^oC for 6 h (top).

Figure S 7 Rietveld patterns of the X-ray powder diffraction data of the sample obtained upon reduction of the SrMoO₄ at 900 °C for 6 h. Blue tick marks are Bragg peak positions of related phase as SrMoO₃. Green line at the bottom denotes the difference intensities between the observed and calculated profiles. Error! Reference source not found. summarizes the results of the structure refinement.

Tables

Table S 1 Phase composition of the samples obtained via ammonolysis of BaMoO4 at 700 and 900 °C for 6 hours from Rietveld refinement of the XRD patterns.^[a]

Specimen	Ba ₃ Mo ₂ (O,N) ₈ (<i>R-3m</i> , Nr. 166, <i>Z</i> =3)	BaMoO ₄ (<i>I 41/a</i> , Nr. 88, <i>Z</i> =4)	Mo ₃ N ₂ (<i>Pm-3m</i> , Nr. 221, <i>Z</i> =1)	BaMoO ₃ (<i>Pm-3m</i> , Nr. 221, Z=1)
NH700 (Figure S 2 a)	79.93 a=5.9579(2) c=21.4662(6)	10.72 a=5.5830(14) c=12.8117(59)	9.35 a=4.1708(6)	0.01 a=4.0489(6)
NH900 (Figure S 2 b)	85.94 a=5.9670(3) c=21.4812(10)	/	14.06 a=4.1839(6)	/

[a] Fraction (wt%) and lattice parameter a,b,c [Å]

Table S 2 Phase composition of the samples obtained via ammonolysis of $BaWO_4$ at 850 ^{0}C for 6 hours from Rietveld refinement of the XRD patterns. ^[a]

Specimen	BaWO ₄	$Ba_3W_2(O_1N)_8$	W _{4.6} N ₄
	(1 41/a, Nr. 88, Z=4)	(<i>R-3m</i> , Nr. 166, Z=3)	(P63/mmc, Nr. 194, Z=1)
NH850 (Figure S 4)	54.79	34.24	10.97
	a=5.6111(2)	a=6.0057(2)	a=2.8943(7)
	c=12.7188(5)	c=21.4469(9)	c=15.1899(55)
Eraction (wt%) and l	attice parameter a h c [Å		

[a] Fraction (wt%) and lattice parameter a,b,c [Å]

Table S 3 Crystal structure data of SrMoO_{3.61}N_{0.39}, SrMoO₄ and SrMoO₃

Specimens	and parameters	SrMoO _{3.61(3)} N _{0.39(3)}	SrMoO ₄	SrMoO ₃
S.G.		<i>I 41/a</i> , Nr. 88	<i>I 41/a</i> , Nr. 88	<i>P m-3m</i> , Nr. 221
Ζ		4	4	1
a,b, Å		5.3947(2)	5.4032(2)	3.9763(1)
c, Å		12.0367(5)	12.0412(4)	/
Sr	x, y, z	0.0,0.25,0.625	0.0,0.25,0.625	0.5, 0.5, 0.5
	Biso, Å ²	0.210(70)	0.461(100)	0.472(47)
	Occ.	1	1	1
Мо	x, y, z	0.0,0.25,0.125	0.0,0.25,0.125	0.0, 0.0, 0.0
	Biso, Å ²	0.383(68)	0.587(95)	0.148(42)
	Occ.	1	1	1
O/N	Х	0.24078(78)	0.24042(105)	0.5
	у	0.11411(69)	0.11602(88)	0.0
	Z	0.04267(29)	0.04162(38)	0.0
	Biso, Å ²	-0.369(111)	0.380(161)	0.578(102)
	Occ.	3.61/0.39 ^a	4	3

^a: Not refined

Table S 4 The lattice parameters of $Ba_3W_2O_6N_2$ and $W_{4.6}N_4$ based on our as-synthesized sample via ammonolysis of $BaWO_4$ at 850 $^{\circ}C$ for 6 hours and Reference obtained by Rietveld refinement

	Lattice parameter	Lattice parameter based on our experiments		from Reference
	a=b	с	a=b	с
Ba ₃ W ₂ O ₆ N ₂	6.0057 (2)	21.4469 (9)	$6.0083(6)^1$	$21.4637(6)^{1}$
$W_{4.6}N_4$	2.8943 (7)	15.1899 (55)	2.89^{2}	15.3 ²

Table S 5 The oxygen and nitrogen content in weight percent of $BaMoO_4$ and $BaWO_4$ after thermal ammonolysis under different temperature. NHx00 denotes the different thermal ammonolysis temperatures.

Samples	BaMoO ₄ _NH600	BaMoO ₄ _NH700	BaMoO ₄ _NH900	BaWO ₄ _NH600	BaWO ₄ _NH700	BaWO ₄ _NH850
Oxygen wt%	18.3(0.166)	12.77(0.153)	11.54(0.174)	15.88(0.33)	13.58(0.276)	12.17(0.257)
Nitrogen wt%	0.788(0.002)	5.014(0.033)	5.476(0.021)	0.045(0.01)	8.74(0.297)	9.435(0.64)

Table S 6 The oxygen and nitrogen content in weight percent of $SrMoO_4$ and $SrWO_4$ after thermal ammonolysis under different temperature and holding time

Sample	Oxygen wt%	Nitrogen wt%
SrMoO ₄ _NH400_4H	24.830(24)	0
SrMoO4_NH600_4H	22.260(25)	2.230(3)
SrMoO4_NH700_4H	14.790(18)	5.542(10)
SrMoO ₄ _NH700_12H	13.940(270)	6.318(104)
SrMoO4_NH700_24H	12.750(215)	7.187(83)
SrMoO ₃ _NH700_4H	19.180(178)	1.386(25)
SrWO ₄ _NH400_4H	18.310(220)	0.017(15)
SrWO ₄ _NH600_4H	18.740(123)	0.095(11)
SrWO ₄ _NH700_4H	17.130(153)	1.002(6)
SrWO ₄ _NH900_6H	8.547(375)	6.373(130)
SrWO ₄ _NH900_12H	8.114(170)	7.006(110)
SrWO ₄ _NH900_24H	7.977(25)	7.148(70)

Reaction	Enthalpy (kJ/mol)		
(1) $SrMoO_4$ (s, 25 C) = SrO (soln, 701 C) + MoO_3 (soln, 701 C)	161.8	±	1.5
(2) $SrMoO_{1.96}N_{1.04}$ (s, 25 C) + 1.02O ₂ (g, 701 C) = SrO (soln, 701 C) + MoO_3 (soln, 701			
C) + 0.52N ₂ (g, 701 C)	-291.9	±	2.3
(3) SrO (s, 25 C) = SrO (soln, 701 C)	-135.8	±	2.5
(4) MoO_3 (s, 25 C) = MoO_3 (soln, 701 C)	72.8	±	0.6
(5) $O_2(g, 25 C) = O_2(g, 701 C)$	21.8	±	0
(6) $N_2(g, 25 C) = N_2(g, 701 C)$	20.6	±	0
(7) Sr (s, 25 C) + 0.5 O ₂ (g, 25 C) = SrO (s, 25 C)	-591.3	±	1
(8) Mo (s, 25 C) + $1.5O_2$ (g, 25 C) = MoO ₃ (s, 25 C)	-745.2	±	0.4
(9) Sr (s, 25 C) + Mo (s, 25 C)+ 2O2 (g, 25 C) = SrMoO ₄ (s, 25 C)			
$\Delta H_9 = -\Delta H_1 + \Delta H_3 + \Delta H_4 + \Delta H_7 + \Delta H_8$	-1561.3	±	3.1
(10) Sr (s, 25 C) + Mo (s, 25 C) + $0.98O_2$ (g, 25 C) + $0.52N_2$ (g, 25 C) = SrMoO _{1.96} N _{1.04}			
(s, 25 C)			
$\Delta H_{10} = -\Delta H_2 + \Delta H_3 + \Delta H_4 - 1.02 \Delta H_5 + 0.52 \Delta H_6 + \Delta H_7 + \Delta H_8$	-1119.124	±	3.6

Table S 7 Thermodynamic cycles for the determination of the enthalpies of formation of $SrMoO_4$ and $SrMoO_{1.96}N_{1.04}$ relative to elementary components

	Enthalpy		
Reaction	(kJ/mol)		
(1) $SrWO_4$ (s, 25 C) = SrO (soln, 701 C) + WO_3 (soln, 701 C)	162.8	±	1.5
(2) $SrWO_{1.5}N_{1.5}(s, 25 \text{ C}) + 1.25O_2(g, 701 \text{ C}) = SrO(soln, 701 \text{ C}) + WO_3(soln, 701 \text$			
0.75N ₂ (g, 701 C)	-537.2	±	1.9
(3) SrO (s, 25 C) = SrO (soln, 701 C)	-135.8	±	2.5
(4) WO_3 (s, 25 C) = WO_3 (soln, 701 C)	91.7	±	1.3
(5) $O_2(g, 25 C) = O_2(g, 701 C)$	21.8	±	0
(6) $N_2(g, 25 C) = N_2(g, 701 C)$	20.6	±	0
(7) Sr (s, 25 C) + 0.5 O ₂ (g, 25 C) = SrO (s, 25 C)	-591.3	±	1
(8) W (s, 25 C) + 1.5O ₂ (g, 25 C) = WO ₃ (s, 25 C)	-842.9	±	0.8
(9) Sr (s, 25 C) + W (s, 25 C) + 2O ₂ (g, 25 C) = SrWO ₄ (s, 25 C)			
$\Delta H_9 = -\Delta H_1 + \Delta H_3 + \Delta H_4 + \Delta H_7 + \Delta H_8$	-1641.2	±	3.8
(10) Sr (s, 25 C) + W (s, 25 C) + $0.75O_2$ (g, 25 C) + $0.75N_2$ (g, 25 C) = SrWO _{1.5} N _{1.5} (s, 25 C)			
$\Delta H_{10} = -\Delta H_2 + \Delta H_3 + \Delta H_4 - 1.25 \Delta H_5 + 0.75 \Delta H_6 + \Delta H_7 + \Delta H_8$	-952.9	±	4.3

Table S 8 Thermodynamic cycles for the determination of the enthalpies of formation of $SrWO_4$ and $SrWO_{1.5}N_{1.5}$ relative to elementary components

Table S 9 The enthalpies of formation and standard entropies of SrMoO₄ nitridation reaction for Gibbs free energy calculation

	SrMoO ₄	NH ₃	SrMoO ₂ N	H ₂ O	H ₂	N ₂	
$\Delta_{\rm f} {\rm H} ~({\rm kJ/mol})$	-1561.3 [*]	-45.94	-1119.124*	-241.826	0	0	
$S^0 (J/mol \cdot K)^3$	128.9	192.776	107.417 ^a	188.835	130.68	191.609	

*: from our own calorimetric experiment results

^a: estimated as the value of 5/6 SrMoO₄

Table S 10 The enthal	pies of formation and standard ent	ropies of SrWO ₄ nitridation r	eaction for Gibbs free	energy calculation
		-		

	SrWO ₄	NH ₃	SrWO _{1.5} N _{1.5}	H ₂ O	H_2	N_2	
$\Delta_{\rm f} {\rm H} ~({\rm kJ/mol})$	-1641.2 [*]	-45.94	-952.9 [*]	-241.826	0	0	
$S^{0} (J/mol - K)^{3, 4}$	138.07	192.776	115.06 ^a	188.835	130.68	191.609	

*: from our own calorimetric experiment results

^a: estimated as the value of 5/6 SrWO₄

References

- Weller, M. T.; Skinner, S. J., Neutron and X-ray powder diffraction studies of the oxynitrides SrW(O,N)(3), 1.
- Ba3W2(O,N)(8) and Ba3Mo2(O,N)(8). Int J Inorg Mater 2000, 2, (5), 463-467.
- 2. Pinsker, Z. G., The Investigation of Some Carbides and Nitrides of Chrome, Iron, Tungsten and Molybdenum by Electron Diffraction. Acta Crystallogr 1957, 10, (12), 775-775.
- Dean, J. A.; Lange, N. A., *Lange's handbook of chemistry*. McGraw-Hill: 1992. R, L. D., *CRC Handbook*. 84th edition ed.; CRC Press: Boca Raton, Florida, 2003. 3.
- 4.