Supporting Information

Synthesis and Characterization of Heterofluorenes Containing Four-Coordinated Group 13 Elements: Theoretical and Experimental Analyses and Comparison of Structures, Optical Properties and Electronic States

Takuya Matsumoto^a, Kazuo Tanaka^{*a}, Kazuyoshi Tanaka^{*b} and Yoshiki Chujo^{*a}

 ^a Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
 ^b Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

Page Contents

General, Materials, Synthesis and Computational DetailsS3
NMR SpectraS6
Crystallographic DataS17
UV-vis Absorption and Photoluminescence (PL) DataS21
Cartesian Coordinates of the Optimized Structures by Theoretical CalculationsS24
The Optimized Structures and Molecular Orbitals
TD-DFT Calculation Results
The Selected Molecular Orbital (MO) Coefficients of M-N
Mixing of the Wavefunction through the Spin–Orbit Interaction

General. ¹H (600 or 400 MHz), and ¹³C (100 MHz) NMR spectra were recorded on JEOL JNM-ECA600, JNM-EX400 and JNM-AL400 spectrometers. ¹H and ¹³C NMR spectra used tetramethylsilane (TMS) as an internal standard in CDCl₃ and C₆D₆. High-resolution mass spectra (HRMS) were obtained on a Thermo Fisher Scientific EXACTIVE for direct analysis in real time (DART), atomic pressure chemical ionization (APCI) and electron spray ionization (ESI). UV-vis spectra were recorded on a Shimadzu UV-3600 spectrophotometer. Fluorescence emission spectra were recorded on a HORIBA JOBIN YVON Fluoromax-4 spectrofluorometer. Photoluminescence lifetime measurement was performed on a Horiba FluoreCube spectrofluorometer system; excitation was carried out using a UV diode laser (NanoLED 290 nm). X-ray crystallographic analyses were carried out by a Rigaku R-AXIS RAPID-F graphite-monochromated Mo Ka radiation diffractometer with an imaging plate. A symmetry related absorption correction was carried out by using the program ABSCOR¹. The analysis was carried out with direct methods (SHELX-97² or SIR97³) using Yadokari-XG⁴. The program ORTEP3⁵ was used to generate the X-ray structural diagram. All reactions were performed under argon atmosphere.

Materials. All reagents were obtained from commercial sources and used without further purification. Diethyl ether (Et₂O) was purified using a two-column solid-state purification system (Glass Contour Solvent System, Joerg Meyer, Irvine, CA). 2,2'-Diiododiphenyl⁶, 1-bromo-2,4-di-*t*-butyl-6-(*N*,*N*-dimethylaminomethyl)phenyl⁷, [2,4-di-*t*-butyl-6-(*N*,*N*-dimethylaminomethyl)phenyl⁷, gallafluorene (**Gaf**)^{7b} and dichloro[2,4-di-*t*-butyl-6-(*N*,*N*-dimethylaminomethyl)phenyl]dichloroindigane (MamxInCl₂)⁹ were prepared according to the previous literatures.

Synthesis.

Borafluorene Bf. Dimethyldibenzosilole (2.1 g, 10 mmol) was reacted with BBr₃ (1.9 mL, 20 mmol) at 50 °C for 44 h. Excess amounts of BBr₃ and the produced dimethyldibromosilane were removed under reduced pressure. The residue containing **1** was used for the next reaction without further purification. To the solution of MamxBr (3.3 g, 10 mmol) in Et₂O (30 mL), *n*-BuLi (1.6 M in hexane, 8.0 mL, 13 mmol) was added slowly at -78 °C. After stirring for 1 h and warmed up to room temperature, the solvent was exchanged from Et₂O to toluene (20 mL). The toluene solution was added slowly at -78 °C to the solution of precursor **1** in toluene (10 mL). After warmed up to room temperature, the mixture was stirred for 40 h. After the reaction solution was quenched with water and diluted with chloroform, the solution was washed with brine and dried

over Na₂SO₄. The crude product was passed through silica gel column chromatography using hexane/ethyl acetate (20: 1 to 10 : 1). Recrystallization from hexane / chloroform gave a white solid in 47% yield (1.9 g). ¹H NMR (600 MHz, C₆D₆, δ , ppm): 7.78 (ddd, J = 7.6, 0.8, 0.8 Hz, 2H), 7.64 (d, J = 1.8 Hz, 1H), 7.30 (ddd, J = 7.3, 7.3, 1.4 Hz, 2H), 7.27 (ddd, J = 7.1, 1.1, 0.7 Hz, 2H), 7.14–7.11 (m, 3H), 3.51 (s, 2H), 1.73 (s, 6H), 1.44 (s, 9H), 1.24 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, δ , ppm): 154.6, 149.7, 148.3, 140.3, 132.5, 127.1, 125.7, 122.1, 119.4, 116.8, 68.3, 47.8, 37.1, 34.6, 31.6; ¹¹B NMR (128 MHz, C₆D₆, δ , ppm): 5.96; HRMS (APCI): m/z calcd. for C₂₉H₃₇BN [M+H]⁺: 410.3014; found: 410.3014.

Alumafluorene Alf. To a solution of 4,4'-diiodobiphenyl (810 mg, 2.0 mmol) and Et₂O (20 mL), 1.63 M *n*-BuLi in *n*-hexane (2.6 mL, 4.2 mmol) was added slowly at -78 °C for 2.5 h. To the solution, the mixture of MamxAlCl₂ (760 mg, 2.2 mmol) and Et₂O (10 mL) was added at -78 °C. After warmed up to room temperature, the mixture was stirred for 20 h. After filtration, the solution was evaporated under reduced pressure. After the solvent was removed, 4-fold-recrystallization from hexane / dichloromethane gave a white solid in 15% yield (130 mg). ¹H NMR (600 MHz, C₆D₆, δ , ppm): 8.07 (d, J = 7.9 Hz, 2H), 7.65 (ddd, J = 6.7, 1.5, 0.7 Hz, 2H), 7.61 (d, J = 1.7 Hz, 1H), 7.40 (ddd, J = 7.9, 7.9, 1.6 Hz, 2H), 7.28 (ddd, J = 7.9, 6.8, 1.0 Hz, 2H), 6.97 (d, J = 1.6 Hz, 1H), 3.57 (s, 2H), 1.77 (s, 6H), 1.40 (s, 9H), 1.39 (s, 9H); ¹³C NMR (100 MHz, C₆D₆, δ , ppm): 161.8, 152.7, 151.4, 147.2, 144.9, 138.8, 136.9, 129.1, 128.5, 126.9, 121.4, 118.8, 67.4, 45.6, 37.5, 35.30, 32.8, 31.8; HRMS (DART): m/z calcd. for C₂₉H₃₇AlN [M+H]⁺: 426.2736; found: 426.2727.

Indafluorene Inf. To a solution of 4,4'-diiodobiphenyl (810 mg, 2.0 mmol) TMEDA (630 μ L, 4.2 mmol) and Et₂O (20 mL), 1.63 M *n*-BuLi in *n*-hexane (2.6 mL, 4.2 mmol) was added slowly at -78 °C for 2 h. To the solution, the mixture of MamxInCl₂ (950 g, 2.2 mmol) and Et₂O (10 mL) was added at -78 °C. After warmed up to room temperature, the mixture was stirred for 18 h. After filtration, the solution was evaporated under reduced pressure. After the solvent was removed, 3-fold-recrystallization from hexane / dichloromethane gave a white solid **Inf** in 27% yield (140 mg). ¹H NMR (600 MHz, C₆D₆, δ , ppm): 8.19 (d, *J* = 7.8 Hz, 2H), 7.87 (d, *J* = 6.3, 1.9 Hz, 2H), 7.65 (d, *J* = 1.9 Hz, 1H), 7.41–7.34 (m, 4H), 6.99 (d, *J* = 1.9 Hz, 1H), 3.20 (s, 2H), 1.75 (s, 6H), 1.39 (s, 9H), 1.37 (s, 9H); ¹³C NMR (100 MHz, C₆D₆, δ , ppm): 159.7, 151.0, 150.6, 144.2, 138.2, 128.7, 127.6, 122.8, 121.9, 120.9, 68.2, 45.7, 36.5, 35.0, 32.5, 31.8; HRMS (ESI): m/z calcd. for C₂₉H₃₇InN [M+H]⁺: 514.1959; found: 514.1956.

Computational Details. The Gaussian 09 program package¹⁰ was used for computation.

We optimized the structures of heterofluorenes (**Bf**, **Alf**, **Gaf** and **Inf**) in the ground S_0 , excited S_1 and T_1 states and calculated the electronic structures of their heterofluorenes. The density functional theory (DFT) was applied for the optimization of the structures in S_0 . The time-dependent DFT (TD-DFT) was employed on the calculation of their geometry optimization in the excited states. We calculated the transition from S_0 to S_1 or T_1 of heterofluorenes with the optimized geometries in the S_0 , S_1 and T_1 states by TD-DFT. The calculations were performed at the B3LYP/6-31G(d,p) levels for **Bf**, **Alf** and **Gaf** and at the B3LYP/LANL2DZ levels for **Gaf** and **Inf**.

Figure S2. ¹³C NMR spectrum of Bf in CDCl₃.

Figure S3. ¹¹B NMR spectrum of Bf in C₆D₆.

Figure S5. ¹³C NMR spectrum of Alf in C₆D₆.

Figure S7. ¹³C NMR spectrum of Inf in C₆D₆.

Figure S8. ¹H NMR NOE spectra of Bf in C₆D₆.

Figure S9. COSY NMR spectra of Bf in C₆D₆.

Figure S10. ¹H NMR NOE spectra of Alf in C₆D₆.

Figure S11. COSY NMR spectra of Alf in C₆D₆.

Figure S12. ¹H NMR NOE spectra of Gaf in C₆D₆.

Figure S13. COSY NMR spectra of Gaf in C₆D₆.

Figure S14. ¹H NMR NOE spectra of Inf in C₆D₆.

Figure S15. COSY NMR spectra of Inf in C₆D₆.

Preparation of Single Crystals. The single crystal of **Bf** was prepared by recrystallization from chloroform and methanol solution in the two-layer method. Those of **Alf**, **Gaf** and **Inf** were prepared by recrystallization from benzene solutions in the slow evaporation methods.

X-ray Crystal Structure Analyses. Intensity data were collected on a Rigaku R-AXIS RAPID imaging plate area detector with graphite monochromated Mo $K\alpha$ radiation at – 180 °C. The structures were solved by direct method (SIR97)⁹ and refined by full-matrix least-squares procedures based on F^2 (SHELX-97).¹⁰

v 8 1	
Empirical formula	C ₂₉ H ₃₆ BN
Formula weight	409.40
Temperature (K)	93(2)
Wavelength (Å)	0.71075
Crystal system, space group	triclinic, P-1
Unit cell dimensions	a = 8.1338(11)
	b = 11.6890(15)
	c = 13.3458(18)
	$\alpha = 107.085(8)$
	$\beta = 95.758(7)$
	$\gamma = 92.208(7)$
$V(\text{\AA}^3)$	1203.7(3)
Z, calculated density (Mg m^{-3})	2, 1.130
Absorption coefficient	0.064
<i>F</i> (000)	444
Crystal size (mm)	0.70 imes 0.60 imes 0.60
θ range for data collection	3.01-25.00
Limiting indices	<i>−</i> 9≤ <i>h</i> ≤9, −13≤ <i>k</i> ≤13, −15≤ <i>l</i> ≤15
Reflections collected (unique)	8229/ 4173 [<i>R</i> (int) = 0.0456]
Completeness to theta $= 25.00$	0.983
Max. and min. transmission	0.9629 and 0.9569
Goodness-of-fit on F^2	1.070
Final <i>R</i> indices $[I > 2\sigma(I)]^a$	$R_1 = 0.0543 \text{ w} R_2 = 0.1481$
R indices (all data)	$R_1 = 0.0638, wR_2 = 0.1562$
$\overline{{}^{a}R_{1} = \Sigma(F_{0} - F_{c})/\Sigma F_{0} }. \text{ w}R_{2} = [\Sigma$	$\Sigma w (F^2 - F^2 c)^2 / \Sigma w (F^2 - c)^2]^{1/2}$. $w = 1/[\sigma^2 (F^2 - c) + [(ap)^2 + bp]]$
where $p = [\max(F^{2}_{0}, 0) + 2F^{2}_{c}]/3$.	

Table S1. Crystallographic Data of Bf

C ₂₉ H ₃₆ AlN
425.57
93(2)
0.71075
monoclinic, <i>P21/c</i>
a = 8.0433(3)
b = 12.0138(6)
c = 25.6152(12)
$\alpha = 90.00$
$\beta = 95.516(7)$
$\gamma = 90.00$
2463.75(19)
4, 1.147
0.098
920
$0.50 \times 0.50 \times 0.30$
3.06–25.00
<i>−8≤h≤9</i> , <i>−14≤k≤14</i> , <i>−30≤l≤30</i>
18200/ 4329 [<i>R</i> (int) = 0.0613]
0.998
0.9712 and 0.9526
1.076
$R_1 = 0.0460, wR_2 = 0.1199$
$R_1 = 0.0546, wR_2 = 0.1263$

 Table S2. Crystallographic Data of Alf

 $\overline{{}^{a}R_{1} = \Sigma(|F_{0}| - |F_{c}|)/\Sigma|F_{0}|}. \ wR_{2} = [\Sigma w(F^{2}_{0} - F^{2}_{c})^{2}/\Sigma w(F^{2}_{0})^{2}]^{1/2}. \ w = 1/[\sigma^{2}(F^{2}_{0}) + [(ap)^{2} + bp]],$ where $p = [\max(F^{2}_{0}, 0) + 2F^{2}_{c}]/3.$

Empirical formula	C ₂₉ H ₃₆ GaN
Formula weight	468.31
Temperature (K)	93(2)
Wavelength (Å)	0.71075
Crystal system, space group	monoclinic, <i>P21/c</i>
Unit cell dimensions	a = 8.0444(3)
	b = 11.9945(4)
	c = 25.5765(8)
	$\alpha = 90.00$
	$\beta = 95.569(7)$
	$\gamma = 90.00$
$V(\text{\AA}^3)$	2456.19(14)
Z, calculated density (Mg m^{-3})	4, 1.266
Absorption coefficient	1.136
<i>F</i> (000)	992
Crystal size (mm)	0.30 imes 0.30 imes 0.30
θ range for data collection	3.06–27.47
Limiting indices	<i>−</i> 10 <i>≤h≤</i> 10, <i>−</i> 15 <i>≤k≤</i> 15, <i>−</i> 33 <i>≤l≤</i> 33
Reflections collected (unique)	22122/ 5611 [<i>R</i> (int) = 0.0692]
Completeness to theta $= 27.47$	0.998
Max. and min. transmission	0.7268 and 0.7268
Goodness-of-fit on F^2	1.045
Final <i>R</i> indices $[I > 2\sigma(I)]^a$	$R_1 = 0.0438, wR_2 = 0.0807$
<i>R</i> indices (all data)	$R_1 = 0.0631, wR_2 = 0.0896$
$(D - \Sigma / E + E) / \Sigma E + \dots D = [\Sigma / E + \dots D]$	$(\mathbf{F}_{2}^{2} - \mathbf{F}_{2}^{2})^{2} \sqrt{\Sigma} - (\mathbf{F}_{2}^{2})^{2} \frac{1}{2} \frac{1}{2} - \frac{1}{2} (\mathbf{F}_{2}^{2})^{2} + \frac{1}{2} (\mathbf{F}_{2}^{2})^{2} + \frac{1}{2} \frac{1}$

Table S3. Crystallographic Data of Gaf

 $\overline{{}^{a}R_{1} = \Sigma(|F_{0}| - |F_{c}|)/\Sigma|F_{0}|}. \ wR_{2} = [\Sigma w(F^{2}_{0} - F^{2}_{c})^{2}/\Sigma w(F^{2}_{0})^{2}]^{1/2}. \ w = 1/[\sigma^{2}(F^{2}_{0}) + [(ap)^{2} + bp]],$ where $p = [\max(F^{2}_{0}, 0) + 2F^{2}_{c}]/3.$

Empirical formula	C ₂₉ H ₃₆ InN
Formula weight	513.41
Temperature (K)	93(2)
Wavelength (Å)	0.71075
Crystal system, space group	monoclinic, <i>P21/c</i>
Unit cell dimensions	a = 8.1017(4)
	b = 12.3146(7)
	c = 25.3088(13)
	$\alpha = 90.00$
	$\beta = 96.226(7)$
	$\gamma = 90.00$
$V(\text{\AA}^3)$	2510.1(2)
Z, calculated density (Mg m^{-3})	4, 1.359
Absorption coefficient	0.957
<i>F</i> (000)	1064
Crystal size (mm)	0.30 imes 0.20 imes 0.20
θ range for data collection	3.02–27.48
Limiting indices	$-10 \le h \le 10, -15 \le k \le 15, -32 \le l \le 28$
Reflections collected (unique)	22999/ 5725 [<i>R</i> (int) = 0.0475]
Completeness to theta $= 27.48$	0.996
Max. and min. transmission	0.8316 and 0.7622
Goodness-of-fit on F^2	1.041
Final <i>R</i> indices $[I > 2\sigma(I)]^a$	$R_1 = 0.0523, wR_2 = 0.1442$
R indices (all data)	$R_1 = 0.0565, wR_2 = 0.1477$
$(D \nabla / C C \nabla C D D \nabla C D D D D D D D D D$	$(\mathbf{r}^2 - \mathbf{r}^2) \sqrt{2} (\mathbf{r}^2 + 2\mathbf{i}^2)^2 = 1/(\mathbf{r}^2 + \mathbf{r}^2) + (\mathbf{r}^2 + 2\mathbf{i}^2)^2$

Table S4. Crystallographic Data of Inf

 $\overline{{}^{a}R_{1} = \Sigma(|F_{0}| - |F_{c}|)/\Sigma|F_{0}|}. \ wR_{2} = [\Sigma w(F^{2}_{0} - F^{2}_{c})^{2}/\Sigma w(F^{2}_{0})^{2}]^{1/2}. \ w = 1/[\sigma^{2}(F^{2}_{0}) + [(ap)^{2} + bp]],$ where $p = [\max(F^{2}_{0}, 0) + 2F^{2}_{c}]/3.$

UV-vis Absorption and Photoluminescence (PL) Data

	Bf	Alf	Gaf	Inf		
$\lambda_{\mathrm{abs}} (\mathrm{nm})^b$	281	282	282	282		
$\varepsilon (\times 10^3 \mathrm{M^{-1} cm^{-1}})$	7.9	8.5	8.7	8.9		
$\lambda_{\rm FL} ({\rm nm})^c$	345, 381	357	371	309, 330		
$\lambda_{ m Phos} \ ({ m nm})^d$	j	j	488	487		
$\Phi_{\rm total}$ (%) ^e	0.011	4.5	0.11	0.077		
$\Phi_{ m FL}(\%)^{ m f}$	0.011	4.5	0.088	0.026		
$\Phi_{ m Phos}(\%)^{ m g}$	j	j	0.018	0.051		
Φ_{Phos} / Φ_{total}	0	0	0.17	0.66		
$ au_{ m FL}\left({ m ns} ight)^{h}$	0.04 (61%), 1.37 (35%),	1.07	1.07	1.07	0.04	0.06 (29%), 0.94 (39%),
	7.20 (4.3%)	1.97	0.04	11.7 (7.5%), 3.30 (25%)		
$ au_{ m Phos} \left(\mu { m s} ight)^i$	j	j	85	99		

Table S5. Optical Data of Heterofluorenes^a

^{*a*}Measurement in CH₂Cl₂ (1.0×10^{-4} M) under argon atmosphere at room temperature. ^{*b*}Absorption maxima. ^{*c*}Fluorescence maxima excited at 282 nm. ^{*d*}Phosphorescence maxima excited at 282 nm. ^{*e*}Relative quantum yields using 9,10-diphenylanthracene as a standard. ^{*f*}Relative quantum yields at the wavelength range from 292 nm to 445 nm. ^{*g*}Relative quantum yield at the wavelength range from 445 nm to 550 nm. ^{*h*}Fluorescence life time excited at 290 nm by a UV diode laser and detected at 360 nm. ^{*i*}Phosphorescence life time excited at 282 nm and detected at λ_{Phos} . ^{*j*}Not detected.

	$\lambda_{\max, \mathrm{PL}} (\mathrm{nm})^{a, b}$	$ au_{1/2}^{c}$	$\chi^{2 c}$
Bf	597	0.20 µs (31%), 8.95 µs (69%)	0.93
Alf	588	0.24 µs (60%), 2.14 µs (40%)	1.06
Gaf	575	0.15 µs (4%), 1.33 µs (96%)	1.17

Table S6. Optical Data of Mf (M = B, Al, Ga) after Adding B(C₆F₅)₃

^{*a*}Measurement in benzene with 10 mM **Mf** (M = B, Al, Ga) after adding 1.0 eq. B(C₆F₅)₃ excited at 282 nm under argon atmosphere at room temperature. ^{*b*}Emission maxima excited at 282 nm. ^{*c*}Fluorescence life time excited at 290 nm by a UV diode laser and detected at $\lambda_{max,PL}$.

Figure S16. Photoluminescence spectra of 10 mM **Mf** (M = B (blue), Al (red), Ga (orange) In (geen)) after adding 1.0 eq. B(C₆F₅)₃ and 10 mM B(C₆F₅)₃ (black) in benzene excited at 282 nm under argon atmosphere at room temperature. The emission spectrum of B(C₆F₅)₃ overlapped with the spectrum of **Inf** after adding 1.0 eq. B(C₆F₅)₃.

Figure S17. ¹H NMR spectra of **Mf** (M = B, Al, Ga and In) after adding 1.0 eq. B(C₆F₅)₃ in C₆D₆.

DFT Calculation by Gaussian 09 Program

Center Symbol -		Coordinates (Angstroms)	
Center Symbol	Х	Y	Z
С	2.303889	1.669313	-1.815519
С	3.523101	2.330206	-2.017433
С	4.635626	1.999382	-1.242646
С	4.534850	1.012890	-0.258940
С	3.314965	0.361180	-0.060215
С	2.169349	0.675629	-0.840215
С	3.007317	-0.680380	0.943679
С	1.659686	-1.099557	0.831564
В	0.951831	-0.317805	-0.410231
С	3.850227	-1.203721	1.926775
С	3.349541	-2.154799	2.820338
С	2.016900	-2.564254	2.738803
С	1.176611	-2.032089	1.751224
С	-0.639731	0.003452	-0.210404
С	-1.370134	-1.085883	-0.739154
С	-2.753793	-1.195053	-0.709957
С	-3.512476	-0.184568	-0.111875
С	-2.805856	0.887107	0.443701
С	-1.401754	1.015919	0.432243
С	-0.791750	2.273512	1.107815
С	0.437809	1.910983	1.965626
С	-1.790146	2.981304	2.054581
С	-0.388718	3.295423	0.019427
С	-5.048907	-0.286622	-0.078353
С	-5.709524	0.924262	0.606931
С	-5.460585	-1.560429	0.697674
С	-5.591151	-0.373640	-1.524768
С	-0.496438	-2.164182	-1.325689
Ν	0.775120	-1.478547	-1.711055
С	1.900246	-2.439214	-1.844440
С	0.577138	-0.801475	-3.024161
Н	1.452057	1.954993	-2.429026
Н	3.601040	3.105106	-2.775348
Н	5.580371	2.512439	-1.400651
Н	5.402230	0.761902	0.346405
Н	4.882360	-0.872641	2.011542
Н	3.996924	-2.566320	3.590026
Н	1.629848	-3.289306	3.450013
Н	0.132539	-2.339165	1.722107
Н	-3.233739	-2.064909	-1.152523
Н	-3.380241	1.668011	0.917372
Н	0.181849	1.167570	2.727140

Table S7. Cartesian Coordinates of the Optimized Structure of Bf in the Ground S0State Calculated at the B3LYP/6-31G(d,p) Level

Н	1.257447	1.515620	1.370031
Н	0.809200	2.806444	2.476890
Н	-2.188269	2.299447	2.813438
Н	-1.272149	3.792740	2.575775
Н	-2.632942	3.433850	1.522763
Н	0.380558	2.894590	-0.640654
Н	-1.255007	3.576243	-0.589938
Н	0.009190	4.207230	0.480712
Н	-5.394970	1.023786	1.650648
Н	-5.479086	1.861435	0.089954
Н	-6.797721	0.802496	0.600537
Н	-5.097435	-1.522346	1.729875
Н	-6.551949	-1.658229	0.724464
Н	-5.056420	-2.466254	0.235911
Н	-5.322275	0.519911	-2.097719
Н	-5.192602	-1.242989	-2.056195
Н	-6.683923	-0.458306	-1.520510
Н	-0.935807	-2.677243	-2.190066
Н	-0.240804	-2.922583	-0.578446
Н	1.698893	-3.139853	-2.661988
Н	2.814509	-1.882720	-2.055675
Н	2.025194	-2.983095	-0.909956
Н	0.320329	-1.546167	-3.785140
Н	1.494871	-0.289017	-3.305632
Н	-0.232103	-0.077062	-2.935975

Center Symbol		Coordinates (Angstroms)
	Х	Y	Z
С	2.536484	1.725899	-2.069821
С	3.763699	2.287583	-2.436858
С	4.910705	1.946532	-1.720909
С	4.831856	1.055757	-0.649884
С	3.602715	0.491278	-0.276205
С	2.421834	0.828063	-1.000715
С	3.463489	-0.469022	0.870642
С	2.164610	-0.992107	1.130919
Al	0.936743	-0.223314	-0.217511
С	4.544186	-0.853842	1.678484
С	4.358219	-1.746191	2.734996
С	3.091281	-2.264248	3.003484
С	2.010763	-1.880704	2.202541
С	-1.031429	0.031902	-0.016061
С	-1.681365	-1.108766	-0.538276
С	-3.068479	-1.246245	-0.557784
С	-3.886895	-0.240673	-0.033428
С	-3.251322	0.888947	0.499293
С	-1.855541	1.050294	0.521828
С	-1.240175	2.338449	1.121553
С	-0.214101	1.976095	2.219494
С	-2.292322	3.261096	1.772415
С	-0.542101	3.147838	0.004017
С	-5.418802	-0.402890	-0.060290
С	-6.153077	0.803070	0.555332
С	-5.815410	-1.665825	0.740977
С	-5.894646	-0.557069	-1.524448
С	-0.818561	-2.253786	-1.044187
Ν	0.473007	-1.736337	-1.590247
С	1.492371	-2.808030	-1.676143
С	0.259479	-1.141336	-2.934592
Н	1.648043	2.009764	-2.632950
Н	3.823957	2.984788	-3.268515
Н	5.871690	2.374864	-1.993575
Н	5.741783	0.809040	-0.110979
Н	5.540809	-0.461528	1.498701
Н	5.206210	-2.032575	3.351675
Н	2.946764	-2.954466	3.830718
Н	1.025302	-2.284217	2.432872
Н	-3.508306	-2.145979	-0.982530
Н	-3.870474	1.673736	0.908614
Н	-0.689961	1.414183	3.030082
Н	0.613231	1.366572	1.845630
Н	0.223265	2.885411	2.646676

Table S8. Cartesian Coordinates of the Optimized Structure of Alf in the Ground S0State Calculated at the B3LYP/6-31G(d,p) Level

Н	-2.838817	2.759028	2.577739
Н	-1.790895	4.131464	2.207606
Н	-3.020021	3.636281	1.045460
Н	0.278402	2.591223	-0.454384
Н	-1.254211	3.415561	-0.784169
Н	-0.122016	4.075202	0.410217
Н	-5.884582	0.951342	1.606224
Н	-5.939656	1.730518	0.014194
Н	-7.234398	0.637027	0.511765
Н	-5.496534	-1.582006	1.784999
Н	-6.902770	-1.801984	0.727492
Н	-5.361655	-2.570683	0.325920
Н	-5.632118	0.326139	-2.115972
Н	-5.445417	-1.429024	-2.008901
Н	-6.983098	-0.679576	-1.562378
Н	-1.334538	-2.856242	-1.805124
Н	-0.561464	-2.928526	-0.218455
Н	1.157899	-3.610190	-2.346919
Н	2.422938	-2.384498	-2.059036
Н	1.679904	-3.212014	-0.680717
Н	-0.050397	-1.914448	-3.649738
Н	1.186855	-0.677734	-3.273971
Н	-0.520110	-0.380428	-2.873112

Center Symbol —		Coordinates (Angstroms	3)
	Х	Y	Z
С	2.533433	1.988525	-1.749666
С	3.781697	2.555489	-2.024335
С	4.909363	2.078426	-1.357842
С	4.788829	1.050633	-0.421735
С	3.537584	0.483949	-0.140060
С	2.383869	0.954681	-0.823884
С	3.340677	-0.605083	0.872875
С	2.017081	-1.081673	1.055519
Ga	0.838822	-0.097227	-0.191119
С	4.385286	-1.146368	1.634985
С	4.129254	-2.144603	2.576354
С	2.829166	-2.610401	2.771332
С	1.786023	-2.071037	2.011780
С	-1.123807	0.047571	-0.045985
С	-1.734809	-1.043684	-0.683483
С	-3.121373	-1.219504	-0.707684
С	-3.958677	-0.294945	-0.082690
С	-3.347236	0.800364	0.551611
С	-1.961830	0.994530	0.582786
С	-1.353781	2.238748	1.270189
С	-0.316184	1.803935	2.330672
С	-2.408734	3.109460	1.978743
С	-0.651945	3.106947	0.200645
С	-5.493058	-0.425976	-0.074518
С	-6.119944	0.799909	-0.780251
С	-5.999598	-0.489439	1.386104
С	-5.975005	-1.694958	-0.802630
С	-0.831932	-2.099570	-1.301765
Ν	0.441239	-1.481991	-1.762195
С	1.523031	-2.469433	-1.929494
С	0.234112	-0.730642	-3.019897
Н	1.660926	2.380256	-2.269308
Н	3.875331	3.360887	-2.747816
Н	5.886860	2.508210	-1.559969
Н	5.681776	0.702079	0.088608
Н	5.405632	-0.795438	1.510601
Н	4.949263	-2.553030	3.161110
Н	2.633452	-3.382054	3.511281
Н	0.775365	-2.441262	2.176914
Н	-3.534767	-2.082426	-1.220391
Н	-3.989504	1.527876	1.032022
Н	-0.773270	1.159434	3.088677
Н	0.513282	1.248265	1.885955
Н	0.110314	2.678672	2.833525

Table S9. Cartesian Coordinates of the Optimized Structure of Gaf in the GroundS0 State Calculated at the B3LYP/6-31G(d,p) Level

Н	-2.943395	2.554755	2.757209
Н	-1.915679	3.960079	2.460086
Н	-3.146554	3.514944	1.278616
Н	0.144881	2.542044	-0.287019
Н	-1.361295	3.435769	-0.566338
Н	-0.201448	3.995538	0.656984
Н	-5.848272	1.736530	-0.285197
Н	-5.786694	0.864336	-1.821307
Н	-7.213418	0.725269	-0.777268
Н	-5.729258	0.406931	1.951680
Н	-7.091615	-0.579893	1.407735
Н	-5.576825	-1.353344	1.909343
Н	-5.678991	-1.697159	-1.856879
Н	-5.584817	-2.605243	-0.335736
Н	-7.067938	-1.748828	-0.767920
Н	-0.567463	-2.851300	-0.548110
Н	-1.325137	-2.628351	-2.130218
Н	2.447530	-1.945670	-2.183772
Н	1.694976	-2.990810	-0.986933
Н	1.289778	-3.195705	-2.719700
Н	1.144754	-0.181285	-3.266186
Н	-0.577002	-0.012750	-2.884905
Н	-0.020219	-1.409854	-3.844815

Center Symbol	Coordinates (Angstroms)		
	Х	Y	Z
С	2.440834	1.763753	-2.052162
С	3.670747	2.347766	-2.425438
С	4.835705	2.024052	-1.704742
С	4.771205	1.126995	-0.622499
С	3.541498	0.540095	-0.245774
С	2.346653	0.859999	-0.973342
С	3.411992	-0.421522	0.905633
С	2.106863	-0.954648	1.166848
Ga	0.853212	-0.201483	-0.187539
С	4.502637	-0.798013	1.722249
С	4.318068	-1.692206	2.793419
С	3.040451	-2.216737	3.065578
С	1.948597	-1.841238	2.252170
С	-1.124774	0.010648	-0.014425
С	-1.763397	-1.141122	-0.543048
С	-3.163425	-1.293431	-0.568667
С	-3.993852	-0.289727	-0.043042
С	-3.363062	0.855784	0.498458
С	-1.963163	1.035648	0.526155
С	-1.363739	2.340472	1.122720
С	-0.327890	2.003474	2.233643
С	-2.437523	3.258263	1.768249
С	-0.673828	3.158677	-0.008027
С	-5.537313	-0.390236	-0.040661
С	-6.137588	0.794596	-0.854132
С	-6.060722	-0.323327	1.424747
С	-6.045251	-1.711463	-0.671426
С	-0.887429	-2.284160	-1.053611
Ν	0.420022	-1.750755	-1.589345
С	1.471003	-2.816209	-1.651528
С	0.220690	-1.147909	-2.950482
Н	1.545520	2.033440	-2.613303
Н	3.718227	3.045606	-3.259191
Н	5.789529	2.469275	-1.981138
Н	5.684687	0.895057	-0.080240
Н	5.497726	-0.399450	1.539242
Н	5.166163	-1.972037	3.415488
Н	2.895863	-2.900466	3.899981
Н	0.962213	-2.243490	2.484747
Н	-3.590236	-2.196037	-0.997512
Н	-3.996366	1.633601	0.908682
Н	-0.792516	1.415896	3.036408
Н	0.527592	1.430485	1.860956
Н	0.070489	2.929379	2.670460

Table S10. Cartesian Coordinates of the Optimized Structure of Gaf in the GroundS0 State Calculated at the B3LYP/LANL2DZ Level

Н	-2.976539	2.752749	2.580501
Н	-1.945944	4.141773	2.195287
Н	-3.170918	3.615216	1.033512
Н	0.151357	2.607055	-0.467825
Н	-1.395847	3.415188	-0.795022
Н	-0.261309	4.093169	0.396981
Н	-5.849159	1.764140	-0.431025
Н	-5.792220	0.766960	-1.895938
Н	-7.235032	0.740065	-0.854037
Н	-5.764813	0.609798	1.918473
Н	-7.157925	-0.379961	1.440643
Н	-5.664390	-1.157167	2.018619
Н	-5.734747	-1.807820	-1.720184
Н	-5.682852	-2.590220	-0.121885
Н	-7.142472	-1.733167	-0.646204
Н	-0.636460	-2.967427	-0.230156
Н	-1.399878	-2.875716	-1.828121
Н	2.403905	-2.379850	-2.020600
Н	1.650791	-3.213421	-0.649416
Н	1.162599	-3.631909	-2.323184
Н	1.152152	-0.679758	-3.278865
Н	-0.563083	-0.387449	-2.900168
Н	-0.076201	-1.922252	-3.673814

Center Symbol	Coordinates (Angstroms)			
	Х	Y	Z	
С	2.489047	1.752582	-2.159913	
С	3.717970	2.272929	-2.619531	
С	4.902978	1.928496	-1.943670	
С	4.856862	1.078258	-0.824240	
С	3.628078	0.552028	-0.355118	
С	2.414605	0.894887	-1.041084	
С	3.561973	-0.358681	0.851656	
С	2.288923	-0.873224	1.269241	
In	0.792317	-0.134711	-0.084326	
С	4.722489	-0.709794	1.584092	
С	4.643894	-1.550393	2.709071	
С	3.399496	-2.054991	3.129256	
С	2.237609	-1.709326	2.405836	
С	-1.346554	0.048532	0.076573	
С	-1.969040	-1.131338	-0.418463	
С	-3.366462	-1.276064	-0.465409	
С	-4.213015	-0.248735	-0.002223	
С	-3.598562	0.919261	0.494919	
С	-2.193547	1.095526	0.543454	
С	-1.602723	2.425853	1.095950	
С	-0.654575	2.139522	2.296336	
С	-2.694393	3.404433	1.609817	
С	-0.821117	3.165370	-0.030011	
С	-5.748557	-0.433154	-0.053155	
С	-6.516828	0.794409	0.497696	
С	-6.148392	-1.674060	0.799514	
С	-6.196837	-0.660767	-1.527377	
С	-1.105999	-2.317383	-0.857348	
Ν	0.192396	-1.876121	-1.483142	
С	1.197060	-2.984277	-1.512034	
С	-0.035465	-1.343077	-2.865292	
Н	1.576842	2.034742	-2.686852	
Н	3.749106	2.935010	-3.482836	
Н	5.859658	2.321191	-2.282890	
Н	5.790789	0.834883	-0.324817	
Н	5.698541	-0.331063	1.292634	
Н	5.549804	-1.804050	3.256354	
Н	3.333777	-2.699622	4.003784	
Н	1.278098	-2.097368	2.749065	
Н	-3.790904	-2.197854	-0.861057	
Н	-4.235307	1.716622	0.851981	
Н	-1.196578	1.638050	3.108796	
Н	0.195814	1.500922	2.029599	
Н	-0.241942	3.080093	2.685524	

Table S11. Cartesian Coordinates of the Optimized Structure of Inf in the GroundS0 State Calculated at the B3LYP/LANL2DZ Level

Н	-3.287747	2.967059	2.423227
Н	-2.212642	4.309769	2.001216
Н	-3.377686	3.715730	0.809194
Н	0.029395	2.584713	-0.403506
Н	-1.481052	3.380707	-0.881041
Н	-0.423940	4.118032	0.346564
Н	-6.270149	0.990908	1.549152
Н	-6.304025	1.702338	-0.081460
Н	-7.597180	0.608498	0.439175
Н	-5.852240	-1.538356	1.847761
Н	-7.236036	-1.825602	0.765964
Н	-5.669898	-2.589948	0.431802
Н	-5.940649	0.205598	-2.151060
Н	-5.717216	-1.544277	-1.966143
Н	-7.284338	-0.809409	-1.576267
Н	-1.657676	-2.967834	-1.555344
Н	-0.840894	-2.930694	0.016019
Н	0.825018	-3.843517	-2.092556
Н	2.123088	-2.620476	-1.967997
Н	1.422382	-3.305440	-0.490951
Н	-0.385317	-2.141415	-3.538856
Н	0.898647	-0.926364	-3.253827
Н	-0.791328	-0.553433	-2.831908

Center Symbol	Coordinates (Angstroms)		
	Х	Y	Z
С	-1.926467	0.916092	-2.271050
С	-3.039063	1.429411	-2.933583
С	-4.324281	1.293098	-2.374527
С	-4.492344	0.628482	-1.156495
С	-3.383329	0.109628	-0.483812
С	-2.049700	0.256209	-1.026903
С	-3.322238	-0.598245	0.791702
С	-1.948794	-0.918054	1.105966
В	-1.053658	-0.404669	-0.042761
С	-4.358394	-0.949262	1.658544
С	-4.069595	-1.613589	2.853263
С	-2.737915	-1.926030	3.185359
С	-1.696919	-1.582685	2.326926
С	0.547931	-0.267845	-0.017464
С	1.077488	0.843797	0.688352
С	2.447877	1.072236	0.841919
С	3.388041	0.213850	0.269406
С	2.877805	-0.879431	-0.437021
С	1.506566	-1.154987	-0.587641
С	1.090479	-2.439998	-1.354305
С	0.300229	-3.379170	-0.412802
С	2.300663	-3.243851	-1.879256
С	0.224826	-2.081119	-2.583768
С	4.895336	0.477805	0.445962
С	5.763785	-0.575794	-0.266689
С	5.250361	0.455193	1.951747
С	5.250393	1.865501	-0.139177
С	0.135745	1.817917	1.367630
Ν	-0.283261	2.986320	0.567156
С	-1.609822	3.516681	0.799740
С	0.458907	3.437601	-0.588251
Н	-0.946752	0.998957	-2.742120
Н	-2.921267	1.925243	-3.894289
Н	-5.188387	1.692840	-2.898078
Н	-5.491270	0.513699	-0.739923
Н	-5.391091	-0.711164	1.410401
Н	-4.875228	-1.891433	3.527357
Н	-2.525449	-2.444152	4.117437
Н	-0.675194	-1.843159	2.598791
Н	2.780135	1.924685	1.431913
Н	3.586623	-1.562162	-0.880154
Н	0.913841	-3.673286	0.446173
Н	-0.608870	-2.909824	-0.035482
Н	0.014438	-4.291000	-0.949830

Table S12. Cartesian Coordinates of the Optimized Structure of Bf in the Excited S1State Calculated at the TD-B3LYP/6-31G(d,p) Level

Н	2.954687	-3.591854	-1.072470
Н	1.934113	-4.131810	-2.403703
Н	2.904708	-2.672561	-2.592767
Н	-0.698147	-1.575034	-2.301196
Н	0.777327	-1.431588	-3.272649
Н	-0.043747	-2.993751	-3.127927
Н	5.589755	-1.581452	0.128581
Н	5.577454	-0.596068	-1.345219
Н	6.822980	-0.341697	-0.118701
Н	5.013553	-0.517623	2.393965
Н	6.320214	0.644051	2.095942
Н	4.700831	1.217829	2.512154
Н	5.015221	1.912205	-1.207764
Н	4.702975	2.670343	0.361762
Н	6.320104	2.070707	-0.018967
Н	0.599853	2.266610	2.257528
Н	-0.782640	1.325554	1.688293
Н	-1.690115	4.533886	0.418186
Н	-2.311348	2.860457	0.274645
Н	-1.832460	3.481477	1.867006
Н	1.504442	3.156023	-0.493107
Н	0.337370	4.516136	-0.699066
Н	0.037607	2.935161	-1.463538

Center Symbol	Coordinates (Angstroms)			
	Х	Y	Z	
С	2.617557	1.689670	-2.049000	
С	3.858943	2.155341	-2.463254	
С	5.051450	1.723079	-1.810022	
С	4.972422	0.851555	-0.748190	
С	3.711588	0.363412	-0.289755	
С	2.466555	0.755828	-1.004816	
С	3.549054	-0.468740	0.853463	
С	2.152145	-0.838425	1.200330	
Al	0.937390	-0.183154	-0.198126	
С	4.623511	-0.920682	1.679091	
С	4.375772	-1.635073	2.827951	
С	3.031560	-1.927342	3.211350	
С	1.966690	-1.519397	2.418822	
С	-1.052962	0.045176	-0.040363	
С	-1.692672	-1.129747	-0.495855	
С	-3.077667	-1.287280	-0.504126	
С	-3.910130	-0.266864	-0.036111	
С	-3.288561	0.900756	0.424728	
С	-1.894833	1.084021	0.435437	
С	-1.310453	2.414918	0.972555	
С	-0.405297	2.133214	2.194050	
С	-2.397126	3.411642	1.428841	
С	-0.488269	3.114242	-0.134215	
С	-5.439228	-0.453608	-0.046866	
С	-6.189885	0.770107	0.511376	
С	-5.812816	-1.680610	0.818783	
С	-5.919442	-0.689760	-1.498676	
С	-0.825655	-2.293462	-0.948789	
Ν	0.449215	-1.795760	-1.532668	
С	1.477482	-2.856067	-1.578825	
С	0.224099	-1.253540	-2.893562	
Н	1.734995	2.041051	-2.581337	
Н	3.930912	2.840745	-3.303969	
Н	6.014786	2.097978	-2.141695	
Н	5.883900	0.558170	-0.235990	
Н	5.648539	-0.672455	1.420476	
Н	5.197686	-1.962449	3.457339	
Н	2.849695	-2.492473	4.122000	
Н	0.957276	-1.771996	2.739163	
Н	-3.504213	-2.215969	-0.877522	
Н	-3.918894	1.699895	0.785350	
Н	-0.976538	1.660266	3.000351	
Н	0.430780	1.472404	1.943920	
Н	0.015768	3.068977	2.579599	

Table S13. Cartesian Coordinates of the Optimized Structure of Alf in the ExcitedS1 State Calculated at the TD-B3LYP/6-31G(d,p) Level
Н	-3.007707	3.013096	2.245714
Н	-1.917454	4.324681	1.796262
Н	-3.064180	3.700285	0.609536
Н	0.369502	2.514265	-0.447791
Н	-1.109020	3.313366	-1.015002
Н	-0.098757	4.072128	0.229582
Н	-5.916917	0.976028	1.551359
Н	-5.995198	1.672199	-0.077520
Н	-7.268716	0.584836	0.484042
Н	-5.490829	-1.539740	1.855685
Н	-6.898049	-1.834084	0.817220
Н	-5.346603	-2.597862	0.447078
Н	-5.675858	0.167254	-2.135171
Н	-5.456309	-1.576477	-1.941721
Н	-7.005721	-0.833533	-1.523892
Н	-1.350372	-2.940422	-1.666897
Н	-0.555059	-2.920511	-0.089889
Н	1.145046	-3.699590	-2.199511
Н	2.397244	-2.442485	-1.997673
Н	1.684802	-3.203409	-0.565048
Н	-0.067724	-2.053831	-3.586960
Н	1.143510	-0.781374	-3.245512
Н	-0.570582	-0.506613	-2.857837

Contor Symbol	Coordinates (Angstroms)			
Center Symbol –	Х	Y	Ζ	
С	2.533157	1.969068	-1.765650	
С	3.780694	2.452413	-2.137656	
С	4.970049	1.900035	-1.575517	
С	4.881528	0.899115	-0.636072	
С	3.613527	0.392009	-0.221313	
С	2.378817	0.912684	-0.854842	
С	3.438038	-0.568241	0.813268	
С	2.041135	-0.925441	1.139013	
Ga	0.834686	-0.045990	-0.133887	
С	4.501456	-1.157336	1.563456	
С	4.232522	-1.995415	2.619486	
С	2.881384	-2.279335	2.984818	
С	1.827424	-1.735600	2.262605	
С	-1.139956	0.038196	-0.030469	
С	-1.732992	-1.094639	-0.611699	
С	-3.116699	-1.288394	-0.647734	
С	-3.976932	-0.340395	-0.095194	
С	-3.387567	0.794690	0.485509	
С	-2.005071	1.008800	0.530783	
С	-1.442857	2.298010	1.176418	
С	-0.474552	1.930375	2.323884	
С	-2.540512	3.208162	1.761190	
С	-0.675000	3.106389	0.105832	
С	-5.509515	-0.487800	-0.109165	
С	-6.135002	0.691308	-0.891763	
С	-6.044352	-0.478434	1.342621	
С	-5.963912	-1.799566	-0.776844	
С	-0.823055	-2.183115	-1.159295	
Ν	0.434251	-1.594931	-1.668198	
С	1.528974	-2.569835	-1.758433	
С	0.228380	-0.920048	-2.962144	
Н	1.651945	2.416446	-2.220547	
Н	3.861574	3.236790	-2.885566	
Н	5.939331	2.287336	-1.873705	
Н	5.790879	0.514074	-0.184291	
Н	5.533225	-0.917525	1.324781	
Н	5.046221	-2.426024	3.195168	
Н	2.688518	-2.952731	3.815802	
Н	0.810810	-1.985599	2.559505	
Н	-3.508605	-2.185231	-1.117517	
Н	-4.046736	1.540018	0.911512	
Н	-0.978839	1.330468	3.088898	
Н	0.375395	1.353463	1.945965	
Н	-0.079647	2.835067	2.799783	

Table S14. Cartesian Coordinates of the Optimized Structure of Gaf in the ExcitedS1 State Calculated at the TD-B3LYP/6-31G(d,p) Level

Н	-3.117064	2.706720	2.545884
Н	-2.076133	4.092068	2.210372
Н	-3.238375	3.560005	0.993911
Н	0.167602	2.525186	-0.275151
Н	-1.327812	3.365895	-0.734687
Н	-0.275786	4.033550	0.532435
Н	-5.887842	1.656119	-0.439675
Н	-5.777388	0.706764	-1.926610
Н	-7.227220	0.601399	-0.910732
Н	-5.791195	0.448875	1.864600
Н	-7.135947	-0.576739	1.348102
Н	-5.625408	-1.309865	1.918866
Н	-5.645614	-1.856264	-1.823003
Н	-5.574383	-2.678676	-0.253102
Н	-7.056835	-1.863585	-0.761336
Н	-0.550667	-2.875549	-0.352878
Н	-1.325905	-2.776275	-1.938212
Н	2.445258	-2.050787	-2.050997
Н	1.708469	-3.014293	-0.777205
Н	1.316232	-3.363323	-2.489325
Н	1.133248	-0.368118	-3.227188
Н	-0.593543	-0.206642	-2.873320
Н	-0.008254	-1.641080	-3.757766

Center Symbol	Coordinates (Angstroms)			
Center Symbol	Х	Y	Z	
С	2.502362	1.846515	-1.940628	
С	3.750053	2.311564	-2.384514	
С	4.965391	1.818589	-1.789891	
С	4.907568	0.894309	-0.754905	
С	3.644079	0.407286	-0.269516	
С	2.380766	0.853487	-0.936590	
С	3.494389	-0.466338	0.854184	
С	2.091805	-0.825006	1.225557	
Ga	0.849952	-0.121805	-0.146492	
С	4.583247	-0.970833	1.648997	
С	4.338111	-1.716832	2.793942	
С	2.984643	-1.987360	3.208092	
С	1.902671	-1.525378	2.442390	
С	-1.145074	0.029589	-0.027273	
С	-1.753102	-1.150788	-0.530275	
С	-3.148635	-1.338315	-0.563792	
С	-4.010081	-0.342923	-0.075235	
С	-3.412847	0.833400	0.436016	
С	-2.018167	1.050220	0.473346	
С	-1.469574	2.385025	1.054981	
С	-0.552809	2.096814	2.279406	
С	-2.592887	3.340874	1.542495	
С	-0.664115	3.146988	-0.037272	
С	-5.550101	-0.485332	-0.079197	
С	-6.179633	0.664978	-0.919499	
С	-6.082296	-0.402290	1.382316	
С	-6.017833	-1.833055	-0.684502	
С	-0.855140	-2.290510	-1.010148	
Ν	0.434808	-1.750298	-1.560225	
С	1.511675	-2.785028	-1.587999	
С	0.234987	-1.171596	-2.927264	
Н	1.605356	2.235634	-2.422042	
Н	3.806452	3.031765	-3.198722	
Н	5.924785	2.191636	-2.140516	
Н	5.830641	0.564480	-0.283727	
Н	5.609063	-0.733198	1.377111	
Н	5.165541	-2.079944	3.399217	
Н	2.808021	-2.574918	4.107145	
Н	0.891182	-1.755504	2.775937	
Н	-3.546722	-2.263442	-0.972112	
Н	-4.069738	1.607170	0.814447	
Н	-1.109229	1.567658	3.064785	
Н	0.316822	1.485272	2.012390	
Н	-0.176705	3.039736	2.699998	

Table S15. Cartesian Coordinates of the Optimized Structure of Gaf in the ExcitedS1 State Calculated at the TD-B3LYP/LANL2DZ Level

Н	-3.194795	2.894199	2.344754
Н	-2.136300	4.255016	1.943391
Н	-3.264759	3.638774	0.726573
Н	0.213101	2.581720	-0.366350
Н	-1.294279	3.349756	-0.914085
Н	-0.305600	4.107583	0.358050
Н	-5.923672	1.650934	-0.513726
Н	-5.826516	0.627557	-1.958356
Н	-7.274925	0.577341	-0.925018
Н	-5.813385	0.548678	1.857136
Н	-7.177701	-0.488204	1.395007
Н	-5.666287	-1.212611	1.994998
Н	-5.697144	-1.943340	-1.728820
Н	-5.635380	-2.689696	-0.114083
Н	-7.114285	-1.884368	-0.665800
Н	-0.592451	-2.945002	-0.166848
Н	-1.364115	-2.913701	-1.762898
Н	2.430524	-2.336174	-1.977736
Н	1.706122	-3.135610	-0.570203
Н	1.227750	-3.637663	-2.225244
Н	1.153589	-0.667464	-3.241138
Н	-0.578267	-0.441194	-2.898762
Н	-0.017353	-1.961054	-3.652431

Center Symbol	Coordinates (Angstroms)			
Center Symbol	Х	Y	Z	
С	2.864416	2.173439	-1.522994	
С	4.178426	2.544309	-1.892318	
С	5.274247	1.798196	-1.364125	
С	5.070791	0.735290	-0.486221	
С	3.746010	0.345680	-0.080122	
С	2.629291	1.080314	-0.672356	
С	3.470197	-0.697749	0.866434	
С	2.126109	-0.957100	1.323519	
In	0.791552	0.178497	-0.173528	
С	4.426157	-1.621970	1.445895	
С	4.054810	-2.569736	2.404215	
С	2.718229	-2.711089	2.862999	
С	1.729738	-1.832858	2.313285	
С	-1.332402	0.139259	0.015974	
С	-1.849839	-1.045760	-0.578997	
С	-3.230326	-1.294891	-0.648742	
С	-4.157285	-0.376565	-0.113755	
С	-3.641735	0.793131	0.482837	
С	-2.256586	1.077081	0.562532	
С	-1.775876	2.394077	1.239584	
С	-0.873421	2.068206	2.465755	
С	-2.952085	3.264241	1.761435	
С	-0.984735	3.266229	0.220325	
С	-5.673028	-0.673463	-0.201098	
С	-6.538408	0.440801	0.439076	
С	-5.981772	-2.009138	0.538761	
С	-6.088155	-0.808401	-1.696563	
С	-0.891912	-2.116867	-1.109641	
Ν	0.368375	-1.518230	-1.676780	
С	1.476049	-2.524001	-1.763026	
С	0.118305	-0.906713	-3.023682	
Н	2.028305	2.742563	-1.932960	
Н	4.347633	3.374015	-2.573791	
Н	6.290732	2.075890	-1.639618	
Н	5.932799	0.213940	-0.074041	
Н	5.466120	-1.547736	1.135227	
Н	4.825362	-3.213604	2.826831	
Н	2.442049	-3.449704	3.609328	
Н	0.699825	-1.882800	2.664035	
Н	-3.579080	-2.211177	-1.122177	
Н	-4.342580	1.505448	0.894053	
Н	-1.420444	1.466059	3.202776	
Н	0.032579	1.513875	2.191988	
Н	-0.547517	2.996592	2.953055	

Table S16. Cartesian Coordinates of the Optimized Structure of Inf in the ExcitedS1 State Calculated at the TD-B3LYP/LANL2DZ Level

Н	-3.548673	2.737390	2.517079
Н	-2.549289	4.169271	2.233216
Н	-3.620156	3.583824	0.951099
Н	-0.056839	2.786415	-0.115988
Н	-1.595507	3.483214	-0.665821
Н	-0.695713	4.219603	0.682054
Н	-6.317413	0.566380	1.506964
Н	-6.393494	1.408020	-0.059433
Н	-7.600013	0.177277	0.349106
Н	-5.707330	-1.940751	1.599369
Н	-7.054002	-2.238778	0.475757
Н	-5.432092	-2.852404	0.103508
Н	-5.892167	0.123712	-2.242326
Н	-5.540830	-1.614625	-2.199922
Н	-7.160858	-1.031750	-1.773967
Н	-1.387384	-2.743349	-1.867885
Н	-0.583011	-2.780303	-0.289977
Н	1.204196	-3.352756	-2.435120
Н	2.377426	-2.033244	-2.141751
Н	1.693658	-2.917192	-0.766369
Н	-0.131927	-1.683450	-3.762454
Н	1.016753	-0.374795	-3.352780
Н	-0.714860	-0.199946	-2.961663

Center Symbol	Coordinates (Angstroms)			
Center Symbol -	Х	Y	Z	
С	-1.880699	0.838313	-2.314539	
С	-2.982041	1.333515	-3.009078	
С	-4.275577	1.220201	-2.464520	
С	-4.463278	0.598969	-1.226508	
С	-3.365610	0.099800	-0.520961	
С	-2.024395	0.220884	-1.050957	
С	-3.324812	-0.564144	0.779524	
С	-1.957483	-0.879996	1.122174	
В	-1.044444	-0.409697	-0.031625	
С	-4.373662	-0.880288	1.644333	
С	-4.103448	-1.504950	2.864758	
С	-2.778141	-1.812876	3.224258	
С	-1.724458	-1.504289	2.367702	
С	0.555984	-0.275653	0.005751	
С	1.080078	0.852885	0.688595	
С	2.449387	1.096744	0.826678	
С	3.393204	0.234352	0.266239	
С	2.888252	-0.881445	-0.407855	
С	1.518433	-1.171400	-0.543813	
С	1.108460	-2.481040	-1.271268	
С	0.309153	-3.387508	-0.305869	
С	2.322847	-3.302530	-1.757472	
С	0.254436	-2.163845	-2.520370	
С	4.899159	0.517400	0.423502	
С	5.772152	-0.539525	-0.278588	
С	5.268367	0.525877	1.926041	
С	5.233580	1.897929	-0.190038	
С	0.135963	1.828475	1.363586	
Ν	-0.340097	2.954783	0.536563	
С	-1.678706	3.450215	0.776467	
С	0.372076	3.410140	-0.635721	
Н	-0.893778	0.903107	-2.772928	
Н	-2.848787	1.796381	-3.984101	
Н	-5.130685	1.604416	-3.013766	
Н	-5.468400	0.502046	-0.820404	
Н	-5.401859	-0.645698	1.375134	
Н	-4.919105	-1.755341	3.537541	
Н	-2.580267	-2.300413	4.175815	
Н	-0.707685	-1.761612	2.660461	
Н	2.778401	1.965611	1.393805	
Н	3.600204	-1.569376	-0.837643	
Н	0.916448	-3.656956	0.565601	
Н	-0.600197	-2.902859	0.051206	
Н	0.022476	-4.314462	-0.815782	

Table S17. Cartesian Coordinates of the Optimized Structure of Bf in the Excited T1State Calculated at the TD-UB3LYP/6-31G(d,p) Level

H	H 2.9727	-3.61	7206 -0.9	933818
H	H 1.9605	-4.210	0794 -2.2	248925
H	H 2.9299	-2.758	8771 -2.4	489569
H	Н —0.672	627 -1.65	1208 -2.2	264338
H	H 0.8127	-1.535	5320 -3.2	223876
H	H –0.006	407 -3.094	4004 -3.	038191
H	H 5.6148	-1.539	9458 0.1	37665
H	H 5.5738	-0.582	2653 -1.2	354336
H	H 6.8300	-0.290	0184 -0.	147213
H	H 5.0469	-0.44	1453 2.3	87890
H	H 6.3372	0.729	450 2.0	56899
H	H 4.7151	1.292	2.4	77828
H	H 4.9874	1.922	.562 -1.	256873
H	H 4.6824	152 2.706	012 0.3	01392
H	H 6.3021	2.116	-0.0	084365
H	H 0.6227	2.319	2.2	18837
H	Н —0.757	549 1.327	1.7	36553
H	H –1.797	223 4.451	035 0.3	62529
H	H –2.369	963 2.756	681 0.2	86959
H	H –1.880	793 3.445	976 1.8	48574
H	H 1.4144	3.107	568 -0.5	580634
H	H 0.2696	650 4.493	807 -0.	721665
H	H –0.091	878 2.937	-1.5	506153

Contor Symbol -	Coordinates (Angstroms)			
Center Symbol –	Х	Y	Z	
С	2.565746	1.680305	-2.071924	
С	3.804339	2.224097	-2.453852	
С	4.986083	1.867774	-1.732924	
С	4.924295	1.006087	-0.673014	
С	3.660183	0.429795	-0.254541	
С	2.428285	0.790160	-1.013475	
С	3.519159	-0.445299	0.839988	
С	2.148563	-0.938404	1.150050	
Al	0.927904	-0.215026	-0.217982	
С	4.617374	-0.873791	1.685869	
С	4.394383	-1.690333	2.760006	
С	3.074643	-2.140726	3.075862	
С	1.993800	-1.751966	2.265632	
С	-1.046731	0.039152	-0.027408	
С	-1.694980	-1.118109	-0.514565	
С	-3.081475	-1.262356	-0.525469	
С	-3.903216	-0.246406	-0.028184	
С	-3.270744	0.901058	0.468315	
С	-1.875503	1.069567	0.482649	
С	-1.268654	2.376311	1.051288	
С	-0.294058	2.046387	2.205220	
С	-2.333625	3.338834	1.618423	
С	-0.515107	3.131598	-0.067861	
С	-5.434297	-0.417063	-0.044769	
С	-6.172724	0.800457	0.542461	
С	-5.821258	-1.660995	0.790271	
С	-5.915137	-0.612086	-1.502428	
С	-0.832783	-2.274919	-0.993845	
Ν	0.451624	-1.769554	-1.561347	
С	1.473445	-2.838706	-1.625695	
С	0.230831	-1.204733	-2.916063	
Н	1.683564	1.979763	-2.637466	
Н	3.869576	2.911040	-3.292338	
Н	5.940456	2.293115	-2.031563	
Н	5.834720	0.758913	-0.136356	
Н	5.627891	-0.539025	1.474148	
Н	5.225844	-1.999392	3.387894	
Н	2.915928	-2.783324	3.936807	
Н	1.000455	-2.111459	2.533384	
Н	-3.517948	-2.176220	-0.922755	
Н	-3.892638	1.694923	0.854971	
Н	-0.816956	1.541125	3.024301	
Н	0.526072	1.394543	1.891852	
Н	0.151245	2.965730	2.602026	

Table S18. Cartesian Coordinates of the Optimized Structure of Alf in the ExcitedT1 State Calculated at the TD-UB3LYP/6-31G(d,p) Level

Н	-2.909114	2.884280	2.431597
Н	-1.838513	4.227115	2.023925
Н	-3.034630	3.679348	0.849258
Н	0.322617	2.552382	-0.462669
Н	-1.188673	3.367790	-0.899035
Н	-0.107962	4.074080	0.316232
Н	-5.900445	0.977258	1.587956
Н	-5.966678	1.714743	-0.023343
Н	-7.253360	0.627701	0.508010
Н	-5.498994	-1.548871	1.830580
Н	-6.907946	-1.803151	0.784192
Н	-5.364211	-2.573760	0.396686
Н	-5.660671	0.257208	-2.117633
Н	-5.462284	-1.493378	-1.966279
Н	-7.002955	-0.742293	-1.532391
Н	-1.354034	-2.899643	-1.733160
Н	-0.568790	-2.925674	-0.150992
Н	1.135145	-3.664295	-2.265818
Н	2.397973	-2.424621	-2.032907
Н	1.673931	-3.209041	-0.619341
Н	-0.070079	-1.994362	-3.617076
Н	1.153445	-0.736895	-3.263556
Н	-0.556927	-0.451192	-2.869052

Contor Symbol	Coordinates (Angstroms)			
Center Symbol	Х	Y	Z	
С	2.528558	1.952068	-1.766923	
С	3.785753	2.507375	-2.071316	
С	4.953830	2.012560	-1.415975	
С	4.862650	1.013674	-0.486125	
С	3.577825	0.431858	-0.144875	
С	2.369056	0.930289	-0.848864	
С	3.398084	-0.563719	0.833414	
С	2.013456	-1.029240	1.081238	
Ga	0.830440	-0.091252	-0.181671	
С	4.470303	-1.136695	1.625911	
С	4.198618	-2.059585	2.598542	
С	2.857848	-2.478620	2.857398	
С	1.801977	-1.948441	2.091429	
С	-1.135554	0.043597	-0.041708	
С	-1.744152	-1.066313	-0.649152	
С	-3.130081	-1.247027	-0.670868	
С	-3.971986	-0.308299	-0.074679	
С	-3.364495	0.805361	0.529877	
С	-1.979614	1.005065	0.558807	
С	-1.383443	2.271745	1.215866	
С	-0.357854	1.871308	2.301019	
С	-2.448704	3.160781	1.885621	
С	-0.671563	3.110742	0.129941	
С	-5.506014	-0.442689	-0.067817	
С	-6.132912	0.760167	-0.812154	
С	-6.018019	-0.463798	1.392066	
С	-5.982455	-1.734078	-0.759366	
С	-0.841719	-2.138806	-1.238781	
Ν	0.424563	-1.533707	-1.724858	
С	1.509656	-2.519608	-1.863612	
С	0.212791	-0.816883	-2.999669	
Н	1.656846	2.357333	-2.278049	
Н	3.875361	3.302143	-2.805385	
Н	5.922768	2.441646	-1.656539	
Н	5.762972	0.661579	0.006998	
Н	5.496750	-0.827395	1.456770	
Н	5.009909	-2.477020	3.188970	
Н	2.664555	-3.208130	3.637978	
Н	0.790954	-2.291043	2.307074	
Н	-3.538811	-2.125327	-1.160685	
Н	-4.009992	1.544202	0.987823	
Н	-0.823428	1.250981	3.074015	
Н	0.473940	1.301446	1.879389	
Н	0.063280	2.761694	2.780761	

Table S19. Cartesian Coordinates of the Optimized Structure of Gaf in the ExcitedT1 State Calculated at the TD-UB3LYP/6-31G(d,p) Level

Н	-2.991060	2.629432	2.675030
Н	-1.962105	4.026448	2.346366
Н	-3.179380	3.543287	1.165291
Н	0.138190	2.537096	-0.325126
Н	-1.371432	3.407726	-0.658469
Н	-0.236310	4.017913	0.564164
Н	-5.866451	1.711730	-0.343370
Н	-5.794438	0.795080	-1.852956
Н	-7.226204	0.682389	-0.812605
Н	-5.750723	0.449184	1.931922
Н	-7.110020	-0.554977	1.412270
Н	-5.596153	-1.311313	1.942157
Н	-5.683021	-1.767193	-1.812098
Н	-5.591306	-2.628884	-0.264192
Н	-7.075393	-1.789820	-0.726396
Н	-0.571512	-2.865300	-0.462582
Н	-1.340499	-2.695459	-2.045656
Н	2.429444	-2.000994	-2.144553
Н	1.691655	-3.004271	-0.902883
Н	1.276718	-3.277828	-2.623798
Н	1.119063	-0.264652	-3.256966
Н	-0.604291	-0.102413	-2.882824
Н	-0.034531	-1.516684	-3.809683

Contor Symbol -	Coordinates (Angstroms)		
Center Symbol	Х	Y	Z
С	2.461033	1.732443	-2.048247
С	3.705905	2.298376	-2.438770
С	4.903229	1.954882	-1.716209
С	4.855909	1.082694	-0.645883
С	3.590274	0.485638	-0.224675
С	2.345735	0.834981	-0.982416
С	3.461187	-0.400897	0.873127
С	2.089662	-0.914647	1.183074
Ga	0.844953	-0.191386	-0.184172
С	4.574521	-0.818945	1.723260
С	4.358701	-1.649988	2.805692
С	3.034547	-2.120526	3.121713
С	1.936113	-1.738187	2.301912
С	-1.137635	0.016059	-0.021498
С	-1.773545	-1.149155	-0.523738
С	-3.172979	-1.307843	-0.543621
С	-4.007297	-0.297124	-0.038871
С	-3.380299	0.862722	0.475284
С	-1.981060	1.049732	0.496779
С	-1.390603	2.370895	1.066871
С	-0.382043	2.063118	2.210934
С	-2.474944	3.311672	1.660192
С	-0.672390	3.154151	-0.070864
С	-5.550195	-0.405786	-0.029085
С	-6.160975	0.761342	-0.859991
С	-6.067556	-0.316500	1.437294
С	-6.053307	-1.740511	-0.634890
С	-0.897308	-2.301355	-1.012846
Ν	0.403924	-1.777719	-1.566701
С	1.457656	-2.839556	-1.609722
С	0.199356	-1.199397	-2.936114
Н	1.570950	2.020542	-2.608968
Н	3.758640	2.989224	-3.277309
Н	5.851460	2.395139	-2.018683
Н	5.770760	0.845387	-0.109156
Н	5.580948	-0.467464	1.511219
Н	5.193544	-1.951193	3.435743
Н	2.881258	-2.765949	3.983849
Н	0.944646	-2.105734	2.568535
Н	-3.595787	-2.221650	-0.952278
Н	-4.016328	1.646814	0.868654
Н	-0.871816	1.512951	3.025313
Н	0.470290	1.463145	1.875489
Н	0.020129	2.999794	2.620639

Table S20. Cartesian Coordinates of the Optimized Structure of Gaf in the ExcitedT1 State Calculated at the TD-UB3LYP/LANL2DZ Level

Н	-3.029433	2.835643	2.479745
Н	-1.989417	4.208620	2.065878
Н	-3.194033	3.643661	0.899939
Н	0.166851	2.590829	-0.489102
Н	-1.373417	3.382650	-0.885101
Н	-0.273574	4.102708	0.314840
Н	-5.876962	1.739758	-0.454682
Н	-5.819843	0.718109	-1.902644
Н	-7.258062	0.700159	-0.854216
Н	-5.773970	0.626590	1.913050
Н	-7.164402	-0.378553	1.459531
Н	-5.663928	-1.137892	2.043469
Н	-5.745173	-1.853848	-1.682655
Н	-5.684979	-2.607706	-0.071100
Н	-7.150354	-1.767194	-0.605954
Н	-0.640757	-2.964929	-0.174961
Н	-1.414265	-2.911737	-1.769834
Н	2.383854	-2.411457	-2.004706
Н	1.651742	-3.203276	-0.597159
Н	1.145291	-3.678355	-2.250793
Н	1.126139	-0.724919	-3.269617
Н	-0.592735	-0.446754	-2.898554
Н	-0.087396	-1.987316	-3.649125

Contor Symbol -	Coordinates (Angstroms)		
Center Symbol –	Х	Y	Z
С	2.516449	1.756560	-2.122192
С	3.760895	2.276455	-2.579059
С	4.972487	1.905998	-1.899990
С	4.940636	1.056927	-0.810645
С	3.675722	0.505123	-0.315278
С	2.416707	0.884247	-1.034498
С	3.604024	-0.354331	0.814691
С	2.269638	-0.865344	1.265436
In	0.784417	-0.126851	-0.090294
С	4.788047	-0.756664	1.580661
С	4.676196	-1.565583	2.694978
С	3.391388	-2.034973	3.137359
С	2.223762	-1.668444	2.408820
С	-1.357369	0.053604	0.067832
С	-1.979960	-1.133247	-0.410462
С	-3.377132	-1.282186	-0.449349
С	-4.224621	-0.252034	0.005130
С	-3.610845	0.923432	0.484571
С	-2.205988	1.104401	0.525076
С	-1.620180	2.443873	1.061194
С	-0.681162	2.175995	2.273002
С	-2.715784	3.430022	1.551816
С	-0.830922	3.167918	-0.069405
С	-5.759802	-0.441377	-0.036565
С	-6.529196	0.789728	0.504763
С	-6.152200	-1.674223	0.831080
С	-6.214212	-0.686250	-1.506165
С	-1.117770	-2.322682	-0.841544
Ν	0.170790	-1.885749	-1.486067
С	1.177920	-2.990270	-1.514549
С	-0.070460	-1.362198	-2.868216
Н	1.612938	2.061303	-2.651909
Н	3.798755	2.948405	-3.433711
Н	5.922742	2.306019	-2.248765
Н	5.872627	0.803994	-0.313578
Н	5.772346	-0.411124	1.278114
Н	5.567674	-1.849004	3.251422
Н	3.316357	-2.665922	4.020362
Н	1.262385	-2.035549	2.769994
Н	-3.800426	-2.209870	-0.832327
Н	-4.248169	1.723510	0.834189
Н	-1.231058	1.691545	3.090584
Н	0.167747	1.528958	2.022238
Н	-0.267767	3.122116	2.647997

Table S21. Cartesian Coordinates of the Optimized Structure of Inf in the ExcitedT1 State Calculated at the TD-UB3LYP/LANL2DZ Level

Н	-3.313115	3.006794	2.369752
Н	-2.236579	4.342293	1.930047
Н	-3.394971	3.726937	0.742187
Н	0.025382	2.584543	-0.425031
Н	-1.483824	3.367709	-0.929683
Н	-0.440398	4.127758	0.295894
Н	-6.278310	0.997898	1.552967
Н	-6.321588	1.692145	-0.084796
Н	-7.609292	0.600199	0.453036
Н	-5.851992	-1.526338	1.876522
Н	-7.239532	-1.829450	0.803720
Н	-5.672403	-2.592511	0.471184
Н	-5.964198	0.174369	-2.140232
Н	-5.733128	-1.572502	-1.937781
Н	-7.301374	-0.839511	-1.548266
Н	-1.675923	-2.984677	-1.523654
Н	-0.841339	-2.922741	0.037596
Н	0.800592	-3.859948	-2.076233
Н	2.095397	-2.630192	-1.990557
Н	1.420307	-3.294364	-0.491835
Н	-0.416479	-2.166389	-3.537096
Н	0.857797	-0.938019	-3.263431
Н	-0.833191	-0.579212	-2.834094

	B3LYP/6-31G(d,p)		B3LYP/LANL2DZ		2DZ	
	\mathbf{S}_0	S_1	T_1	\mathbf{S}_0	S_1	T_1
Ga–N	2.1316	2.2167	2.1510	2.1338	2.1961	2.1500
<i>φ</i> С1–С6–С7–С12	0.50	0.40	0.15	0.94	0.09	0.02
C12–Ga–C1	90.06	88.47	89.71	89.88	88.08	89.50
C1–Ga–C13	139.75	141.84	140.20	136.02	139.13	136.74
C12-Ga-C13	125.64	126.78	125.82	127.17	127.59	127.10
Sum of C–Ga–C	355.45	357.09	355.73	353.07	354.80	353.34
C1–Ga–N	104.83	103.30	104.65	106.24	104.75	104.65
C12–Ga–N	104.62	104.30	104.72	107.44	107.54	106.14
C13–Ga–N	85.21	83.43	84.77	86.16	84.61	85.73
Sum of C–Ga–N	294.66	291.03	294.14	299.84	296.9	296.52

Table S22. Calculated Bond Lengths [Å] and Angles [°] for Gaf in S₀, S₁ and T₁ States Optimized at the B3LYP/6-31G(d,p) and B3LYP/LANL2DZ Levels

Figure S19. (a) Overall, front and side views of the optimized structure and (b) selected molecular orbitals and energy levels of **Bf** in the ground S_0 state calculated at the B3LYP/6-31G(d,p) level. Hydrogen atoms are omitted for clarity.

Figure S20. (a) Overall, front and side views of the optimized structure and (b) selected molecular orbitals and energy levels of **Alf** in the ground S₀ state calculated at the B3LYP/6-31G(d,p) level. Hydrogen atoms are omitted for clarity.

Figure S21. (a) Overall, front and side views of the optimized structure and (b) selected molecular orbitals and energy levels of **Gaf** in the ground S_0 state calculated at the B3LYP/6-31G(d,p) level. Hydrogen atoms are omitted for clarity.

Figure S22. (a) Overall, front and side view of the optimized structure and (b) selected molecular orbitals and energy levels of **Gaf** in the ground S₀ state calculated at the B3LYP/LANL2DZ level. Hydrogen atoms are omitted for clarity.

Figure S23. (a) Overall, front and side views of the optimized structure and (b) selected molecular orbitals and energy levels of Inf in the ground S_0 state calculated at the B3LYP/LANL2DZ level. Hydrogen atoms are omitted for clarity.

Figure S24. (a) Overall, front and side views of the optimized structure of **Bf** in the excited S_1 state and (b) selected molecular orbitals and energy levels of **Bf** for the ground state with the optimized structure in the excited S_1 state calculated at the B3LYP/6-31G(d,p) level. Hydrogen atoms are omitted for clarity.

Figure S25. (a) Overall, front and side views of the optimized structure of **Alf** in the excited S_1 state and (b) selected molecular orbitals and energy levels of **Alf** for the ground state with the optimized structure in the excited S_1 state calculated at the B3LYP/6-31G(d,p) level. Hydrogen atoms are omitted for clarity.

Figure S26. (a) Overall, front and side views of the optimized structure of **Gaf** in the excited S_1 state and (b) selected molecular orbitals and energy levels of **Gaf** for the ground state with the optimized structure in the excited S_1 state calculated at the B3LYP/6-31G(d,p) level. Hydrogen atoms are omitted for clarity.

Figure S27. (a) Overall, front and side views of the optimized structure of **Gaf** in the excited S_1 state and (b) selected molecular orbitals and energy levels of **Gaf** for the ground state with the optimized structure in the excited S_1 state calculated at the B3LYP/LANL2DZ level. Hydrogen atoms are omitted for clarity.

Figure S28. (a) Overall, front and side views of the optimized structure of **Inf** in the excited S_1 state and (b) selected molecular orbitals and energy levels of **Inf** for the ground state with the optimized structure in the excited S_1 state calculated at the B3LYP/LANL2DZ level. Hydrogen atoms are omitted for clarity.

Figure S29. (a) Overall, front and side views of the optimized structure of **Bf** in the excited T_1 state and (b) selected molecular orbitals and energy levels of **Bf** for the ground state with the optimized structure in the excited T_1 state calculated at the UB3LYP/6-31G(d,p) level. Hydrogen atoms are omitted for clarity.

Figure S30. (a) Overall, front and side views of the optimized structure of **Alf** in the excited T_1 state and (b) selected molecular orbitals and energy levels of **Alf** for the ground state with the optimized structure in the excited T_1 state calculated at the UB3LYP/6-31G(d,p) level. Hydrogen atoms are omitted for clarity.

Figure S31. (a) Overall, front and side views of the optimized structure of **Gaf** in the excited T_1 state and (b) selected molecular orbitals and energy levels of **Gaf** for the ground state with the optimized structure in the excited T_1 state calculated at the UB3LYP/6-31G(d,p) level. Hydrogen atoms are omitted for clarity.

Figure S32. (a) Overall, front and side views of the optimized structure of **Gaf** in the excited T_1 state and (b) selected molecular orbitals and energy levels of **Gaf** for the ground state with the optimized structure in the excited T_1 state calculated at the UB3LYP/LANL2DZ level. Hydrogen atoms are omitted for clarity.

Figure S33. (a) Overall, front and side views of the optimized structure of **Inf** in the excited T_1 state and (b) selected molecular orbitals and energy levels of **Inf** for the ground state with the optimized structure in the excited T_1 state calculated at the UB3LYP/LANL2DZ level. Hydrogen atoms are omitted for clarity.

Transition Energy (Wave Length)	Assignment with Contribution	Oscillator Strength f
4.2732 eV	HOMO→LUMO (77.78%)	0.0760
(290.14 nm)	HOMO→LUMO+1 (22.22%)	
4.3971 eV	HOMO-3→LUMO (12.80%)	0.0551
(281.97 nm)	HOMO–1→LUMO (24.55%)	
	HOMO→LUMO (12.53%)	
	HOMO→LUMO+1 (50.12%)	
4.6468 eV	HOMO-4→LUMO (2.15%)	0.0957
(266.82 nm)	HOMO-3→LUMO (8.13%)	
	HOMO−1→LUMO (72.85%)	
	HOMO→LUMO (7.96%)	
	HOMO→LUMO+2 (8.91%)	
4.8720 eV	HOMO-4→LUMO (50.05%)	0.0031
(254.48 nm)	HOMO−3→LUMO (2.67%)	
	HOMO-1→LUMO+1 (3.10%)	
	HOMO→LUMO+2 (2.40%)	
	HOMO→LUMO+3 (25.02%)	
	HOMO→LUMO+4 (16.76%)	
4.9519 eV	HOMO-4→LUMO (2.43%)	0.0064
(250.38 nm)	HOMO–3→LUMO (3.83%)	
	HOMO-2→LUMO (2.36%)	
	HOMO-2→LUMO+2 (2.81%)	
	HOMO−1→LUMO+1 (79.75%)	
	HOMO-1→LUMO+2 (2.21%)	
	HOMO-1→LUMO+3 (2.44%)	
	HOMO→LUMO+2 (4.16%)	
4.9852 eV	HOMO-2→LUMO (34.59%)	0.0112
(248.70 nm)	HOMO-2→LUMO+1 (2.96%)	
	HOMO-2→LUMO+2 (5.12%)	
	HOMO-2→LUMO+3 (3.51%)	
	HOMO−1→LUMO+1 (13.99%)	
	HOMO−1→LUMO+2 (5.13%)	
	HOMO-1→LUMO+3 (8.76%)	
	HOMO→LUMO+2 (2.34%)	
	HOMO→LUMO+3 (2.57%)	

Table S23. TD-DFT Calculation Result of Bf with Optimized Structure in theGround S0 State Calculated at the B3LYP/6-31G(d,p) Level

Table S24. TD-DFT Calculation Result of Alf with Optimized Structure	in the
Ground S ₀ State Calculated at the B3LYP/6-31G(d,p) Level	
Transition Energy	

(Wave Length)	Assignment with Contribution	Oscillator Strength f
4.1684 eV	HOMO→LUMO (84.10%)	0.0604
(297.44 nm)	HOMO→LUMO+2 (15.91%)	
4.4744 eV	HOMO-2→LUMO (24.28%)	0.0758
(277.10 nm)	HOMO−1→LUMO (14.36%)	
	HOMO→LUMO (12.82%)	
	HOMO→LUMO+1 (3.72%)	
	HOMO→LUMO+2 (44.83%)	
4.6210 eV	HOMO-5→LUMO (19.01%)	0.0246
(268.31 nm)	HOMO–3→LUMO (5.56%)	
	HOMO–2→LUMO (7.37%)	
	HOMO-1→LUMO (61.04%)	
	HOMO→LUMO (2.70%)	
	HOMO→LUMO+2 (4.32%)	
4.6655 eV	HOMO→LUMO+1 (92.42%)	0.0021
(265.75 nm)	HOMO→LUMO+2 (7.58%)	
4.9111 eV	HOMO-4→LUMO (65.88%)	0.0153
(252.46 nm)	HOMO→LUMO+3 (3.03%)	
	HOMO→LUMO+4 (31.09%)	

Transition Energy (Wave Length)	Assignment with Contribution Oscillator Stree	
4.2037 eV	HOMO→LUMO (82.62%)	0.0641
(294.94 nm)	HOMO→LUMO+1 (17.38%)	
4.4419 eV	HOMO–5→LUMO (6.43%)	0.0186
(279.12 nm)	HOMO-2 \rightarrow LUMO (9.35%)	0.0100
(, ,)	HOMO-1 \rightarrow LUMO (59.10%)	
	HOMO \rightarrow LUMO (2.64%)	
	HOMO→LUMO+1 (22.48%)	
4.5331 eV	HOMO–5→LUMO (4.86%)	0.0824
(273.51 nm)	HOMO-2 \rightarrow LUMO (21.00%)	0.002
(HOMO-1 \rightarrow LUMO (30.01%)	
	HOMO \rightarrow LUMO (13.78%)	
	HOMO→LUMO+1 (30.35%)	
4.8287 eV	HOMO→LUMO+1 (2.99%)	0.0011
(256.77 nm)	HOMO→LUMO+2 (97.01%)	
4.9315 eV	HOMO–5→LUMO+1 (2.39%)	0.0180
(251.41 nm)	HOMO-4→LUMO (49.93%)	
	HOMO–2→LUMO (4.72%)	
	HOMO−1→LUMO+1 (19.14%)	
	HOMO→LUMO+4 (23.81%)	
4.9349 eV	HOMO–5→LUMO+1 (9.07%)	0.0190
(251.24 nm)	HOMO-4→LUMO (11.64%)	
	HOMO-2→LUMO (2.59%)	
	HOMO−1→LUMO+1 (71.20%)	
	HOMO→LUMO+4 (5.49%)	

Table S25. TD-DFT Calculation Result of Gaf with Optimized Structure in theGround S0 State Calculated at the B3LYP/6-31G(d,p) Level

Transition Energy (Wave Length)	Assignment with Contribution	Oscillator Strength f
4.2084 eV	HOMO-2→LUMO (2.92%)	0.0664
(294.61 nm)	HOMO→LUMO (68.79%)	
	HOMO→LUMO+1 (28.30%)	
4.4032 eV	HOMO-2→LUMO (19.90%)	0.0942
(281.58 nm)	HOMO–1→LUMO (17.89%)	
	HOMO→LUMO (21.63%)	
	HOMO→LUMO+1 (40.58%)	
4.5138 eV	HOMO–5→LUMO (13.74%)	0.0417
(274.68 nm)	HOMO-2→LUMO (5.72%)	
	HOMO-1→LUMO (67.09%)	
	HOMO→LUMO (6.81%)	
	HOMO→LUMO+1 (6.64%)	
4.8063 eV	HOMO-4→LUMO (8.84%)	0.0001
(257.96 nm)	HOMO→LUMO+2 (87.02%)	
	HOMO→LUMO+4 (4.14%)	
4.8662 eV	HOMO-7→LUMO+1 (2.13%)	0.0249
(254.79 nm)	HOMO-4 \rightarrow LUMO (53.58%)	
	HOMO–2→LUMO (2.28%)	
	HOMO→LUMO+2 (13.90%)	
	HOMO→LUMO+4 (28.11%)	
4.9274 eV	HOMO–5→LUMO+1 (14.84%)	0.0043
(251.62 nm)	HOMO-1 \rightarrow LUMO+1 (85.16%)	
	(

Table S26. TD-DFT Calculation Result of Gaf with Optimized Structure in the Ground S₀ State Calculated at the B3LYP/LANL2DZ Level

Table S27. TD-DFT Calculation Result of Inf with Optimized Structure in the
Ground S ₀ State Calculated at the B3LYP/LANL2DZ Level
Transition Energy

(Wave Length)	Assignment with Contribution	Oscillator Strength f
4.1757 eV	HOMO-1→LUMO (2.92%)	0.0668
(296.92 nm)	HOMO→LUMO (68.79%)	
	HOMO→LUMO+1 (28.30%)	
4.2503 eV	HOMO-3→LUMO (19.90%)	0.0083
(291.70 nm)	HOMO−1→LUMO (17.89%)	
	HOMO→LUMO (21.63%)	
	HOMO→LUMO+1 (40.58%)	
4.4296 eV	HOMO-2→LUMO (13.74%)	0.1120
(279.90 nm)	HOMO−1→LUMO (5.72%)	
	HOMO→LUMO (67.09%)	
	HOMO→LUMO+1 (6.81%)	
4.7062 eV	HOMO–5→LUMO+1 (8.84%)	0.0038
(263.45 nm)	HOMO–3→LUMO+1 (87.02%)	
	HOMO−1→LUMO+1 (4.14%)	
4.7444 eV	HOMO→LUMO+1 (2.13%)	0.0009
(261.33 nm)	HOMO→LUMO+2 (53.58%)	
4.8495 eV	HOMO−7→LUMO+1 (14.84%)	0.0263
(255.67 nm)	HOMO–4→LUMO (85.16%)	
	HOMO→LUMO+4 (85.16%)	

Transition Energy (Wave Length)	Assignment with Contribution	Oscillator Strength f
1.1827 eV	HOMO→LUMO (100%)	0.0001
(1048.36 nm)		
2.5772 eV	HOMO−1→LUMO (100%)	0.0007
(481.08 nm)		
2.8688 eV	HOMO-2→LUMO (14.12%)	0.0002
(432.17 nm)	HOMO→LUMO+1 (85.88%)	
2.8756 eV	HOMO-2→LUMO (85.36%)	0.0021
(431.15 nm)	HOMO→LUMO+1 (14.64%)	
3.1674 eV	HOMO-3→LUMO (100%)	0.0013
(391.43 nm)		
3.5904 eV	HOMO→LUMO+2 (76.68%)	0.0000
(345.32 nm)	HOMO→LUMO+3 (15.52%)	
	HOMO→LUMO+4 (7.80%)	
3.6908 eV	HOMO–4→LUMO (75.75%)	0.0310
(335.93 nm)	HOMO−1→LUMO+1 (16.89%)	
	HOMO→LUMO+4 (7.36%)	
3.7034 eV	HOMO-4→LUMO (6.99%)	0.0147
(334.78 nm)	HOMO→LUMO+2 (13.65%)	
	HOMO→LUMO+3 (3.72%)	
	HOMO→LUMO+4 (75.64%)	
3.7874 eV	HOMO→LUMO+2 (8.91%)	0.0040
(327.36 nm)	HOMO→LUMO+3 (80.36%)	
	HOMO→LUMO+4 (10.73%)	
4.1889 eV	HOMO-7→LUMO (2.15%)	0.0752
(295.98 nm)	HOMO–5→LUMO (94.19%)	
	HOMO−1→LUMO+3 (3.66%)	

Table S28. TD-DFT Calculation Result of Bf with Optimized Structure in theExcited S1 State Calculated at the TD-B3LYP/6-31G(d,p) Level

Table S29. TD-DFT Calculation Result of Alf with Optimized Structure in the Excited S₁ State Calculated at the TD-B3LYP/6-31G(d,p) Level

Transition Energy (Wave Length)	Assignment with Contribution	Oscillator Strength f
3.4269 eV	HOMO→LUMO (95.67%)	0.0960
(361.80 nm)	HOMO→LUMO+2 (4.33%)	
4.0808 eV	HOMO-2→LUMO (20.80%)	0.0158
(303.82 nm)	HOMO–1→LUMO (32.72%)	
	HOMO→LUMO+2 (46.48%)	

Table S30. TD-DFT Calculation Result of Gaf with Optimized Structure in the Excited S₁ State Calculated at the TD-B3LYP/6-31G(d,p) Level

Transition Energy (Wave Length)	Assignment with Contribution	Oscillator Strength f
3.4485 eV	HOMO→LUMO (96.28%)	0.0915
(359.53 nm)	HOMO \rightarrow LUMO+1 (3.72%)	
4.0376 eV	HOMO-5→LUMO (4.57%)	0.0009
(307.07 nm)	HOMO-3→LUMO (8.51%)	
	HOMO-1→LUMO (64.24%)	
	HOMO→LUMO+1 (18.79%)	
	HOMO→LUMO+2 (3.88%)	

Table S31. TD-DFT Calculation Result of Gaf with Optimized Structure in theExcited S1 State Calculated at the TD-B3LYP/LANL2DZ Level

Transition Energy (Wave Length)	Assignment with Contribution	Oscillator Strength f
3.4729 eV	HOMO→LUMO (95.37%)	0.1143
(357.00 nm)	HOMO→LUMO+1 (4.63%)	
3.9981 eV	HOMO-2→LUMO (16.27%)	0.0114
(310.10 nm)	HOMO–1→LUMO (34.30%)	
	HOMO→LUMO+1 (49.44%)	

Table S32. TD-DFT Calculation Result of Inf with Optimized Structure in the	
Excited S ₁ State Calculated at the TD-B3LYP/LANL2DZ Level	
Transition Energy	

Assignment with Contribution	Oscillator Strength f
HOMO−1→LUMO (8.87%)	0.0111
HOMO→LUMO (91.13%)	
HOMO-1→LUMO (28.99%)	0.0309
HOMO→LUMO (2.46%)	
HOMO→LUMO+1 (8.07%)	
HOMO→LUMO+2 (60.48%)	
HOMO-2→LUMO (2.87%)	0.1954
HOMO-1→LUMO (46.28%)	
HOMO−1→LUMO+2 (3.43%)	
HOMO→LUMO (4.71%)	
HOMO→LUMO+1 (6.94%)	
HOMO→LUMO+2 (35.76%)	
HOMO-1→LUMO (12.07%)	0.1422
HOMO→LUMO+1 (87.93%)	
	Assignment with Contribution HOMO-1→LUMO (8.87%) HOMO→LUMO (91.13%) HOMO-1→LUMO (28.99%) HOMO→LUMO (2.46%) HOMO→LUMO (2.46%) HOMO→LUMO+1 (8.07%) HOMO→LUMO+2 (60.48%) HOMO-2→LUMO (2.87%) HOMO-1→LUMO (46.28%) HOMO-1→LUMO (46.28%) HOMO→LUMO+2 (3.43%) HOMO→LUMO+1 (6.94%) HOMO→LUMO+2 (35.76%) HOMO-1→LUMO (12.07%) HOMO→LUMO+1 (87.93%)

State	Transition Energy (Wave Length)	Assignment with Contribution	Oscillator Strength f
triplet	1.1778 eV	HOMO(α) \rightarrow LUMO(α) (50.00%)	0.0000
	(1052.71 nm)	HOMO(β) \rightarrow LUMO(β) (50.00%)	
singlet	1.2210 eV	HOMO(α) \rightarrow LUMO(α) (50.00%)	0.0019
U	(1015.39 nm)	HOMO(β) \rightarrow LUMO(β) (50.00%)	
triplet	2.0833 eV	HOMO-1(α) \rightarrow LUMO(α) (50.00%)	0.0000
	(595.15 nm)	HOMO-1(β) \rightarrow LUMO(β) (50.00%)	
singlet	2.6589 eV	HOMO-1(α) \rightarrow LUMO(α) (50.00%)	0.0012
	(466.30 nm)	HOMO–1(β) \rightarrow LUMO(β) (50.00%)	
triplet	2.8251 eV	HOMO-2(α) \rightarrow LUMO(α) (50.00%)	0.0000
1	(438.87 nm)	HOMO-2(β) \rightarrow LUMO(β) (50.00%)	
triplet	2.8740 eV	HOMO(α) \rightarrow LUMO+1(α) (50.00%)	0.0000
	(431.41 nm)	HOMO(β) \rightarrow LUMO+1(β) (50.00%)	
singlet	2.8793 eV	HOMO– $2(\alpha) \rightarrow$ LUMO(α) (11.01%)	0.0006
	(430.61 nm)	HOMO(α) \rightarrow LUMO+1(α) (38.99%)	
		HOMO-2(β) \rightarrow LUMO(β) (11.01%)	
		HOMO(β) \rightarrow LUMO+1(β) (38.99%)	
singlet	2.8874 eV	HOMO-2(α) \rightarrow LUMO(α) (38.68%)	0.0031
U	(429.40 nm)	HOMO(α) \rightarrow LUMO+1(α) (11.32%)	
		HOMO-2(β) \rightarrow LUMO(β) (38.68%)	
		HOMO(β) \rightarrow LUMO+1(β) (11.32%)	
triplet	3.1302 eV	HOMO–4(α) \rightarrow LUMO(α) (35.15%)	0.0000
	(396.09 nm)	HOMO–3(α) \rightarrow LUMO(α) (14.85%)	
		HOMO–4(β) \rightarrow LUMO(β) (35.15%)	
		HOMO–3(β) \rightarrow LUMO(β) (14.85%)	
triplet	3.1670 eV	HOMO-4(α) \rightarrow LUMO(α) (14.48%)	0.0000
1	(391.49 nm)	HOMO-3(α) \rightarrow LUMO(α) (35.52%)	
		HOMO-4(β) \rightarrow LUMO(β) (14.48%)	
		HOMO– $3(\beta)$ →LUMO(β) (35.52%)	
aire - 1 - 4	2 1705 .37		0.0010
singlet	3.1/85 eV	$HOMO = 2(\alpha) \rightarrow LUMO(\alpha) (50.00\%)$	0.0018
	(390.07 nm)	π0M0−3(p)→L0M0(β) (30.00%)	
triplet	3.4018 eV	HOMO–5(α) \rightarrow LUMO(α) (47.11%)	0.0000
•	(364.47 nm)	HOMO-4(α) \rightarrow LUMO+3(α) (1.75%)	
		HOMO-1(α) \rightarrow LUMO+3(α) (1.14%)	

Table S33. TD-DFT Calculation Result of Bf with Optimized Structure in theExcited T1 State Calculated at the TD-UB3LYP/6-31G(d,p) Level

		HOMO-5(β) \rightarrow LUMO(β) (47.11%) HOMO-4(β) \rightarrow LUMO+3(β) (1.75%) HOMO-1(β) \rightarrow LUMO+3(β) (1.14%)	
triplet	3.5169 eV (352.54 nm)	HOMO(α)→LUMO+2(α) (21.18%) HOMO(α)→LUMO+3(α) (7.94%) HOMO(α)→LUMO+4(α) (20.88%) HOMO(β)→LUMO+2(β) (21.18%)	0.0000
		HOMO(β) \rightarrow LUMO+3(β) (7.94%)	
		HOMO(β) \rightarrow LUMO+4(β) (20.88%)	
triplet	3.6055 eV (343.87 nm)	HOMO-4(α) \rightarrow LUMO+1(α) (2.46%) HOMO-1(α) \rightarrow LUMO+1(α) (47.54%) HOMO-4(β) \rightarrow LUMO+1(β) (2.46%) HOMO-1(β) \rightarrow LUMO+1(β) (47.54%)	0.0000
singlet	3.6073 eV (343.71 nm)	HOMO(α)→LUMO+2(α) (40.42%) HOMO(α)→LUMO+3(α) (6.15%) HOMO(α)→LUMO+4(α) (3.42%) HOMO(β)→LUMO+2(β) (40.42%) HOMO(β)→LUMO+3(β) (6.15%) HOMO(β)→LUMO+4(β) (3.42%)	0.0001
triplet	3.6411 eV (340.51 nm)	HOMO(α)→LUMO+2(α) (25.90%) HOMO(α)→LUMO+4(α) (24.10%) HOMO(β)→LUMO+2(β) (25.90%) HOMO(β)→LUMO+4(β) (24.10%)	0.0000
singlet	3.7445 eV (331.11 nm)	HOMO-4(α) \rightarrow LUMO(α) (33.41%) HOMO-1(α) \rightarrow LUMO+1(α) (9.88%) HOMO(α) \rightarrow LUMO+4(α) (6.71%) HOMO-4(β) \rightarrow LUMO(β) (33.41%) HOMO-1(β) \rightarrow LUMO+1(β) (9.88%) HOMO(β) \rightarrow LUMO+4(β) (6.71%)	0.0275
singlet	3.7536 eV (330.31 nm)	HOMO-4(α)→LUMO(α) (5.29%) HOMO-1(α)→LUMO+1(α) (1.73%) HOMO(α)→LUMO+2(α) (4.66%) HOMO(α)→LUMO+4(α) (38.32%) HOMO-4(β)→LUMO(β) (5.29%) HOMO-1(β)→LUMO+1(β) (1.73%) HOMO(β)→LUMO+2(β) (4.66%) HOMO(β)→LUMO+4(β) (38.32%)	0.0202
triplet	3.7838 eV (327.67 nm)	HOMO(α) \rightarrow LUMO+2(α) (3.14%) HOMO(α) \rightarrow LUMO+3(α) (41.72%) HOMO(α) \rightarrow LUMO+4(α) (5.14%) HOMO(β) \rightarrow LUMO+2(β) (3.14%)	0.0000
		HOMO(β) \rightarrow LUMO+3(β) (41.72%)	
------------	---------------	--	--------
		HOMO(β) \rightarrow LUMO+4(β) (5.14%)	
• • •	2.0026 N		0.0055
singlet	3.8036 eV	HOMO(α) \rightarrow LUMO+2(α) (4.49%)	0.0055
	(325.97 nm)	HOMO(α) \rightarrow LUMO+3(α) (43.21%)	
		HOMO(α) \rightarrow LUMO+4(α) (2.31%)	
		HOMO(β) \rightarrow LUMO+2(β) (4.49%)	
		HOMO(β) \rightarrow LUMO+3(β) (43.21%)	
		HOMO(β) \rightarrow LUMO+4(β) (2.31%)	
triplet	3.9334 eV	HOMO-7(α) \rightarrow LUMO(α) (7.91%)	0.0000
	(315.21 nm)	HOMO-6(α) \rightarrow LUMO(α) (28.56%)	
	(010121 1111)	HOMO-5(α) \rightarrow LUMO(α) (3.03%)	
		HOMO-1(α) \rightarrow LUMO+2(α) (2.39%)	
		HOMO-1(α) \rightarrow LUMO+3(α) (5.53%)	
		HOMO-1(α) \rightarrow LUMO+5(α) (2.57%)	
		HOMO–7(β)→LUMO(β) (7.91%)	
		HOMO-6(β) \rightarrow LUMO(β) (28.56%)	
		HOMO–5(β)→LUMO(β) (3.03%)	
		HOMO-1(β) \rightarrow LUMO+2(β) (2.39%)	
		HOMO-1(β) \rightarrow LUMO+3(β) (5.53%)	
		HOMO-1(β) \rightarrow LUMO+5(β) (2.57%)	
tuin 1 a t	2.0511 N	$110MO(2(m)) \rightarrow 11MO(4(m))(14.710(1))$	0.0000
unpiet	3.9511 ev	$HOMO-3(\alpha) \rightarrow LUMO+4(\alpha) (14.71\%)$	0.0000
	(313.80 nm)	HOMO-2(α) \rightarrow LUMO+2(α) (27.09%)	
		HOMO-2(α) \rightarrow LUMO+3(α) (8.20%)	
		HOMO-3(β) \rightarrow LUMO+4(β) (14.71%)	
		HOMO-2(β) \rightarrow LUMO+2(β) (27.09%)	
		HOMO-2(β) \rightarrow LUMO+3(β) (8.20%)	

State	Transition Energy (Wave Length)	Assignment with Contribution	Oscillator Strength f
triplet	2.3444 eV	HOMO(α) \rightarrow LUMO(α) (50.00%)	0.0000
	(528.85 nm)	HOMO(β) \rightarrow LUMO(β) (50.00%)	
triplet	3.5832 eV	HOMO–3(α)→LUMO(α) (2.12%)	0.0000
	(346.02 nm)	HOMO– $2(\alpha) \rightarrow$ LUMO(α) (2.60%)	
		HOMO(α) \rightarrow LUMO+2(α) (45.28%)	
		HOMO–3(β)→LUMO(β) (2.12%)	
		HOMO-2(β) \rightarrow LUMO(β) (2.60%)	
		HOMO(β) \rightarrow LUMO+2(β) (45.28%)	
singlet	3.6386 eV	HOMO(α) \rightarrow LUMO(α) (43.13%)	0.1920
	(340.75 nm)	HOMO(α) \rightarrow LUMO+2(α) (6.87%)	
		HOMO(β) \rightarrow LUMO(β) (43.13%)	
		HOMO(β) \rightarrow LUMO+2(β) (6.87%)	
triplet	3.8429 eV	HOMO–5(α) \rightarrow LUMO(α) (12.24%)	0.0000
	(322.63 nm)	HOMO– $2(\alpha)$ \rightarrow LUMO(α) (4.31%)	
		HOMO-1(α) \rightarrow LUMO(α) (32.25%)	
		HOMO(α) \rightarrow LUMO+2(α) (1.20%)	
		HOMO–5(β)→LUMO(β) (12.24%)	
		HOMO–2(β)→LUMO(β) (4.31%)	
		HOMO–1(β)→LUMO(β) (32.25%)	
		HOMO(β) \rightarrow LUMO+2(β) (1.20%)	
triplet	3.8764 eV	HOMO–5(α)→LUMO+1(α) (6.52%)	0.0000
	(319.84 nm)	HOMO-3(α) \rightarrow LUMO+3(α) (5.30%)	
		HOMO-2(α) \rightarrow LUMO+1(α) (2.27%)	
		HOMO-2(α) \rightarrow LUMO+3(α) (5.94%)	
		HOMO-1(α) \rightarrow LUMO+1(α) (29.97%)	
		HOMO–5(β)→LUMO+1(β) (6.52%)	
		HOMO–3(β) \rightarrow LUMO+3(β) (5.30%)	
		HOMO–2(β) \rightarrow LUMO+1(β) (2.27%)	
		HOMO-2(β) \rightarrow LUMO+3(β) (5.94%)	
		HOMO-1(β) \rightarrow LUMO+1(β) (29.97%)	
triplet	3.9646 eV	HOMO–7(α) \rightarrow LUMO(α) (9.34eV)	0.0000
	(312.73 nm)	HOMO–4(α) \rightarrow LUMO(α) (21.46%)	
		HOMO–4(α) \rightarrow LUMO+2(α)(1.75%)	
		HOMO-3(α) \rightarrow LUMO+4(α) (1.11%)	
		$HOMO(\alpha) \rightarrow LUMO + 4(\alpha) (13.12\%)$	
		HOMO(α) \rightarrow LUMO+5(α) (3.21%)	
		HOMO- $/(\beta) \rightarrow LUMO(\beta) (9.34eV)$	
		HOMO-4(β) \rightarrow LUMO(β) (21.46%)	
		HOMO–4(β)→LUMO+2(β)(1.75%)	

Table S34. TD-DFT Calculation Result of Alf with Optimized Structure in theExcited T1 State Calculated at the TD-UB3LYP/6-31G(d,p) Level

		HOMO-3(β) \rightarrow LUMO+4(β) (1.11%)	
		HOMO(β) \rightarrow LUMO+4(β) (13.12%)	
		HOMO(β) \rightarrow LUMO+5(β) (3.21%)	
triplet	4.0521 eV	HOMO–5(α)→LUMO(α) (3.47%)	0.0000
	(305.97 nm)	HOMO–3(α) \rightarrow LUMO(α) (25.18%)	
		HOMO–2(α) \rightarrow LUMO(α) (17.23%)	
		HOMO(α) \rightarrow LUMO+2(α) (4.12%)	
		HOMO–5(β) \rightarrow LUMO(β) (3.47%)	
		HOMO–3(β) \rightarrow LUMO(β) (25.18%)	
		HOMO–2(β)→LUMO(β) (17.24%)	
		HOMO(β) \rightarrow LUMO+2(β) (4.12%)	
singlet	4.0862 eV	HOMO–5(α)→LUMO(α) (4.56%)	0.0148
-	(303.42 nm)	HOMO-2(α) \rightarrow LUMO(α) (6.87%)	
		HOMO–1(α) \rightarrow LUMO(α) (27.52%)	
		HOMO(α) \rightarrow LUMO+2(α) (11.04%)	
		HOMO–5(β)→LUMO(β) (4.56%)	
		HOMO–2(β)→LUMO(β) (6.87%)	
		HOMO–1(β) \rightarrow LUMO(β) (27.52%)	
		HOMO(β) \rightarrow LUMO+2(β) (11.04%)	

State	Transition Energy (Wave Length)	Assignment with Contribution	Oscillator Strength f
triplet	2.3700 eV	HOMO(α) \rightarrow LUMO(α) (50.00%)	0.0000
	(523.13 nm)	HOMO(β) \rightarrow LUMO(β) (50.00%)	
triplet	3.6103 eV	HOMO-3(α) \rightarrow LUMO(α) (4.59%)	0.0000
	(343.42 nm)	HOMO-1(α) \rightarrow LUMO(α) (1.15%)	
		HOMO(α) \rightarrow LUMO+1(α) (34.34%)	
		$HOMO(\alpha) \rightarrow LUMO + 2(\alpha) (9.92\%)$	
		HOMO–3(β) \rightarrow LUMO(β) (4.59%)	
		HOMO-1(β) \rightarrow LUMO(β) (1.15%)	
		HOMO(β) \rightarrow LUMO+1(β) (34.34%)	
		HOMO(β) \rightarrow LUMO+2(β) (9.92%)	
singlet	3.6754 eV	HOMO–1(α)→LUMO(α) (1.37%)	0.1923
	(337.33 nm)	HOMO(α) \rightarrow LUMO(α) (41.72%)	
		HOMO(α) \rightarrow LUMO+1(α) (5.59%)	
		HOMO(α) \rightarrow LUMO+2(α) (1.32%)	
		HOMO–1(β) \rightarrow LUMO(β) (1.37%)	
		HOMO(β) \rightarrow LUMO(β) (41.72%)	
		HOMO(β) \rightarrow LUMO+1(β) (5.59%)	
		HOMO(β) \rightarrow LUMO+2(β) (1.32%)	
triplet	3.7607 eV	HOMO–5(α)→LUMO(α) (7.87%)	0.0000
	(329.69 nm)	HOMO–1(α) \rightarrow LUMO(α) (40.95%)	
		HOMO(α) \rightarrow LUMO+1(α) (1.18%)	
		HOMO–5(β) \rightarrow LUMO(β) (7.87%)	
		HOMO–1(β) \rightarrow LUMO(β) (40.95%)	
		HOMO(β) \rightarrow LUMO+1(β) (1.18%)	
triplet	3.9315 eV	HOMO–5(α)→LUMO+1(α) (2.04%)	0.0000
	(315.36 nm)	HOMO–5(α) \rightarrow LUMO+2(α) (5.91%)	
		HOMO-2(α) \rightarrow LUMO+3(α) (14.04%)	
		HOMO-1(α) \rightarrow LUMO+1(α) (7.27%)	
		HOMO-1(α) \rightarrow LUMO+2(α) (20.73%)	
		HOMO–5(β) \rightarrow LUMO+1(β) (2.04%)	
		HOMO–5(β) \rightarrow LUMO+2(β) (5.91%)	
		HOMO-2(β) \rightarrow LUMO+3(β) (14.04%)	
		HOMO-1(β) \rightarrow LUMO+1(β) (7.27%)	
		HOMO−1(β)→LUMO+2(β) (20.73%)	
singlet	4.0005 eV	HOMO–5(α)→LUMO(α) (4.19%)	0.0016
	(309.92 nm)	HOMO–3(α)→LUMO(α) (1.51%)	
		HOMO–1(α) \rightarrow LUMO(α) (40.97%)	
		HOMO(α) \rightarrow LUMO+1(α) (3.33%)	
		HOMO–5(β) \rightarrow LUMO(β) (4.19%)	

Table S35. TD-DFT Calculation Result of Gaf with Optimized Structure in theExcited T1 State Calculated at the TD-UB3LYP/6-31G(d,p) Level

		HOMO-3(β) \rightarrow LUMO(β) (1.51%)	
		HOMO–1(β) \rightarrow LUMO(β) (40.97%)	
		HOMO(β) \rightarrow LUMO+1(β) (3.33%)	
triplet	4.0037 eV	HOMO–7(α)→LUMO(α) (9.05%)	0.0000
	(309.67 nm)	HOMO–5(α)→LUMO(α) (3.24%)	
		HOMO–4(α) \rightarrow LUMO(α) (16.05%)	
		HOMO–3(α) \rightarrow LUMO(α) (4.80%)	
		HOMO–3(α) \rightarrow LUMO+4(α) (1.87%)	
		HOMO(α) \rightarrow LUMO+4(α) (10.93%)	
		HOMO(α) \rightarrow LUMO+5(α) (4.05%)	
		HOMO–7(β)→LUMO(β) (9.05%)	
		HOMO–5(β)→LUMO(β) (3.24%)	
		HOMO–4(β) \rightarrow LUMO(β) (16.05%)	
		HOMO–3(β)→LUMO(β) (4.80%)	
		HOMO–3(β) \rightarrow LUMO+4(β) (1.87%)	
		HOMO(β) \rightarrow LUMO+4(β) (10.93%)	
		HOMO(β) \rightarrow LUMO+5(β) (4.05%)	
triplet	4.0815 eV	HOMO–7(α)→LUMO(α) (1.31%)	0.0000
	(303.77 nm)	HOMO-4(α) \rightarrow LUMO(α) (4.15%)	
		HOMO–3(α) \rightarrow LUMO(α) (40.75%)	
		HOMO(α) \rightarrow LUMO+1(α) (3.79%)	
		HOMO–7(β)→LUMO(β) (1.31%)	
		HOMO–4(β)→LUMO(β) (4.15%)	
		HOMO–3(β) \rightarrow LUMO(β) (40.75%)	
		HOMO(β) \rightarrow LUMO+1(β) (3.79%)	

State	Transition Energy (Wave Length)	Assignment with Contribution	Oscillator Strength f
triplet	2.3541 eV	HOMO(α) \rightarrow LUMO(α) (50.00%)	0.0000
	(526.68 nm)	HOMO(β) \rightarrow LUMO(β) (50.00%)	
triplet	3.5646 eV	HOMO–3(α) \rightarrow LUMO(α) (4.87%)	0.0000
	(347.82 nm)	HOMO(α) \rightarrow LUMO+1(α) (45.13%)	
		HOMO–3(β) \rightarrow LUMO(β) (4.87%)	
		HOMO(β) \rightarrow LUMO+1(β) (45.13%)	
singlet	3.7223 eV	HOMO(α) \rightarrow LUMO(α) (41.47%)	0.2300
	(333.08 nm)	HOMO(α) \rightarrow LUMO+1(α) (8.53%)	
		HOMO(β) \rightarrow LUMO(β) (41.47%)	
		HOMO(β) \rightarrow LUMO+1(β) (8.53%)	
triplet	3.7955 eV	HOMO–5(α)→LUMO(α) (10.77%)	0.0000
	(326.66 nm)	HOMO–4(α) \rightarrow LUMO(α) (1.12%)	
		HOMO–1(α)→LUMO(α) (38.11%)	
		HOMO–5(β)→LUMO(β) (10.77%)	
		HOMO–4(β)→LUMO(β) (1.12%)	
		HOMO–1(β) \rightarrow LUMO(β) (38.11%)	
triplet	3.8855 eV	HOMO–5(α)→LUMO+2(α) (7.09%)	0.0000
	(319.09 nm)	HOMO-2(α) \rightarrow LUMO+3(α) (14.45%)	
		HOMO-1(α) \rightarrow LUMO+2(α) (28.45%)	
		HOMO–5(β) \rightarrow LUMO+2(β) (7.09%)	
		HOMO–2(β) \rightarrow LUMO+3(β) (14.45%)	
		HOMO–1(β)→LUMO+2(β) (28.45%)	
triplet	3.9499 eV	HOMO–7(α) \rightarrow LUMO(α) (9.96%)	0.0000
	(313.89 nm)	HOMO–5(α) \rightarrow LUMO(α) (1.94%)	
		HOMO–4(α) \rightarrow LUMO(α) (16.28%)	
		HOMO–4(α) \rightarrow LUMO+1(α) (2.32%)	
		HOMO–3(α) \rightarrow LUMO+4(α) (2.16%)	
		HOMO(α) \rightarrow LUMO+4(α) (12.00%)	
		HOMO(α) \rightarrow LUMO+5(α) (5.34%)	
		HOMO–7(β) \rightarrow LUMO(β) (9.96%)	
		HOMO–5(β) \rightarrow LUMO(β) (1.94%)	
		HOMO–4(β) \rightarrow LUMO(β) (16.28%)	
		HOMO–4(β)→LUMO+1(β) (2.32%)	
		HOMO-3(β) \rightarrow LUMO+4(β) (2.16%)	
		HOMO(β) \rightarrow LUMO+4(β) (12.00%)	
		HOMO(β) \rightarrow LUMO+5(β) (5.34%)	
singlet	4.0156 eV	HOMO–5(α) \rightarrow LUMO(α) (3.94%)	0.0102
	(308.76 nm)	HOMO–3(α) \rightarrow LUMO(α) (4.97%)	

Table S36. TD-DFT Calculation Result of Gaf with Optimized Structure in the Excited T₁ State Calculated at the TD-UB3LYP/LANL2DZ Level

	HOMO-1(α) \rightarrow LUMO(α) (30.90%)	
	HOMO(α) \rightarrow LUMO+1(α) (10.19%)	
	HOMO–5(β)→LUMO(β) (3.94%)	
	HOMO–3(β) \rightarrow LUMO(β) (4.97%)	
	HOMO-1(β) \rightarrow LUMO(β) (30.90%)	
	HOMO(β) \rightarrow LUMO+1(β) (10.19%)	
4.0820 eV	HOMO–5(α)→LUMO(α) (2.69%)	0.0000
(303.74 nm)	HOMO–3(α) \rightarrow LUMO(α) (42.60%)	
	HOMO(α) \rightarrow LUMO+1(α) (4.71%)	
	HOMO–5(β) \rightarrow LUMO(β) (2.69%)	
	HOMO–3(β) \rightarrow LUMO(β) (42.60%)	
	HOMO(β) \rightarrow LUMO+1(β) (4.71%)	
4.1313 eV	HOMO–5(α)→LUMO(α) (3.73%)	0.1391
(300.11 nm)	HOMO–3(α) \rightarrow LUMO(α) (10.72%)	
	HOMO–1(α) \rightarrow LUMO(α) (11.30%)	
	HOMO(α) \rightarrow LUMO(α) (6.52%)	
	HOMO(α) \rightarrow LUMO+1(α) (17.74%)	
	HOMO–5(β) \rightarrow LUMO(β) (3.73%)	
	HOMO–3(β) \rightarrow LUMO(β) (10.72%)	
	HOMO–1(β) \rightarrow LUMO(β) (11.30%)	
	HOMO(β) \rightarrow LUMO(β) (6.52%)	
	HOMO(β) \rightarrow LUMO+1(β) (17.74%)	
	4.0820 eV (303.74 nm) 4.1313 eV (300.11 nm)	$\begin{array}{llllllllllllllllllllllllllllllllllll$

State	Transition Energy (Wave Length)	Assignment with Contribution	Oscillator Strength f
triplet	2.3577 eV	HOMO(α) \rightarrow LUMO(α) (50.00%)	0.0000
	(525.87 nm)	HOMO(β) \rightarrow LUMO(β) (50.00%)	
triplet	3.5252 eV	HOMO–4(α) \rightarrow LUMO(α) (1.14%)	0.0000
	(351.71 nm)	HOMO–2(α) \rightarrow LUMO(α) (3.35%)	
		HOMO–1(α) \rightarrow LUMO(α) (42.47%)	
		$HOMO(\alpha) \rightarrow LUMO+1(\alpha) (1.10\%)$	
		HOMO(α) \rightarrow LUMO+2(α) (1.94%)	
		HOMO–4(β) \rightarrow LUMO(β) (1.14%)	
		HOMO–2(β) \rightarrow LUMO(β) (3.35%)	
		HOMO–1(β)→LUMO(β) (42.47%)	
		$HOMO(\beta) \rightarrow LUMO+1(\beta) (1.10\%)$	
		HOMO(β) \rightarrow LUMO+2(β) (1.94%)	
triplet	3 5909 eV	HOMO-3(α) \rightarrow LUMO(α) (4 54%)	0.0000
uipiet	(345.27 nm)	HOMO $-1(\alpha) \rightarrow LUMO(\alpha)$ (2.99%)	0.0000
	(0.1012) 1111)	HOMO(α) \rightarrow LUMO+1(α) (15.88%)	
		$HOMO(\alpha) \rightarrow LUMO + 2(\alpha) (26.59\%)$	
		$HOMO = 3(B) \rightarrow LUMO(B) (4.54\%)$	
		$HOMO-1(\beta) \rightarrow LUMO(\beta) (2.99\%)$	
		HOMO(β) \rightarrow LUMO+1(β) (15.88%)	
		HOMO(β) \rightarrow LUMO+2(β) (26.59%)	
singlet	3.6837 eV	HOMO–1(α) \rightarrow LUMO(α) (8.48%)	0.1950
	(336.57 nm)	HOMO(α) \rightarrow LUMO(α) (35.54%)	
		$HOMO(\alpha) \rightarrow LUMO + 1(\alpha) (2.47\%)$	
		HOMO(α) \rightarrow LUMO+2(α) (3.51%)	
		HOMO– $I(\beta) \rightarrow LUMO(\beta)$ (8.48%)	
		HOMO(β) \rightarrow LUMO(β) (35.54%)	
		HOMO(β) \rightarrow LUMO+1(β) (2.47%)	
		HOMO(β) \rightarrow LUMO+2(β) (3.51%)	
singlet	3.8166 eV	HOMO-2(α) \rightarrow LUMO(α) (1.95%)	0.0384
U	(324.86 nm)	HOMO-1(α) \rightarrow LUMO(α) (39.02%)	
		HOMO(α) \rightarrow LUMO(α) (5.15%)	
		HOMO(α) \rightarrow LUMO+1(α) (1.52%)	
		HOMO(α) \rightarrow LUMO+2(α) (2.37%)	
		HOMO–2(β)→LUMO(β) (1.95%)	
		HOMO–1(β) \rightarrow LUMO(β) (39.02%)	
		HOMO(β) \rightarrow LUMO(β) (5.15%)	
		HOMO(β) \rightarrow LUMO+1(β) (1.52%)	
		HOMO(β) \rightarrow LUMO+2(β) (2.37%)	
triplat	3 8655 eV	HOMO_4(a) \rightarrow UMO $\pm 1(a)$ (2.0404)	0.0000
urpici	5.0055 6 4	1000 + (u) + 1000 + 1(u) (2.9470)	0.0000

Table S37. TD-DFT Calculation Result of Inf with Optimized Structure in the Excited T₁ State Calculated at the TD-UB3LYP/LANL2DZ Level

	(320.74 nm)	HOMO-4(α) \rightarrow LUMO+2(α) (1.79%)	
		HOMO–4(α)→LUMO+3(α) (6.88%)	
		HOMO-3(α) \rightarrow LUMO+1(α) (2.06%)	
		HOMO-3(α) \rightarrow LUMO+3(α) (2.25%)	
		HOMO-2(α) \rightarrow LUMO+1(α) (8.69%)	
		HOMO-2(α) \rightarrow LUMO+2(α) (4.16%)	
		HOMO-2(α) \rightarrow LUMO+3(α) (3.77%)	
		HOMO-1(α) \rightarrow LUMO+1(α) (11.47%)	
		HOMO-1(α) \rightarrow LUMO+2(α) (5.99%)	
		$HOMO - 4(B) \rightarrow LUMO + 1(B) (2.94\%)$	
		$HOMO - 4(\beta) \rightarrow LUMO + 2(\beta) (1.79\%)$	
		HOMO-4(β) \rightarrow LUMO+3(β) (6.88%)	
		$HOMO_3(\beta) \rightarrow LUMO_{+3}(\beta) (0.00\%)$	
		$HOMO_3(\beta) \rightarrow LUMO_{+1}(\beta) (2.00\%)$	
		$HOMO_2(\beta) \rightarrow LUMO_1(\beta) (2.25\%)$	
		$HOMO_2(\beta) \rightarrow LUMO_1(\beta) (8.09\%)$	
		$HOMO = 2(P) \rightarrow LUMO + 2(P) (4.10\%)$	
		$HOMO = 2(p) \rightarrow LUMO + 3(p) (3.77\%)$	
		$HOMO - I(p) \rightarrow LUMO + I(p) (11.47\%)$	
		HOMO-1(β) \rightarrow LUMO+2(β) (5.99%)	
triplet	3 9672 eV	HOMO-7(α) \rightarrow LUMO(α) (11 33%)	0 0000
unpier	(312.53 nm)	HOMO-5(α) \rightarrow LUMO(α) (18.91%)	0.0000
	(312.33 mil)	$HOMO_{-5(\alpha)} \rightarrow IUMO_{+2(\alpha)}(1.43\%)$	
		$HOMO_3(q) \rightarrow LUMO_4(q) (1.45\%)$	
		HOMO(α) \rightarrow LUMO+4(α) (10.27%)	
		$HOMO(\alpha) \rightarrow LUMO + 4(\alpha) (10.27\%)$	
		$HOMO(\alpha) \rightarrow LOMO+3(\alpha) (0.48\%)$	
		$HOMO = 7(p) \rightarrow LOMO(p) (11.55\%)$	
		HOMO $-5(p) \rightarrow LOMO(p) (18.91\%)$	
		$HOMO = 3(p) \rightarrow LUMO + 2(p) (1.43\%)$	
		$HOMO = 3(p) \rightarrow LUMO + 4(p) (1.59\%)$	
		HOMO(β) \rightarrow LUMO+4(β) (10.27%)	
		HOMO(β)→LUMO+5(β) (6.48%)	
triplet	4.0642 eV	HOMO-3(α) \rightarrow LUMO(α) (32.10%)	0 0000
uipiet	(305.06 nm)	HOMO-2(α) \rightarrow LUMO(α) (12.35%)	0.0000
	(303.00 mm)	HOMO $(\alpha) \rightarrow UMO(\alpha) (12.35\%)$	
		HOMO(a) \rightarrow LUMO+1(a) (2.21%) HOMO(a) \rightarrow LUMO+2(a) (3.34%)	
		HOMO $(a) \rightarrow LOMO + 2(a) (3.54\%)$	
		$HOMO = 3(\beta) \rightarrow LOMO(\beta) (32.10\%)$	
		$HOMO(R) \rightarrow LOMO(p) (12.35\%)$	
		$HOMO(p) \rightarrow LOMO+1(p) (2.21\%)$	
		$HOMO(p) \rightarrow LOMO+2(p) (5.54\%)$	
singlet	4.1024 eV	HOMO-3(α) \rightarrow LUMO(α) (12.52%)	0.1356
0	(302.23 nm)	HOMO-2(α) \rightarrow LUMO(α) (4.22%)	
	· · · · · · · · · · · · · · · · · · ·	$HOMO(\alpha) \rightarrow LUMO(\alpha) (6.27\%)$	
		$HOMO(\alpha) \rightarrow LUMO + 1(\alpha) (10.53\%)$	
		$HOMO(\alpha) \rightarrow LUMO + 2(\alpha) (16.46\%)$	
		$HOMO - 3(B) \rightarrow LUMO(B) (12.52\%)$	
		1101110 C(p) (12102/0)	

		HOMO–2(β)→LUMO(β) (4.22%)	
		HOMO(β) \rightarrow LUMO(β) (6.27%)	
		HOMO(β) \rightarrow LUMO+1(β) (10.53%)	
		HOMO(β) \rightarrow LUMO+2(β) (16.46%)	
triplet	4.1537 eV	HOMO–7(α) \rightarrow LUMO(α) (14.48%)	0.0000
	(298.49 nm)	HOMO-6(α) \rightarrow LUMO(α) (2.32%)	
		HOMO–5(α) \rightarrow LUMO(α) (19.86%)	
		HOMO–5(α) \rightarrow LUMO+2(α) (1.39%)	
		HOMO(α) \rightarrow LUMO+4(α) (2.06%)	
		HOMO(α) \rightarrow LUMO+5(α) (9.89%)	
		HOMO–7(β) \rightarrow LUMO(β) (14.48%)	
		HOMO– $6(\beta) \rightarrow$ LUMO(β) (2.32%)	
		HOMO–5(β) \rightarrow LUMO(β) (19.86%)	
		HOMO-5(β) \rightarrow LUMO+2(β) (1.39%)	
		HOMO(β) \rightarrow LUMO+4(β) (2.06%)	
		HOMO(β) \rightarrow LUMO+5(β) (9.89%)	

Figure S34. Molecular orbital coefficients on boron and nitrogen atoms of (a) LUMO and (b) LUMO+1 of **Bf** in the ground S₀ state calculated at the B3LYP/6-31G(d,p) level.

Figure S35. Molecular orbital coefficients on aluminum and nitrogen atoms of (a) LUMO and (b) LUMO+2 of **Alf** in the ground S₀ state calculated at the B3LYP/6-31G(d,p) level.

Figure S36. Molecular orbital coefficients on gallium and nitrogen atoms of (a) LUMO and (b) LUMO+1 of **Gaf** in the ground S₀ state calculated at the B3LYP/6-31G(d,p) level.

Mixing of the Wavefunction through the Spin–Orbit Interaction.

The Hamiltonian which represents the spin-orbit interaction is

$$\mathbf{H}_{\rm SO} = \frac{e^2}{2m^2c^2} \sum_{i=1}^{2n} \sum_{N} \frac{Z_N \mathbf{L}_{Ni}}{r_{Ni}^3} \cdot \mathbf{S}_i \qquad (1)$$

where Z_N is the atomic number of nucleus N, r_{Ni} the distance from nucleus N to electron i, \mathbf{L}_{Ni} the orbital angular momentum operator for electron i with the origin at the nucleus N, and \mathbf{S}_i the spin angular momentum operator for electron i.

The wavefunction for the ground S₀ state is

 ${}^{1}\Phi_{0} = \left\| \varphi_{1} \alpha \varphi_{1} \beta \cdots \varphi_{n} \alpha \varphi_{n} \beta \right\|$ (2)

and those for the triplet excited T_i state are

$${}^{3}\Phi_{ik:1} = \left\| \varphi_{1} \alpha \varphi_{1} \beta \cdots \varphi_{i} \alpha \varphi_{k} \alpha \cdots \varphi_{n} \alpha \varphi_{n} \beta \right\|$$
(3-a)

$${}^{3}\Phi_{ik:0} = \left\| \varphi_{1} \alpha \varphi_{1} \beta \cdots \varphi_{i} \varphi_{k} \frac{1}{\sqrt{2}} (\alpha \beta + \beta \alpha) \cdots \varphi_{n} \alpha \varphi_{n} \beta \right\|$$
(3-b)

$${}^{3}\Phi_{ik:-1} = \left\| \varphi_{1} \alpha \varphi_{1} \beta \cdots \varphi_{i} \beta \varphi_{k} \beta \cdots \varphi_{n} \alpha \varphi_{n} \beta \right\|$$
(3-c)

where e.g., φ_i stands for the occupied *i*-th MO and α and β for spin parts. The subscript *ik* stands for the triplet excitation from the *i*-th MO to the *k*-th one. These spin sublevels of the triplet states are degenerate, as a matter of course.

Considering the first-order perturbation correction, the wavefunction for the T_1 state is described by

$$\Psi_{T_{l}} = {}^{3}\Phi_{T_{l}} + \sum_{k} \frac{\left\langle {}^{1}\Phi_{k} \left| \hat{H}_{SO} \right| {}^{3}\Phi_{T_{l}} \right\rangle}{\Delta^{3}E_{k,T_{l}}} {}^{1}\Phi_{k} = {}^{3}\Phi_{T_{l}} + \alpha^{1}\Phi_{k}$$
(4)

where $\Delta^3 E_{k,T_1}$ is the energy difference between the S_k to the T₁ sates, and α the mixing coefficient.

Herein we confine ourselves to the vertical electronic transition from the S₀ to the T₁ state (namely k = 0 in equation (4)), and hence the HOMO and the LUMO of the ground S₀ state with the optimized structure in the excited T₁ state were adopted for calculation of the matrix element in α . Only one-center terms as to the group 13 elements was considered as usual.

The α_p values (p = 1, 0, -1) are given for the three kind of ${}^{3}\Phi_{T_{1:p}}$ (p = 1, 0, -1); see equations (3-a)-(3-c)) respectively, as shown in Table S38. In Table 8 of the main text, we omitted the complex α_1 and α_{-1} values.

		(1-1) = (1-1	
	α_1 (×10 ⁻⁶)	$\alpha_0 (\times 10^{-6})$	α_{-1} (×10 ⁻⁶)
Bf ^a	-5.21-5.21 <i>i</i>	7.34	5.21–5.21 <i>i</i>
\mathbf{Alf}^{a}	-2.99-2.99i	4.23	2.99–2.99 <i>i</i>
Cəfa	45.4+45.4 <i>i</i>	-64.2	-45.4+45.4i
Gal	$(-15.7-15.7i)^b$	$(22.2)^{b}$	$(15.7 - 15.7i)^b$
\mathbf{Inf}^b	-64.4-64.4i	91.1	64.4–64.4 <i>i</i>

Table S38. Mixing Coefficients a_p Values (p = 1, 0, -1) of Bf, Alf, Gaf and Inf

^{*a*}Calculated at the TD-UB3LYP/6-31G(d,p) level. ^{*b*}Calculated at the TD-UB3LYP/LANL2DZ level.

References

(1) T. Higashi, *ABSCOR. Program for Absorption Correction*.; Rigaku Corporation: Japan, **1995**.

(2) G. M. Sheldrick, SHELX-97. Programs for Crystal Structure Analysis.; University of Göttingen: Germany, **1997**.

(3) Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.;

Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. J. Appl. Cryst. **1999**, *32*, 115.

(4) Yadokari-XG, Software for Crystal Structure Analyses, Wakita, K. (**2001**); Release of Software (Yadokari-XG 2009) for Crystal Structure Analyses, Kabuto, C.; Akine, S.;

Nemoto, T.; Kwon, E. J. Cryst. Soc. Jpn., 2009, 51, 218.

(5) Farrugia, L. J. J. Appl. Cryst. 1997, 30, 565.

(6) Chan, K. L.; Watkins, S. E.; Mak, C. S. K.; McKiernan, M. J.; Towns, C. R.; Pascu, S. I.; Holmes, A. B. *Chem. Commun.* **2005**, 5766.

(7) (a) Yoshifuji, M.; Kamijo, K.; Toyota, K. *Tetrahedron Lett.* **1994**, *35*, 3971. (b) Matsumoto, T.; Tanaka, K.; Chujo, Y. J. Am. Chem. Soc. **2013**, *135*, 4211.

(8) Bagh, B.; Schatte, G.; Green, J. C.; Müller, J. J. Am. Chem. Soc. 2012, 134, 7924.

(9) (a) Bagh, B.; Sadeh, S.; Green, J. C.; Müller, J. Chem. Eur.—J. 2014, 20, 2318.

(10) Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, M. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2009**. (b) NBO Version 3.1, Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. Gaussian, Inc., Wallingford CT, **2009**.