Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

Pt NPs immobilized on core-shell magnetite microparticles: a novel and highly-efficient catalyst for the selective aerobic oxidation of ethanol and glycerol in water

Yu Long, Kun Liang, Jianrui Niu, Bing Yuan, Jiantai Ma*

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou Gansu 730000, PR China.

E-mail address: majiantai@lzu.edu.cn

 $\label{eq:Fig.S1Nitrogen} Fig.~S1~Nitrogen~adsorption—desorption~isotherms~the~catalysts~(a),~Pt/Fe_3O_4@PPy;~(b),~Pt/Fe_3O_4@SiO_2;~(d),~Pt/~C.$

Table S1 Analytical, textural, porosity data and catalytic activities of different catalysts^a.

Catalyst	Mass fraction of Pt (%)	BET surface area (m ² g ⁻¹)	Acetic acid yield (%)	Glyceric acid yield (%)
Pt/Fe ₃ O ₄ @PPy	4.52%	24.8449	88	55.4
Pt/Fe ₃ O ₄ @C	2.89%	5.4265	85	53.1
Pt/Fe ₃ O ₄ @SiO ₂	1.17%	13.5121	56	34.5
Pt/C	5%	387.7301	82	47.1

athe amount of added platinum in the oxidation reactions are the same (i.e. alcohol/platinum = 200 mol/mol)