Electronic Supplementary Information

Redox inactive metal ions triggered *N*-dealkylation by iron catalyst with dioxygen activation: a lesson from lipoxygenases

Jisheng Zhang, Yujuan Wang, Nengchao Luo, Zhuqi Chen, Kangbing Wu, Guochuan Yin*

School of Chemistry and Chemical Engineering, Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China;

AUTHOR EMAIL ADDRESS (gyin@hust.edu.cn)

Contents

Figure S1. GC-MS analysis of *N*,*N*-dimethylaniline oxidation.

Figure S2. NMR data of the complicated products of DMA catalyzed by [Fe(TPA)Cl₂]Cl with Zn(OTf)₂.

Figure S3. GC-MS analysis of *p*-Me-DMA oxidation.

Figure S4. NMR data of N-demethylation and methyl oxidation products of the substituted *N*,*N*-dimethylanilines.

Figure S5. UV-Vis spectra of $[Fe(TPA)Cl_2]Cl$ or $Zn(OTf)_2$ alone with DMA in the control experiments.

Figure S6. Mass spectra of (a) $[Fe(TPA)Cl_2]Cl 2 \text{ mM}$; (b) stoichiometric reaction solution of $[Fe(TPA)Cl_2]Cl 2 \text{ mM}$ and $Zn(OTf)_2 4 \text{ mM}$ with DMA 4mM in acetonitrile.

Figure S7. UV-Vis spectrum of ABTS radical cation.

Figure S8. Zn²⁺ triggered electron transfer from ferrocence to [Fe(TPA)Cl₂]Cl.

Figure S9. Kinetics for the oxidation of *p*-Me-DMA catalyzed by $[Fe(TPA)Cl_2]Cl$ or $Fe(TPA)Cl_2$ with $Zn(OTf)_2$.

Figure S10. UV-Vis spectra of the acetonitrile solution of [Fe(TPA)Cl₂]Cl with Zn(OTf)₂.

Figure S11. UV-Vis absorbance change by adding different Lewis acids to [Fe(TPA)Cl₂]Cl.

Figure S12. Kinetics for the oxidation of DMA catalyzed by $[Fe(TPA)Cl_2]Cl$ with Al(OTf)₃ or ZnCl₂.

Figure S13. UV-Vis spectra of the acetonitrile solution of $Fe(TPA)(CH_3CN)_2(OTf)_2$ with $Zn(OTf)_2$.

Figure S14. Mass spectra of (a) $Fe(TPA)(CH_3CN)_2(OTf)_2$ 2 mM , LiCl 2 mM; (b) $Fe(TPA)(CH_3CN)_2(OTf)_2$ 2 mM, LiCl 2 mM, Zn(OTf)_2 4 mM in acetonitrile.

Figure S15. UV-Vis absorbance change of Fe(TPA)Cl₂ and Zn(OTf)₂ under 1 atm O₂.

Figure S1. GC-MS analysis of *N*,*N*-dimethylaniline oxidation. Reaction conditions: acetonitrile 5 mL, DMA 100 mM, [Fe(TPA)Cl₂]Cl 2 mM, Zn(OTf)₂ 4 mM, dioxygen balloon, 313 K, 2 h.

Figure S1-1. Mass spectrum of N-methylaniline product in GC-MS analysis.

Figure S1-2. Mass spectrum of N-methylformanilide produc in GC-MS analysis.

Figure S2 NMR data of the complicated products of DMA catalyzed by [Fe(TPA)Cl₂]Cl with Zn(OTf)₂. Reaction conditions: acetonitrile 100 mL, DMA 100 mM, [Fe(TPA)Cl₂]Cl 2 mM, Zn(OTf)₂ 4 mM, dioxygen balloon, 313 K, 10 h.

Figure S2-1.¹H NMR spectrum (400 MHz) of isolated 4,4-methylenebis-(*N*,*N*-dimethylaniline) (**III**) in CDCl₃.

Figure S2-2.¹H NMR spectrum (400MHz) of isolated tetramethylbenzidine (IV) in CDCl₃.

Figure S2-3. ¹³C NMR spectrum (400 MHz) of isolated tetramethylbenzidine (IV) in CDCl₃.

Figure S2-4.¹H NMR spectrum (400 MHz) of isolated trimer (V) in CDCl₃.

Figure S2-5. ¹³C NMR spectrum (400 MHz) of isolated trimer (V) in CDCl₃.

Figure S2-6. ¹H NMR spectrum (400 MHz) of isolated trimer (VI) in DMSO-d₆.

Figure S2-7. ¹H NMR spectrum (400 MHz) of isolated trimer (VII) in acetone-d₆.

Figure S2-8. ¹H NMR spectrum (400 MHz) of isolated trimer (VII) in CDCl₃.

Figure S3. GC-MS analysis of *p*-Me-DMA oxidation. Reaction conditions: acetonitrile 5 mL, *p*-Me-DMA 100 mM, [Fe(TPA)Cl₂]Cl 2 mM, Zn(OTf)₂ 4 mM, dioxygen balloon, 313 K, 2 h.

Figure S3-1. Mass graph of *p*-methyl-*N*-methylaniline product in GC-MS analysis.

Figure S3-2. Mass graph of *p*-methyl-*N*-methylformamide in GC-MS analysis.

Figure S4. NMR data of N-demethylation and methyl oxidation products of the substituted *N*,*N*-dimethylanilines. Reaction conditions: acetonitrile 100 mL, substrate 100 mM, $[Fe(TPA)Cl_2]Cl_2$ mM, Zn(OTf)₂ 4 mM, dioxygen balloon, 313 K,10 h.

Figure S4-1. ¹H NMR spectrum (400 MHz) of isolated *p*-methyl-*N*-methylformamide in CDCl₃.

Figure S4-2. ¹H NMR spectrum (400 MHz) of isolated *para*-bromo-*N*-methylformanilide in CDCl₃.

Figure S4-3. ¹³C NMR spectrum (400 MHz) of isolated *p*-bromo-*N*-methylformanilide in CDCl₃.

Figure S4-4. ¹H NMR spectrum (400 MHz) of isolated *p*-cyano-*N*-methylaniline in CDCl₃.

Figure S4-5. ¹³C NMR spectrum (400 MHz) of isolated *p*-cyano-*N*-methylaniline in CDCl₃.

Figure S4-6. ¹H NMR spectrum (400 MHz) of isolated *p*-cyano-*N*-methylformanilide in CDCl₃.

Figure S4-7. ¹³C NMR spectrum (400 MHz) of isolated *p*-cyano-*N*-methylformanilide in CDCl₃.

Figure S4-8. ¹H NMR spectrum (400 MHz) of isolated methyl group oxidation product from N,N,2,4,6-pentamethylaniline in CDCl₃.

Figure S4-9. ¹³C NMR spectrum (400MHz) of isolated methyl group oxidation product from N, N, 2, 4, 6-pentamethylaniline in CDCl₃.

Figure S5. UV-Vis spectra of $[Fe(TPA)Cl_2]Cl$ or $Zn(OTf)_2$ alone with DMA in the control experiments.

Conditions: solvent, acetonitrile, 298 K. (a) [Fe(TPA)Cl₂]Cl 0.1 mM (black line); DMA 0.1 mM (red line); Zn(OTf)₂ 0.2 mM (blue line); (b) [Fe(TPA)Cl₂]Cl 0.1mM, DMA 0.1 mM, 0 min (black line); [Fe(TPA)Cl₂]Cl 0.1 mM, DMA 0.1 mM, 15 min (red line); Zn(OTf)₂ 0.2mM, DMA 0.1 mM, 0 min (blue line); Zn(OTf)₂ 0.2 mM, DMA 0.1 mM, 15 min (green line).

Figure S6. Mass spectra of (a) $[Fe(TPA)Cl_2]Cl \ 2 \ mM$; (b) stoichiometric reaction solution of $[Fe(TPA)Cl_2]Cl \ 2 \ mM$ and $Zn(OTf)_2 \ 4 \ mM$ with DMA 4mM in acetonitrile.

Figure S7. UV-Vis spectrum of ABTS radical cation (cited from reference: Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. *Free. Radical. Bio. Med.* **1999**, *26*, 1231-1237.)

Figure S8. Zn²⁺ triggered electron transfer from ferrocence to [Fe(TPA)Cl₂]Cl.

Conditions: solvent, acetonitrile, 298 K. Ferrocence 0.1 mM (black line); [Fe(TPA)Cl₂]Cl 0.1 mM (red line); [Fe(TPA)Cl₂]Cl 0.1 mM, ferrocence 0.1 mM (blue line); [Fe(TPA)Cl₂]Cl 0.1 mM, Zn(OTf)₂ 0.2 mM, ferrocence, 0.1 mM (green line).

Figure S9. Kinetics for the oxidation of *p*-Me-DMA catalyzed by $[Fe(TPA)Cl_2]Cl$ or $Fe(TPA)Cl_2$ with $Zn(OTf)_2$.

Conditions: acetonitrile 5 mL, *p*-Me-DMA 100 mM, dioxygen balloon, 313 K. [Fe(TPA)Cl₂]Cl 2 mM, Zn(OTf)₂ 4 mM (black line); Fe(TPA)Cl₂ 2 mM, Zn(OTf)₂ 4 mM (red line).

Figure S10. UV-Vis spectra of the acetonitrile solution of [Fe(TPA)Cl₂]Cl with Zn(OTf)₂.

Conditions: solvent, acetonitrile, 298 K. [Fe(TPA)Cl₂]Cl 0.1 mM (black line); [Fe(TPA)Cl₂]Cl 0.1 mM, Zn(OTf)₂ 0-0.8 mM.

Figure S11. UV-Vis absorbance change by adding different Lewis acids to [Fe(TPA)Cl₂]Cl.

Conditions: solvent, acetonitrile, 298 K. [Fe(TPA)Cl₂]Cl 0.1 mM (black line); [Fe(TPA)Cl₂]Cl 0.1 mM, Mg(OTf)₂ 0.2 mM (red line); [Fe(TPA)Cl₂]Cl 0.1 mM, Sc(OTf)₃ 0.2 mM (blue line); Fe(TPA)Cl₂]Cl 0.1 mM, Ca(OTf)₂ 0.2 mM (olive line); [Fe(TPA)Cl₂]Cl 0.1 mM, Al(OTf)₃ 0.2 mM (purple line); [Fe(TPA)Cl₂]Cl 0.1 mM, ZnCl₂ 0.2 mM (green line).

Figure S12. Kinetics for the oxidation of DMA catalyzed by $[Fe(TPA)Cl_2]Cl$ with Al(OTf)₃ or ZnCl₂.

Conditions: acetonitrile 5 mL, DMA 100 mM, dioxygen balloon, 313 K. [Fe(TPA)Cl₂]Cl 2 mM (black line); [Fe(TPA)Cl₂]Cl 2 mM, Al(OTf)₃ 4 mM (red line); [Fe(TPA)Cl₂]Cl 2 mM, ZnCl₂ 4 mM (blue line).

Figure S13. UV-Vis spectra of the acetonitrile solution of Fe(TPA)(CH₃CN)₂(OTf)₂ with Zn(OTf)₂.

Conditions: solvent, acetonitrile, 298 K. Fe(TPA)(CH₃CN)₂(OTf)₂ 0.1 mM (black line); Fe(TPA)(CH₃CN)₂(OTf)₂ 0.1 mM, Zn(OTf)₂ 0.2 mM (red line).

Figure S14. Mass spectra of (a) $Fe(TPA)(CH_3CN)_2(OTf)_2 2 \text{ mM}$, LiCl 2 mM; (b) $Fe(TPA)(CH_3CN)_2(OTf)_2 2 \text{ mM}$, LiCl 2 mM, Zn(OTf)_2 4 mM in acetonitrile.

Figure S15. UV-Vis absorbance change of Fe(TPA)Cl₂ and Zn(OTf)₂ under 1 atm O₂.

Conditions: solvent, acetonitrile, Fe(TPA)Cl₂ 0.1 mM, Zn(OTf)₂ 0.2 mM, 15 min/scan, 298 K.