Supporting Information

Gallium and indium complexes containing the bis(imino)phenoxide ligand: synthesis, structural characterization and ROP studies

Swarup Ghosh^a, Ravikumar R. Gowda^{a†}, Rajamony Jagan^a and Debashis Chakraborty^{b*}

^aDepartment of Chemistry, Indian Institute of Technology Madras, Chennai-600 036, Tamil Nadu, India

^bDepartment of Chemistry, Indian Institute of Technology Patna, Patna-800 013, Bihar, India

**Tel:* +91-612-2552171. *Fax:* +91-612-2277383. *E-mail: dc@iitp.ac.in; debashis.iitp@gmail.com* (*D. Chakraborty*).

[†]Current address: Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States.

Fig. S1. ¹H NMR (400 MHz, CDCl₃) spectrum of 1

Fig. S2. ¹³C NMR (100 MHz, CDCl₃) spectrum of 1

Fig. S3. ESI-Mass spectrum of 1

Fig. S4. ¹H NMR (400 MHz, CDCl₃) spectrum of 2

Fig. S5. ¹³C NMR (100 MHz, CDCl₃) spectrum of 2

Fig. S6. ESI-Mass spectrum of 2

Fig. S7. ¹H NMR (400 MHz, CDCl₃) spectrum of 3

Fig. S8. ¹³C NMR (100 MHz, CDCl₃) spectrum of 3

Fig. S9. ESI-Mass spectrum of 3

Fig. S10. ¹H NMR (400 MHz, CDCl₃) spectrum of 4

Fig. S11. ¹³C NMR (100 MHz, CDCl₃) of spectrum 4

Fig. S12. ESI-Mass spectrum of 4

Fig. S13. ¹H NMR (400 MHz, CDCl₃) spectrum of 5

Fig. S14. ¹³C NMR (100 MHz, CDCl₃) spectrum of 5

Fig. S15. ESI-Mass spectrum of 5

Fig. S16. ¹H NMR (400 MHz, CDCl₃) spectrum of 6

Fig. S17. ¹³C NMR (100 MHz, CDCl₃) spectrum of 6

Fig. S18. ESI-Mass spectrum of 6

Fig. S19. ¹H NMR (400 MHz, CDCl₃) spectrum of 7

Fig. S20. ¹³C NMR (100 MHz, CDCl₃) spectrum of 7

Fig. S21. ESI-Mass spectrum of 7

Fig. S22. ¹H NMR (400 MHz, CDCl₃) spectrum of 8

Fig. S23. ¹³C NMR (100 MHz, CDCl₃) spectrum of 8

Fig. S24. ESI-Mass spectrum of 8

Fig. S25. ¹H NMR (400 MHz, CDCl₃) spectrum of 9

Fig. S26. ¹³C NMR (100 MHz, CDCl₃) spectrum of 9

Fig. S27. ¹H NMR spectrum of the crude product obtained from a reaction between *L*-LA and 9 in the ratio 10:1

Fig. S28. MALDI-TOF spectrum of the crude product obtained from a reaction between *L*-LA and **9** in the ratio 10:1

Fig. S29.¹H homonuclear decoupled spectrum of isotactic enriched PLA obtained from a reaction between *L*-LA and catalyst in the ratio 200:1