Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Material (ESI) for Dalton Trans.

This journal is © The Royal Society of Chemistry 2014

Spin Crossover Behaviour in One-Dimensional Fe^{II} Compounds Based on the $[M(CN)_4]^{2^-}$ (M= Pd, Pt) Units

Shao-Liang Zhang, Xin-hua Zhao, Yuan-Min Wang, Dong Shao, Xin-Yi Wang*

State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China. Email: <u>wangxy66@nju.edu.cn</u>

Supporting Information

Table of contents

1. X-ray crystallography and powder x-Ray diffraction
Table S1. Selected bond lengths [Å] and angles [°] for complex 13
Table S2. Selected bond lengths [Å] and angles [°] for complex 24
Table S3. Selected bond lengths [Å] and angles [°] for complex 3
Table S4. Selected bond lengths [Å] and angles [°] for complex 4
Figure S1. The powder X-ray diffraction patterns of complex 1 in black and its simulation in red at 298 K
Figure S2. The powder X-ray diffraction patterns of complex 2 in black and its simulation in red at 298
К7
Figure S3. The powder X-ray diffraction patterns of complex 3 in black and its simulation in red at 298
К
Figure S4. The powder X-ray diffraction patterns of complex 4 in black and its simulation in red at 298
K
Figure S5. The asymmetry unit of complex 1 at 120 K (showing 50% probability ellipsoids)
Figure S6. The asymmetry unit of complex 2 at 298 K (showing 50% probability ellipsoids)
Figure S7. The asymmetry unit of complex 3 at 120 K (showing 50% probability ellipsoids)10
Figure S8. The asymmetry unit of complex 4 at 120 K (showing 50% probability ellipsoids)10
Figure S9. The asymmetry unit of complex 4 at 298 K (showing 50% probability ellipsoids)11
2. Magnetic Property
Figure S10 Temperature dependent $\chi_M T$ plots for complex 1 at scan rate of 1, 5, and 10 K/min11
Figure S11 Temperature dependent $\chi_M T$ plots for complex 2 at scan rate of 1, 5, and 10 K/min12

1. X-ray crystallography and powder x-ray diffraction

120 K			298 K	
Fe1-N1	1.948(3)	Fe1-N1	2.112(2)	
Fe1-N3	1.928(2)	Fe1-N3	2.088(2)	
Fe1-N5	1.972(3)	Fe1-N5	2.152(2)	
Fe1-N6	2.032(2)	Fe1-N6	2.189(2)	
Fe1-N7	1.967(2)	Fe1-N7	2.157(2)	
Fe1-N8	2.020(3)	Fe1-N8	2.188(3)	
Pd1-C1	1.998(3)	Pd1-C1	1.995(2)	
Pd1-C2	1.992(3)	Pd1-C2	1.992(3)	
Pd2-C3	1.984(3)	Pd2-C3	1.983(2)	
Pd2-C4	1.995(4)	Pd2-C4	1.985(4)	
C1-N1	1.150(4)	C1-N1	1.140(3)	
C2-N2	1.147(4)	C2-N2	1.135(3)	
C3-N3	1.145(4)	C3-N3	1.135(3)	
C4-N4	1.147(5)	C4-N4	1.148(4)	
Pd1-C1-N1	176.0(3)	Pd1-C1-N1	177.8(2)	
Pd1-C2-N2	179.0(3)	Pd1-C2-N2	178.1(3)	
Pd2-C3-N3	176.1(3)	Pd2-C3-N3	176.4(3)	
Pd2-C4-N4	177.2(3)	Pd2-C4-N4	177.6(3)	
N3-Fe1-N1	92.07(12)	N3-Fe1-N1	92.67(10)	
N3-Fe1-N5	90.93(10)	N3-Fe1-N5	93.23(9)	
N1-Fe1-N5	93.62(10)	N1-Fe1-N5	92.15(8)	
N1-Fe1-N7	91.15(10)	N1-Fe1-N7	91.17(9)	
N5-Fe1-N7	95.44(11)	N5-Fe1-N7	96.43(9)	
N3-Fe1-N8	91.28(11)	N3-Fe1-N8	93.15(10)	
N1-Fe1-N8	91.36(11)	N1-Fe1-N8	95.61(9)	
N7-Fe1-N8	82.06(11)	N7-Fe1-N8	76.69(10)	
N3-Fe1-N6	87.71(10)	N3-Fe1-N6	88.15(9)	
N5-Fe1-N6	81.37(10)	N5-Fe1-N6	76.83(8)	
N7-Fe1-N6	89.66(10)	N7-Fe1-N6	89.95(9)	
N8-Fe1-N6	93.66(11)	N8-Fe1-N6	95.32(9)	

Table S1. Selected bond lengths [Å] and angles [°] for complex 1.

	120 K		298 K
Fe1-N1	1.928(4)	Fe1-N1	2.129(4)
Fe1-N4	1.975(6)	Fe1-N3	2.102(3)
Fe1-N5	2.028(17)	Fe1-N5	2.160(4)
Fe1-N6	1.964(17)	Fe1-N6	2.210(3)
Fe1-N7	2.008(7)	Fe1-N7	2.165(4)
Fe1-N1 ^a	1.928(4)	Fe1-N8	2.191(4)
Fe1-N5 ^a	2.028(18)	Pt1-C1	1.993(4)
Fe1-N6 ^a	1.964(17)	Pt1-C2	1.983(4)
		Pt2-C3	1.982(4)
Pt1-C1	1.980(6)	Pt2-C4	1.983(6)
Pt1-C2	1.981(13)	C1-N1	1.135(5)
Pt1-C3	1.992(10)	C2-N2	1.142(5)
C1-N1	1.164(7)	C3-N3	1.136(5)
C2-N2	1.152(17)	C4-N4	1.154(7)
C3-N3	1.142(15)	Pt1-C1-N1	178.4(4)
Pt1-C1-N1	176.2(5)	Pt1-C2-N2	178.0(5)
Pt1-C2-N2	176.9(11)	Pt2-C3-N3	177.8(4)
Pt1-C3-N3	178.2(12)	Pt2-C4-N4	178.4(5)
N1-Fe1-N1 ^a	92.1(3)	N3-Fe1-N1	92.48(16)
N1-Fe1-N6	170.5(4)	N3-Fe1-N5	93.02(15)
N1-Fe1-N4	92.04(18)	N1-Fe1-N5	92.42(13)
N1 ^a -Fe1-N4	92.04(18)	N1-Fe1-N7	91.39(14)
N6-Fe1-N4	95.1(4)	N5-Fe1-N7	96.81(15)
N1-Fe1-N7	91.33(19)	N3-Fe1-N8	93.38(15)
N1 ^a -Fe1-N7	91.33(19)	N1-Fe1-N8	95.60(15)
N6-Fe1-N7	81.2(4)	N7-Fe1-N8	76.28(15)
N5-Fe1-N1	85.5(5)	N3-Fe1-N6	88.20(14)
N4-Fe1-N5	81.0(5)	N5-Fe1-N6	76.44(13)
N7-Fe1-N5	95.8(5)	N7-Fe1-N6	89.94(15)
N5-Fe1-N6	89.4(5)	N8-Fe1-N6	95.46(15)

 Table S2. Selected bond lengths [Å] and angles [°] for complex 2.

Symmetry code for complex **2**: a: x, -y+1/2, z.

120 K			298 K	
Fe1-N1	1.952(2)	Fe1-N1	2.141(3)	
Fe1-N3	1.986(2)	Fe1-N3	2.190(2)	
Fe1-N4	1.953(2)	Fe1-N4	2.185(2)	
Pd1-C1	1.996(3)	Pd1-C1	1.993(3)	
Pd1-C2	1.995(3)	Pd1-C2	1.987(4)	
C1-N1	1.142(3)	C1-N1	1.147(4)	
C2-N2	1.144(4)	C2-N2	1.147(4)	
Pd1-C1-N1	174.1(2)	Pd1-C1-N1	176.5(3)	
Pd2-C2-N2	178.5(3)	Pd2-C2-N2	178.8(3)	
N1-Fe1-N1 ^a	89.58(13)	N1-Fe1-N1 ^a	91.24(14)	
N1-Fe1-N4	91.39(9)	N1-Fe1-N4	91.36(9)	
N1 ^a -Fe1-N4 ^a	91.39(9)	N1 ^a -Fe1-N4 ^a	91.36(9)	
N4-Fe1-N4 ^a	87.80(13)	N4-Fe1-N4 ^a	86.96(12)	
N1 ^a -Fe1-N3	88.72(9)	N1 ^a -Fe1-N3	92.50(9)	
N1-Fe1-N3	96.71(9)	N1-Fe1-N3	98.04(9)	
N4-Fe1-N3	94.17(9)	N4-Fe1-N3	94.16(9)	
N4 ^a -Fe1-N3	80.29(9)	N4 ^a -Fe1-N3	74.76(9)	
N1 ^a -Fe1-N3 ^a	96.71(9)	N1 ^a -Fe1-N3 ^a	98.04(9)	
N1-Fe1-N3 ^a	88.72(9)	N1-Fe1-N3 ^a	92.50(9)	
N4-Fe1-N3 ^a	80.29(9)	N4-Fe1-N3 ^a	74.76(9)	
N4 ^a -Fe1-N3 ^a	94.17(9)	N4 ^a -Fe1-N3 ^a	94.16(9)	

 Table S3. Selected bond lengths [Å] and angles [°] for complex 3.

Symmetry code for complex 3: a: -x, y, -z+1/2.

120 K			298 K	
Fe1-N1	1.951(4)	Fe1-N1	2.139(2)	
Fe1-N3	1.994(4)	Fe1-N3	2.186(2)	
Fe1-N4	1.962(4)	Fe1-N4	2.182(2)	
Pt1-C1	1.993(5)	Pt1-C1	1.990(3)	
Pt1-C2	2.002(5)	Pt1-C2	1.982(3)	
C1-N1	1.162(6)	C1-N1	1.140(3)	
C2-N2	1.144(7)	C2-N2	1.146(4)	
Pt1-C1-N1	174.4(4)	Pt1-C1-N1	177.7(2)	
Pt2-C2-N2	178.4(5)	Pt2-C2-N2	178.4(3)	
N1-Fe1-N1 ^a	90.3(2)	N1-Fe1-N1 ^a	91.26(13)	
N1-Fe1-N4	91.13(15)	N1-Fe1-N4	91.53(9)	
N1 ^a -Fe1-N4 ^a	91.13(15)	N1 ^a -Fe1-N4 ^a	91.53(9)	
N4-Fe1-N4 ^a	87.7(2)	N4-Fe1-N4 ^a	86.67(12)	
N1 ^a -Fe1-N3	88.87(15)	N1-Fe1-N3 ^a	92.63(8)	
N1-Fe1-N3	96.64(16)	N1-Fe1-N3	97.59(8)	
N4-Fe1-N3	94.13(16)	N4-Fe1-N3	94.31(8)	
N4 ^a -Fe1-N3	80.20(16)	N4 ^a -Fe1-N3	74.90(8)	
N1 ^a -Fe1-N3 ^a	96.64(16)	N1 ^a -Fe1-N3 ^a	97.59(8)	
N1-Fe1-N3 ^a	88.87(15)	N1 ^a -Fe1-N3	92.63(8)	
N4-Fe1-N3 ^a	80.20(16)	N4 ^a -Fe1-N3	74.90(8)	
N4 ^a -Fe1-N3 ^a	94.13(16)	N4 ^a -Fe1-N3 ^a	94.31(8)	

 Table S4. Selected bond lengths [Å] and angles [°] for complex 4.

Symmetry code for complex 4: a: -x, y, -z+1/2.

Figure S1. The powder X-ray diffraction patterns of complex **1** in black and its simulation in red at 298 K.

Figure S2. The powder X-ray diffraction patterns of complex **2** in black and its simulation in red at 298 K.

Figure S3. The powder X-ray diffraction patterns of complex **3** in black and its simulation in red at 298 K.

Figure S4. The powder X-ray diffraction patterns of complex **4** in black and its simulation in red at 298 K.

Figure S5. The asymmetry unit of complex 1 at 120 K (showing 50% probability ellipsoids).

Figure S6. The asymmetry unit of complex 2 at 298 K (showing 50% probability ellipsoids).

Figure S7. The asymmetry unit of complex **3** at 120 K (showing 50% probability displacement ellipsoids).

Figure S8. The asymmetry unit of complex 4 at 120 K (showing 50% probability ellipsoids).

Figure S9. The asymmetry unit of complex **4** at 298 K (showing 50% probability displacement ellipsoids).

2. Magnetic Property

Figure S10 Temperature dependent $\chi_M T$ plots for complex 1 at scan rate of 1, 5, and 10 K/min.

Figure S11 Temperature dependent $\chi_M T$ plots for complex **2** at scan rate of 1, 5, and 10 K/min.