Design, Synthesis, Photophysical and Electrochemical Properties of 2-(4,5-diphenyl-1-*p*-aryl-1H-imidazol-2yl)phenol-based Boron Complexes

Vanga Mukundam^[a], Kunchala Dhanunjayarao^[a], Ching-Nan Chuang^b, Dun-Yen Kang^c, Man-kit Leung^{b,d}, Kuo-Huang Hsieh^{b,c} and and Krishnan Venkatasubbaiah^{*[a]}

^aNational Institute of Science Education and Research (NISER), Institute of Physics Campus, Bhubaneswar-751005, Orissa (India), ^bInstitute of Polymer Science and Engineering, National Taiwan University, Taipei 106, Taiwan, ^cDepartment of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan, ^dDepartment of Chemistry, National Taiwan University, Taipei 106, Taiwan E-mail: krishv@niser.ac.in

Figure S1. TGA curves of 2a-2c at a heating rate of 20 °C/min

Figure S2. Imidazole core numbering used in the main text

Figure S3. EL performances of device **2a** that contain different ratio of guest. (a) Brightness-Voltage, (b) Current Efficiency-Current Density.

(b)

Figure S4. ¹⁹F variable temperature NMR (CDCl₃) of compound **2b.**

Figure S5. ¹¹B variable temperature NMR (CDCl₃) of compound 2b.

Figure S6. Cyclic voltammograms of compound **2a** (vs. Ferrocene/Ferrocenium) with 0.1 M Bu_4NPF_6 in DMF and CH₃CN as the supporting electrolyte (scan rate 100 mV/s).

Table S1.	Electrochemical	data	of	2a-2c
-----------	-----------------	------	----	-------

Compound	Solvent	$\mathbf{E}_{\mathbf{pa}}^{\#}(\mathbf{V})$
2a	DMF	-2.62
	CH ₃ CN	-2.50
2b	DMF	-2.59
	CH ₃ CN	-2.61
2c	DMF	-2.43
	CH3CN	-2.41

 ${}^{\#}E_{pa}$ = anodic peak potential

Compound	2a	2b	2c
LUMO+2	-0.897	-0.8163	-1.224
	(Im-1,2-Ph)	(Im-1,2-Ph)	(Im-1,2-Ph)
LUMO+1	-1.006	-0.952	-1.360
	(Im-1,4,5-Ph)	(Im-1,4,5-Ph)	(Im-1,2,5-Ph)
LUMO	-1.306	-1.251	-1.714
	(Im-1,2,5-Ph)	(Im-1,2,5-Ph)	(Im-1,2 -Ph)
НОМО	-5.550	-5.523	-5.714
	(Im-2,4-Ph, Oxygen)	(Im-2,4-Ph, Oxygen)	(Im-2,4-Ph, Oxygen)
HOMO-1	-6.095	-6.067	-6.231
	(Im-2,4,5-Ph, Oxygen)	(Im-2,4,5-Ph, Oxygen)	(Im-2,4,5-Ph, Oxygen)
НОМО-2	-6.584	-6.557	-6.693
	(4-Ph)	(4-Ph)	(4-Ph)

Table S2. Calculated orbital energies (eV) for compound **2a-2c** from DFT (B3LYP)

 calculations

Compound Transition MO contributions		Energy gap	Oscillator	
			eV (nm)	strength/f
2a	$S_0 \rightarrow S_1$	HOMO→LUMO	3.74 (331)	0.2743
		HOMO→LUMO+2		
	$S_0 \rightarrow S_2$	HOMO→LUMO+1	3.97 (312)	0.0544
		HOMO→LUMO+2		
	$S_0 \rightarrow S_3$	HOMO-1→LUMO	4.09 (303)	0.0788
		HOMO→LUMO+1		
		HOMO→LUMO+2		
2b	$S_0 \rightarrow S_1$	HOMO→LUMO	3.76 (329)	0.3137
	$S_0 \rightarrow S_2$	HOMO→LUMO+1	4.00 (309)	0.0324
		HOMO→LUMO+2		
	$S_0 \rightarrow S_3$	HOMO-1→LUMO	4.12 (300)	0.0683
		HOMO→LUMO+1		
		HOMO→LUMO+2		
2c	$S_0 \rightarrow S_1$	HOMO→LUMO	3.42 (362)	0.0654
	$S_0 \rightarrow S_2$	HOMO-1→LUMO	3.80 (326)	0.0993
		HOMO→LUMO+1		
		HOMO→LUMO+2		
	$S_0 \rightarrow S_3$	HOMO-1→LUMO	3.93 (315)	0.1243
		HOMO→LUMO+2		

Table S3. Calculated electronic transitions for compound **2a-2c** from TD-DFT (B3LYP)

 calculations

Compound	2a	2b	2c
LUMO+2			
LUMO+1			
LUMO			
НОМО			
HOMO-1			
НОМО-2			

 Table S4. Computed orbitals for compounds 2a-2c

	2a	2c.CH ₃ CN
formula	C ₂₇ H ₁₉ BF ₂ N ₂ O	$C_{58}H_{36}B_2F_{10}N_5O_2$
M _r	436.25	1046.54
<i>T</i> [K]	296(2)	100(2)
wavelength, Å	0.71073 Å	0.71073 Å
crystal system	Triclinic	Monoclinic
space group	<i>P</i> -1	C2/c
a [Å]	10.2847(4)	31.603(4)
b [Å]	10.8082(4)	8.6107(10)
c [Å]	10.9755(4)	22.928(3)
α [°]	85.101(3)	90
β [°]	75.591(3)	129.760(11)
δ[°]	67.342(2)	90
$V[Å^{3}]$	1090.38(7)	4796.3(11)
Z	2	4
$\rho_{\text{calc}} [\text{g cm}^{-3}]$	1.329	1.449
μ (MoK α) [mm ⁻¹]	0.092	0.115
F (000)	452	2140
Crystal size [mm]	0.25 x 0.22 x 0.20	0.40 x 0.35 x 0.30
θ range [°]	1.92 - 28.30	1.68 - 30.56
limiting indices	-12<=h<=13	-45<=h<=44
	-14<=k<=14	-12<=k<=12
	-14<=l<=14	-31<=l<=32
reflns collected	16890	39509
independent reflns	5404	7309
	[R(int) = 0.0375]	[R(int) = 0.0307]
absorption correction	Semi-empirical from	Semi-empirical from
	equivalents	equivalents
refinement method	Full-matrix least square on F^2	Full-matrix least square on F^2
data / restraints / parameters	5404 / 0 / 299	7309 / 0 / 349
Goodness-of-fit on F^2	1 006	1 033
final R indices	$R_1 = 0.0465$	$R_1 = 0.0414$
$[I > 2\sigma(I)]^{[a]}$	$wR_2 = 0.1059$	$wR_2 = 0.1122$
R indices (all data) ^[a]	$R_1 = 0.0945$	$R_1 = 0.0499$
	$wR_2 = 0.1302$	$wR_2 = 0.1187$
peak _{max} /hole _{min} [e Å ⁻³]	0.200 and -0.142	0.607 and -0.316

 Table S5. Details of X-ray crystal structure analyses of compound 2a and 2c.

^[a] $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|; wR_2 = \{\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]\}^{1/2}.$

Table S6. EL characters of the device 2a that contain different ratio of guest.				
Device	Turn-on voltage at $1 \text{ cd/m}^2(\text{V})$	Max. brightness (cd/m ²)	Efficiency	
			(cd/A)/voltage(v)	
2a (8 wt% of Ir(ppy) ₃)	12.5	4760	10.6	
2a (16 wt% of Ir(ppy) ₃)	12.5	6450	11.8	

Compound **2a** ¹H NMR

Compound **2a**¹⁹F NMR

Compound **2a**¹¹B NMR

Compound **2b** ¹H NMR

Compound **2b**¹³C NMR

Compound **2b**¹⁹F NMR

Compound **2b**¹¹B NMR

Compound 2b HRMS

Compound **2c** ¹H NMR

Compound **2c**¹³C NMR

Compound **2c**¹⁹F NMR

Compound **2c**¹¹B NMR

Compound 2c HRMS

Table S7

Optimized x,y,z coordinates for compounds **2a-2c**, calculated on Gaussian 03 at the B3LYP//6-31g(d) level

Compound 2a

-			1 001050
F	0.297435	-3.489323	1.224358
F	-0.411815	-3.566801	-0.965443
0	1.827535	-3.147522	-0.534541
Ν	0.618407	0.733544	0.030812
Ν	0.159012	-1.412663	-0.004627
С	-4.917356	-2.583216	-0.133980
Н	-5.901776	-3.043326	-0.153913
С	-4.626582	-1.513015	-0.981522
Η	-5.380757	-1.138159	-1.668297
С	-3.362911	-0.925976	-0.958112
Η	-3.137467	-0.101339	-1.627132
С	-2.371914	-1.401602	-0.084697
С	-1.053576	-0.738369	-0.037428
С	-0.781865	0.612066	-0.011074
С	1.330693	1.981736	0.004826
С	1.331955	2.800373	1.135299
Н	0.803194	2.483694	2.028543

С	2.015936	4.015983	1.098408
Н	2.020141	4.655880	1.975898
С	1.997449	2.367905	-1.160409
Н	1.984482	1.714931	-2.027656
С	2.683494	3.581807	-1.186313
Н	3.208554	3.882669	-2.088150
С	2.802694	-2.297525	-0.230163
С	2.550644	-0.936784	0.102310
С	3.635061	-0.104181	0.448730
Н	3.455108	0.917948	0.755714
С	4.936438	-0.582619	0.422492
Н	5.757912	0.071078	0.699227
С	5.181304	-1.910459	0.042615
Н	6.200463	-2.287189	0.013873
С	4.130758	-2.756542	-0.277127
Н	4.294663	-3.793168	-0.552588
С	1.159943	-0.522102	0.050775
С	-3.934376	-3.066005	0.732047
Н	-4.149874	-3.905043	1.387909
С	-2.669172	-2.483072	0.760421
Н	-1.902877	-2.874265	1.419929
С	-1.699018	1.767725	0.035743
С	-1.633434	2.802902	-0.911494
Н	-0.891451	2.762914	-1.702738
С	-2.521041	3.876340	-0.849603
Н	-2.458522	4.668164	-1.591056
С	-3.490926	3.929620	0.153015
Н	-4.183727	4.765477	0.197913
С	-3.568906	2.902478	1.095660
Н	-4.321560	2.935591	1.878534
С	-2.679228	1.831111	1.040322
Н	-2.739933	1.032798	1.773489
В	0.449512	-2.997869	-0.065399
С	2.693238	4.406111	-0.058682
Н	3.227280	5.351682	-0.082075

Compound 2b

F	2.004625	3.106684	1.220271
F	2.623182	2.760793	-0.971037
0	0.557638	3.719808	-0.535036
Ν	-0.711812	-0.142822	0.031302
Ν	0.908986	1.337503	-0.008826
С	5.720260	-0.663701	-0.141579
Η	6.788553	-0.862557	-0.162379
С	4.858441	-1.374946	-0.978045
Η	5.251577	-2.126788	-1.657124
С	3.489301	-1.116594	-0.953539
Η	2.823957	-1.663766	-1.613963
С	2.962499	-0.143042	-0.089745
С	1.504437	0.084145	-0.040545

С	0.498249	-0.856818	-0.011469
С	-2.016560	-0.745497	0.011599
С	-2.497105	-1.402825	1.144120
Н	-1.886819	-1.448187	2.040481
С	-3.761643	-1.988816	1.112639
Н	-4.133492	-2.496098	1.999216
С	-4.561712	-1.931423	-0.036628
С	-5.920504	-2.589953	-0.070878
С	-2.791822	-0.680622	-1.147789
Н	-2.410659	-0.160863	-2.021560
С	-4.056168	-1.265470	-1.162317
Н	-4.660034	-1.202336	-2.064045
С	-0.729555	3.593817	-0.228983
С	-1.314319	2.339216	0.102040
С	-2.680561	2.291281	0.448836
Н	-3.128107	1.354103	0.752905
С	-3.461609	3.437014	0.425883
Н	-4.509844	3.381565	0.703231
С	-2.889791	4.660877	0.048503
Н	-3.500217	5.559863	0.022325
С	-1.543432	4.739371	-0.272344
Н	-1.074478	5.678692	-0.546402
С	-0.423200	1.193521	0.049134
С	5.204328	0.311155	0.714461
Н	5.869814	0.875793	1.361706
С	3.836230	0.573422	0.744303
Н	3.442619	1.344250	1.396916
С	0.573369	-2.330205	0.039306
С	-0.077916	-3.137605	-0.907820
Н	-0.656836	-2.676366	-1.701782
С	0.022255	-4.526792	-0.842160
Н	-0.485452	-5.137247	-1.583992
С	0.777907	-5.130622	0.164442
Н	0.857193	-6.213276	0.212018
С	1.434043	-4.336988	1.107362
Н	2.025337	-4.798651	1.893330
С	1.331093	-2.948391	1.048155
Н	1.841660	-2.332014	1.781610
В	1.592650	2.796400	-0.069404
Η	-6.609405	-2.053369	-0.731371
H	-5.849537	-3.620810	-0.442330
Н	-6.369762	-2.633503	0.926432

Compound 2c

F	-6.375314	0.442236	-0.777715
F	-6.309274	-0.550837	1.162290
F	-6.055759	-1.703028	-0.663572
F	3.554792	2.376915	1.181540
F	3.998263	1.821889	-1.009718
0	2.354844	3.397604	-0.571515
Ν	-0.078923	0.160371	0.065069

Ν	1.932478	1.035313	-0.007086
С	5.839621	-2.406057	-0.179011
Н	6.787506	-2.936742	-0.210173
С	4.783462	-2.809334	-0.997647
Н	4.905364	-3.651895	-1.672973
С	3.569547	-2.126016	-0.960238
Н	2.755186	-2.435413	-1.607758
С	3.395565	-1.029134	-0.101355
С	2.089570	-0.343865	-0.037753
С	0.834629	-0.909395	0.011655
С	-1.505721	0.012489	0.045887
С	-2.161122	-0.526327	1.154027
H	-1.590393	-0.815091	2.030105
С	-3.545006	-0.687196	1.122931
Н	-4.062863	-1.100487	1.981364
С	-4.266658	-0.304442	-0.009762
C	-5.756434	-0.526027	-0.068597
C	-2.222214	0.389934	-1.093162
H	-1.697234	0.811602	-1.944122
C	-3 605453	0 236273	-1 116610
н	-4 170639	0 538849	-1 991715
C	1,106083	3,699302	-0.232088
C	0.157284	2.703561	0.133935
C	-1 137827	3 101674	0 525589
н	-1 851845	2 362722	0 866494
C	-1 507915	4 437712	0 505718
н	-2 506656	4 726604	0 818072
C	-0 584858	5 407949	0 087413
н	-0 873494	6 455475	0 063074
C	0 703582	5 045714	-0 273775
н	1 440820	5 781815	-0 576924
C	0 628226	1 332249	0 070681
C	5 675641	-1 311909	0 672585
н	6 496058	-0 986115	1 306019
C	4 464309	-0 624879	0 715125
Н	4 348107	0.235696	1 364010
C	0 425793	-2 326895	0 064033
C	-0 449859	-2 878215	-0.886040
н	-0 839645	-2 255502	-1 685529
C	-0.812271	-4 222878	-0 818399
н	-1 489151	-4 634729	-1 561812
C	-0.301267	-5 038131	0 193110
н	-0.582619	-6 086383	0 242712
C	0 575418	-4 501685	1 138247
Ч	0 978979	-5 129994	1 927375
C	0 924751	-3 156400	1 077260
Ч	1 616558	-2 740004	1 812392
B	3 049345	2 199203	-0 098473
<u> </u>	J. UIJJIJ		0.0201/3