Supporting Information

Efficient Enhancement of Magnetic Anisotropy by Optimizing Ligand-Field in a Typically Tetranuclear Dysprosium Cluster

Jiang Liu, Yan-Cong Chen, Zhong-Xia Jiang, Jun-Liang Liu, Jian-Hua Jia* Long-Fei Wang, Quan-

Wen Li, and Ming-Liang Tong*

Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry and

Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China

Complex	1	2
formula	$C_{56}H_{72}Cl_4Dy_4N_{20}O_{14}\\$	$C_{56}H_{72}Br_4Dy_4N_{20}O_{14}\\$
M_{r}	2041.14	2218.94
Crystal system	triclinic	triclinic
Space group	<i>P</i> -1	<i>P</i> -1
<i>a</i> [Å]	11.6810(9)	11.6203(9)
b[Å]	12.2354(9)	12.2946(8)
<i>c</i> [Å]	14.2356(10)	14.2923(10)
α[°]	75.848(2)	75.951(2)
β[°]	69.993(2)	70.984(2)
γ[°]	67.549(2)	68.022(2)
V[Å ³]	1751.6(2)	1773.1(2)
Ζ	1	1
$\rho_{\rm calcd} [\rm mg \ mm^{-3}]$	1.935	2.078
<i>T</i> [K]	150	150
F(000)	992	1064
Goof on F ²	1.052	1.017
$R_1[I > 2\sigma(I)]^{[a]}$	0.0571	0.0578
$wR_2[all data]^{[b]}$	0.1458	0.1250

Table S1. Summary of the structural data for complexes $1 \mbox{ and } 2$

[a] $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|$, [b] $wR_2 = [\sum w(F_0^2 - F_c^2)^2 / w(F_0^2)^2]^{1/2}$.

Complex 1		Complex 2				
Dy(1)-O(2)	2.252(4)	Dy(1)-O(2)	2.243(6)			
Dy(1)-O(1W)	2.408(5)	Dy(1)-O(1W)	2.393(6)			
Dy(1)-O(1)	2.427(4)	Dy(1)- O(1)	2.432(6)			
Dy(1)-N(7)	2.428(6)	Dy(1)- N(7)	2.412(7)			
Dy(1)-N(2)	2.440(6)	Dy(1)-N(2)	2.432(7)			
Dy(1)-N(1)	2.666(5)	Dy(1)-N(1)	2.662(8)			
Dy(1)-N(6)	2.690(6)	Dy(1)-N(6)	2.688(8)			
Dy(1)-Cl(1)	2.7144(17)	Dy(1)-Br(1)	2.8886(9)			
Dy(2)-O(2)	2.242(4)	Dy(2)-O(2)	2.243(6)			
Dy(2)-O(2W)	2.357(5)	Dy(2)-O(2W)	2.338(6)			
Dy(2)-O(1a)	2.341(4)	Dy(2)-O(1a)	2.346(6)			
Dy(2)-O(1)	2.408(4)	Dy(2)-O(1)	2.390(5)			
Dy(2)-N(8)	2.432(6)	Dy(2)-N(8)	2.415(8)			
Dy(2)-N(3)	2.459(6)	Dy(2)-N(3)	2.464(8)			
Dy(2)-N(10)	2.662(6)	Dy(2)-N(10)	2.648(7)			
Dy(2)-N(5)	2.674(6)	Dy(2)-N(5)	2.651(7)			
Dy(2a)-Dy(1)-Dy(2)	55.862(9)	Dy(2a)-Dy(1)-Dy(2)	55.804(12)			
Dy(1a)-Dy(2)-Dy(2a)	69.698(10)	Dy(1a)-Dy(2)-Dy(2a)	69.765(14)			
Dy(1a)-Dy(2)-Dy(1)	124.138(9)	Dy(1a)-Dy(2)-Dy(1)	124.196(12)			
Dy(2a)-Dy(2)-Dy(1)	54.440(9)	Dy(2a)-Dy(2)-Dy(1)	54.431(12)			
Dy(2a)-O(1)-Dy(2)	106.52(17)	Dy(2a)-O(1)-Dy(2)	106.7(2)			
Dy(2a)-O(1)-Dy(1)	103.35(17)	Dy(2a)-O(1)-Dy(1)	102.9(2)			
Dy(2)-O(1)-Dy(1)	126.23(16)	Dy(2)-O(1)-Dy(1)	126.7(3)			
Dy(2a)-O(2)-Dy(1)	112.68(19)	Dy(2a)-O(2)-Dy(1)	112.8(2)			
Symmetry codes: a) -x+1, -y+1, -z						

Table S2. Selected Bond Distances (Å) and Bond Angles (°) of complexes 1 and 2

1		2		3	
Dy1-O2	2.252	Dy1-O2	2.243	Dy1-O2	2.248
Dy1-O1	2.427	Dy1-O1	2.432	Dy1-O1	2.405
Dy1-O1W	2.408	Dy1-O1W	2.393	Dy1-06	2.382
Dy1-Cl1	2.714	Dy1-Br1	2.888	Dy1-O9	2.411
Dy1-N1	2.666	Dy1-N1	2.662	Dy1-N5	2.680
Dy1-N2	2.440	Dy1-N2	2.432	Dy1-N2	2.394
Dy1-N6	2.690	Dy1-N6	2.688	Dy1-N10	2.681
Dy1-N7	2.428	Dy1-N7	2.412	Dy1-N7	2.435
averaged	2.503	averaged	2.518	averaged	2.454
-		c		-	
Dy2-O2	2.242	Dy2-O2	2.243	Dy2-O2	2.251
Dy2-O1	2.408	Dy2-O1	2.390	Dy2-O1	2.408
Dy2-O1a	2.341	Dy2-O1a	2.346	Dy2-O1a	2.333
Dy2-O2W	2.357	Dy2-O2W	2.338	Dy2-O3	2.409
Dy2-N3	2.459	Dy2-N3	2.464	Dy2-N1	2.417
Dy2-N5	2.674	Dy2-N5	2.651	Dy2-N4	2.674
Dy2-N8	2.432	Dy2-N8	2.415	Dy2-N6	2.420
Dy2-N10	2.662	Dy2-N10	2.648	Dy2-N9	2.647
averaged	2.446	averaged	2.436	Averaged	2.444
-		-		-	

Table S3. Variations of Dy-X bonds around Dy ions for complexes 1-3

Symmetry codes: *a*) -x+1,-y+1,-z

Figure S1. M versus H/T plot for 1 at indicated temperatures.

Figure S2. M versus H/T plot for 2 at indicated temperatures.

Figure S3. Frequency dependence of the in-phase (χ' ,) and out-of-phase (χ'') susceptibilities for 1 below 24 K under a zero dc field.

Figure S4. Frequency dependence of the in-phase (χ' ,) and out-of-phase (χ'') susceptibilities for **2** below 24 K under a zero dc field.

Figure S5. The Cole–Cole plots of 1. The solid lines correspond to the best fit.

Figure S6. The Cole–Cole plots of 2. The solid lines correspond to the best fit.