Supporting Information

Fluorescent Benzene-centered Mono-, Bis- and Tris-Triazapentadiene-Boron Complexes

Christoph Glotzbach[†], Nadine Gödeke[†], Roland Fröhlich[†], Constantin Daniliuc[†], Shohei Saito[∥], Shigehiro Yamaguchi[∥] and Ernst-Ulrich Würthwein[†].*

†Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstr. 40, 48149 Münster, Germany. || Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan.

Table of Contents

Theoretical Calculations	S3-S43
X-Ray Crystal Structure Analysis	S44-S52
NMR spectra	S53-S65
References	S66

Theoretical Calculations

To investigate the electronic structures and the electronic transitions of the mono-, bis- and tris triazapentadiene boron compounds, complete DFT-geometry optimizations followed by TD-DFT calculations for 20 states of compound **14a-c** and **14e** were performed in the gas phase using the B3LYP¹ functional and the def2-TZVP basis set² as implemented in Gaussian09³.

Calculations for Compound 14a:

Figure S 1. The experimental (black, y1-axis) and calculated (blue) UV/VIS spectrum of **14a** with the associated oscillator strength (y2-axis) of the different excited states S_1 , S_2 , S_4 , S_7 , S_9 , S_{13} . The calculated extinction coefficient was normalized to $\varepsilon = 4400 \text{ L} \cdot \text{mol}^{-1} \cdot \text{cm}^{-1}$ (factor 4.8).

To gain better insight into the transitions relevant (based on the oscillator strength) for the different absorption bands in the UV spectrum, the transitions to S_1 , S_2 , S_4 contributing to the longest wavelength absorption and S_7 , S_9 and S_{13} which contribute the most to the shorter wavelength absorption band, were studied in more detail (Table S 1).

Excited state	Transition energy / eV	Main CI coefficient ^[b]	Oscillator strength f
S_1	3.2813 (378 nm)	98 % (HOMO \rightarrow LUMO)	0.0928
S_2	3.5698 (347 nm)	96 % (HOMO–1 \rightarrow LUMO)	0.0425
S 4	3.7158 (334 nm)	43 % (HOMO-3 \rightarrow LUMO) 29% (HOMO-2 \rightarrow LUMO) 24 % (HOMO-4 \rightarrow LUMO)	0.0875
S_7	4.1987 (295 nm)	90 % (HOMO-6 \rightarrow LUMO)	0.0793
S9	4.3551 (285 nm)	46 % (HOMO-7 \rightarrow LUMO) 41 % (HOMO-8 \rightarrow LUMO)	0.1683
S ₁₃	4.6879 (264 nm)	51 % (HOMO-9 \rightarrow LUMO) 34 % (HOMO-10 \rightarrow LUMO)	0.1908

 Table S 1. Selected TD-DFT calculation data/results of compound 14a.^[a]

[a] TD-DFT calculations on the B3LYP/def2-TZVP level of theory. [b] Transitions which are significantly involved in the CI wave function. Only transitions contributing more than 10 % to the CI wave function are listed. Additionally, all transitions quoted in the table sum up to a CI wave function contribution of more than 90 %. This value is obtained by multiplying the CI coefficient by itself followed by multiplication by two.

Figure S 2. KOHN-SHAM orbital pictures and energies with main transitions of **14a** which contribute the most to the longest wavelength absorption at around 350 nm. (TD//B3LYP/def2-TZVP).

Figure S 3. KOHN-SHAM orbital pictures and energies with main transitions of **14a** which contribute the most to the shortest wavelength absorption at around 260 nm. (TD//B3LYP/def2-TZVP).

Calculations for Compound 14b:

Figure S 4. The experimental (black, y1-axis) and calculated (blue) UV/VIS spectrum of **14b** with the associated oscillator strength (y2-axis) of the different excited states S_1 , S_2 , S_6 , S_9 , S_{10} , S_{16} and S_{18} . The calculated extinction coefficient was normalized to $\varepsilon = 1$ 750 L·mol⁻¹·cm⁻¹ (factor 9.7).

The experimental spectrum shows a band at $\lambda_{abs, max} = 308$ nm and a shoulder at $\lambda_{abs} = 350$ nm. The calculated spectrum is slightly shifted to longer wavelength compared to the experimental spectrum ($\lambda_{abs, max} = 331$ nm). The shoulder at $\lambda_{abs} = 350$ nm is also barely visible in the calculated spectrum. The relevant transitions to S₁, S₂, S₆, S₉, S₁₀, S₁₆ and S₁₈, which contribute the most to the calculated absorption bands are listed in Table S 2 and shown in Figure S % in m ore detail. Table S 2Table S 2. **Selected TD-DFT calculation data/results of compound** 14b.^[a]

Excited state	Transition energy / eV	Main CI coefficient ^[b]	Oscillator strength <i>f</i>
S_1	3.2448 (382 nm)	98 % (HOMO \rightarrow LUMO)	0.1929
S_2	3.4467 (360 nm)	97 % (HOMO–1 \rightarrow LUMO)	0.0662
S_6	3.7904 (327 nm)	58 % (HOMO-6 \rightarrow LUMO) 12 % (HOMO-5 \rightarrow LUMO)	0.1210
S 9	3.9842 (311 nm)	66 % (HOMO-8 \rightarrow LUMO)	0.1209

		$12 \% (HOMO-6 \rightarrow LUMO)$	
S ₁₀	4.1495 (299 nm)	27 % (HOMO-10 \rightarrow LUMO) 21 % (HOMO-9 \rightarrow LUMO) 19 % (HOMO-13 \rightarrow LUMO) 11 % (HOMO-11 \rightarrow LUMO)	0.0670
S ₁₆ ^[c]	4.6871 (265 nm)	85 % (HOMO-1 \rightarrow LUMO+1)	0.0713
S ₁₈ ^[c]	4.8172 (257 nm)	41 % (HOMO \rightarrow LUMO+3) 23 % (HOMO \rightarrow LUMO+2)	0.0627

[a] TD-DFT calculations on the B3LYP/def2-TZVP level of theory. [b] Transitions which are significantly involved at the CI wave function. Only transitions contributing more than 10% to the CI wave function are listed. Additionally, all transitions quoted in the table sum up to a CI wave function contribution of more than 90%. This value is obtained by multiplying the CI coefficient by itself followed by multiplication by two. [c] The calculated transitions of this excited state only sum up to a CI wave function contribution of 85%, thus characterizing the CI wave function insufficiently.

Figure S 5. Selected KOHN-SHAM orbital pictures and energies with main transitions of **14b** (TD//B3LYP/def2-TZVP).

Calculations for Compound 14c:

Figure S 6. The experimental (black, y1-axis) and calculated (blue) UV/VIS spectrum of **14c** with the associated oscillator strength (y2-axis) of the different excited states S_1 , S_2 , S_5 , S_{15} - S_{20} . The calculated extinction coefficient was normalized to $\varepsilon = 19 \ 100 \ \text{L} \cdot \text{mol}^{-1} \cdot \text{cm}^{-1}$ (factor 1.5).

The experimental spectrum shows the longest wavelength absorption band at $\lambda_{abs, max} = 359$ nm, while the corresponding calculated band is only different by 6 nm at $\lambda_{abs, max} = 365$ nm. This is described most accurately by the excited states S₁, S₂, S₅. A second band at $\lambda_{abs} = 294$ nm is described by S₁₅ to S₂₀ which are mostly transitions with high energies from low-lying HOMO–N to higher LUMO+N. See Table S 3 and Figure S 7, Figure S 8 for more details.

Excited state	Transition energy / eV	Main CI coefficient ^[b]	Oscillator strength <i>f</i>
S_1	3.2570 (381 nm)	34 % (HOMO \rightarrow LUMO+1) 32 % (HOMO \rightarrow LUMO) 29% (HOMO-1 \rightarrow LUMO)	0.1500
S_2	3.2599 (380 nm)	43 % (HOMO \rightarrow LUMO) 40 % (HOMO-1 \rightarrow LUMO) 11 % (HOMO-1 \rightarrow LUMO+1)	0.1302
S_5	3.3843 (366 nm)	49 % (HOMO-3 \rightarrow LUMO) 29 % (HOMO-4 \rightarrow LUMO)	0.1552

 Table S 3. Selected TD-DFT calculation data/results of compound 14c.^[a]

[a] TD-DFT calculations on the B3LYP/def2-TZVP level of theory. [b] Transitions which are significantly involved at the CI wave function. Only transitions contributing more than 10% to the CI wave function are listed. Additionally, all transitions quoted in the table sum up to a CI wave function contribution of more than 90%. This value is obtained by multiplying the CI coefficient by itself followed by multiplication by two.

Figure S 7. Selected KOHN-SHAM molecular orbital pictures of **14c**. The degree of similarity of the energy levels can be particularly observed within the pairs HOMO/HOMO-1, HOMO-2/HOMO-3 and HOMO-4/HOMO-5.

The shapes of the LUMO and LUMO+1 molecular orbitals are quite similar and only differ in the differently pronounced electron delocalization in the left (LUMO+1) and right (LUMO) part of the molecule. Notably all energies of the relevant molecular orbitals are quite similar resulting in a greater amount of excited states which contribute to the CI wave function of this molecule compared to **14a**, **b**.

Since the shape of the respective molecular orbitals involved in the relevant transitions are similar, it is sufficient to only have a closer look at the HOMO \rightarrow LUMO, HOMO $-2\rightarrow$ LUMO and the HOMO $-4\rightarrow$ LUMO transition to adequately describe the CI wave function.

Figure S 8. Relevant transitions which are contributing more than 10% to the excited states S_1 (95%), S_2 (94%), S_5 (78%) and the respective KOHN-SHAM molecular orbital pictures of **14c**.

Calculations for Compound 14e:

Figure S 9. The experimental (black, y1-axis) and calculated (blue) UV/VIS spectrum of **14e** with the associated oscillator strength (y2-axis) of the different excited states S_1 - S_3 , S_4 - S_6 and S_7 - S_{10} .

The highest oscillator strength are f = 0.1406 for S₁ at $\lambda_{abs} = 405$ nm, f = 0.1166 for S₂ at $\lambda_{abs} = 403$ nm and f = 0.1028 for S₃ at $\lambda_{abs} = 401$ nm (Table S 4).

Excited state	Transition energy / eV	Main CI coefficient [b]	Oscillator strength <i>f</i>
S_1	3.2829 (378 nm)	93 % (HOMO \rightarrow LUMO)	0.0803
\mathbf{S}_2	3.4247 (362 nm)	62 % (HOMO-2 \rightarrow LUMO+1) 15 % (HOMO-2 \rightarrow LUMO) 12 % (HOMO-2 \rightarrow LUMO+2)	0.0698
S_3	3.4359 (361 nm)	51 % (HOMO-1 \rightarrow LUMO+1) 19 % (HOMO-1 \rightarrow LUMO+2) 18 % (HOMO-1 \rightarrow LUMO)	0.0551
S_5	3.5639 (348 nm)	76 % (HOMO-3 \rightarrow LUMO)	0.0499
S ₈ ^[c]	3.6874 (336 nm)	60 % (HOMO-7 \rightarrow LUMO) 14 % (HOMO-6 \rightarrow LUMO)	0.0754
S ₉ ^[c]	3.6970 (335 nm)	15 % (HOMO \rightarrow LUMO+2) 13 % (HOMO-4 \rightarrow LUMO) 11 % (HOMO-7 \rightarrow LUMO) 10 % (HOMO-5 \rightarrow LUMO+1)	0.0489
S ₁₀ ^[c]	3.7037 (335 nm)	38 % (HOMO-4 \rightarrow LUMO+1) 11 % (HOMO \rightarrow LUMO+2)	0.0344
S ₁₁ ^[c]	3.7200 (333 nm)	32 % (HOMO-9 \rightarrow LUMO) 12 % (HOMO \rightarrow LUMO+2) 10 % (HOMO-5 \rightarrow LUMO+1)	0.0563
S ₁₂	3.7271 (333 nm)	24 % (HOMO-6 \rightarrow LUMO+1) 13 % (HOMO-6 \rightarrow LUMO) 13 % (HOMO-6 \rightarrow LUMO+2)	0.0218
S ₁₃	3.7335 (332 nm)	39 % (HOMO-8 \rightarrow LUMO+1) 12 % (HOMO-5 \rightarrow LUMO+1) 11 % (HOMO-8 \rightarrow LUMO) 11 % (HOMO-8 \rightarrow LUMO+2)	0.0665
S ₁₄	3.7427 (331 nm)	45 % (HOMO \rightarrow LUMO+2) 17 % (HOMO-9 \rightarrow LUMO)	0.0447

 Table S 4. Selected TD-DFT calculation data/results of compound 14e.^[a]

[a] TD-DFT calculations on the B3LYP/def2-TZVP level of theory. [b] Transitions which are significantly involved at the CI wave function. Only transitions contributing more than 10% to the CI wave function are listed. Additionally, all transitions quoted in the table sum up to a CI wave function contribution of more than 90%. This value is obtained by multiplying the CI coefficient by itself followed by multiplication by two. [c] The calculated transitions of this excited state only sum up to a CI wave function contribution of 80% to 88%, thus characterizing the CI wave function insufficiently.

Figure S 10. Selected KOHN-SHAM molecular orbital pictures of 14e.

Figure S 11. Transitions contributing to the excited states S_1 (93%) S_5 (76%) and the relevant KOHN-SHAM molecular orbitals.

Figure S 12. Transitions contributing to the excited states S_2 (89%), S_3 (88%) and the relevant KOHN-SHAM molecular orbitals.

Figure S 13. Transitions from the band accumulation S8-S16 contributing to the excited states with the highest oscillator strengths S_8 (74%), S_{11} (54%), S_{13} (73%) and the relevant KOHN-SHAM molecular orbitals.

Calculated optimized geometrical data (Cartesian Coordinates) and TD-DFT-Results (B3LYP/def2-TZVP)

14a $E_{tot} = -1503.4273497$ au (NIMAG = 0)

Symbol	Х	Y	Ζ	С	-0.334456	-0.853425	2.840257
В	-0.626516	-1.259825	0.222161	С	-0.547041	-1.179395	4.176733
Ν	0.414872	-0.050361	0.006767	С	-1.195464	-2.361914	4.511028
С	0.008929	1.219891	-0.013701	С	-1.626216	-3.207909	3.495086
Ν	-1.269499	1.600025	-0.116939	С	-1.400699	-2.872521	2.164356
С	-2.226261	0.680251	-0.278588	Н	0.737361	-3.744019	0.562084
Ν	-1.997273	-0.605131	-0.172822	Н	1.209343	-5.522845	-1.051567
С	-0.318855	-2.475783	-0.815854	Н	0.423676	-5.329109	-3.396004
С	0.388575	-3.63048	-0.456909	Н	-0.829422	-3.305433	-4.095723
С	0.657498	-4.645725	-1.36884	Н	-1.284091	-1.518585	-2.486126
С	0.219295	-4.538864	-2.683801	Н	2.081271	-1.423942	1.601769
С	-0.483666	-3.405321	-3.07334	Н	4.410021	-2.033331	1.113984
С	-0.741512	-2.396296	-2.150483	Н	4.131748	-0.071704	-2.676856
С	1.786994	-0.385345	-0.250809	Н	1.801452	0.528336	-2.190801
С	2.529408	-1.123263	0.665219	Н	5.904883	-2.292281	-1.867879
С	3.846692	-1.464677	0.383202	Н	6.39525	-1.839807	-0.236868
С	4.455595	-1.093748	-0.814175	Н	6.439464	-0.648802	-1.540208
С	3.693421	-0.366419	-1.730169	Н	2.20517	1.515273	1.62385
С	2.378296	-0.022375	-1.459559	Н	3.636381	3.482835	1.847117
С	5.874793	-1.487536	-1.127869	Н	1.389553	5.475662	-1.200539
С	0.962695	2.362466	0.084235	Н	-0.096706	3.519108	-1.372099
С	2.0212	2.374545	0.995276	Н	3.052705	6.729695	0.121344
С	2.833393	3.491318	1.119285	Н	3.916529	5.945855	1.44993
С	2.636537	4.622596	0.325422	Н	4.429762	5.684593	-0.212755
С	1.574283	4.606742	-0.579482	Н	-3.185101	3.115224	0.221642
С	0.740767	3.503942	-0.688713	Н	-5.458303	3.995087	-0.239934
С	3.553441	5.811284	0.429973	Н	-7.139644	2.55099	-1.347124
С	-3.590755	1.181011	-0.589226	Н	-6.539869	0.233673	-1.984823
С	-3.931416	2.493686	-0.251593	Н	-4.299489	-0.633875	-1.524249
С	-5.2038	2.979787	-0.516584	Н	0.163795	0.082673	2.61541
С	-6.14883	2.168997	-1.135938	Н	-0.210277	-0.506379	4.956693
С	-5.814508	0.866208	-1.489379	Н	-1.363981	-2.620782	5.549211
С	-4.545961	0.374462	-1.215288	Н	-2.134981	-4.133125	3.739631
Н	-2.794817	-1.217981	-0.256929	Н	-1.740376	-3.556463	1.394593
С	-0.744944	-1.688379	1.792456				

14a TD-DFT Output

Excited State 1: Singlet-A 3.2813 eV 377.85 nm f=0.0928 <S**2>=0.000 130 -> 131 0.69860 This state for optimization and/or second-order correction. Copying the excited state density for this state as the 1-particle RhoCI density. 3.5698 eV 347.32 nm f=0.0425 <S**2>=0.000 Excited State 2: Singlet-A 129 -> 131 0.69241 3.7040 eV 334.73 nm f=0.0358 <S**2>=0.000 Excited State 3: Singlet-A 126 -> 131 -0.25505 127 -> 131 0.27822 128 -> 131 0.59028 3.7158 eV 333.67 nm f=0.0875 <S**2>=0.000 Excited State 4: Singlet-A -0.34906 $126 \rightarrow 131$ 127 -> 131 0.46424 128 -> 131 -0.37874 3.7849 eV 327.58 nm f=0.0115 <S**2>=0.000 Excited State 5: Singlet-A 125 -> 131 -0.13797126 -> 131 0.51307 127 -> 131 0.44589 129 -> 131 0.10819 3.8712 eV 320.27 nm f=0.0016 <S**2>=0.000 Excited State 6: Singlet-A 0.68470 125 -> 131 126 -> 131 0.16403 4.1987 eV 295.29 nm f=0.0793 <S**2>=0.000 Excited State 7: Singlet-A 0.12748 122 -> 131 123 -> 131 -0.10501 124 -> 131 0.67185 Singlet-A 4.2023 eV 295.04 nm f=0.0082 <S**2>=0.000 Excited State 8: 119 -> 131 0.33850 120 -> 131 0.11077 122 -> 131 -0.31577 $123 \rightarrow 131$ 0.46385 124 -> 131 0.18205 4.3551 eV 284.69 nm f=0.1683 <S**2>=0.000 Excited State 9: Singlet-A 119 -> 131 -0.17964 -0.10499 120 -> 131 122 -> 131 0.45237

123 -> 131 0.47886

Excited State 10: 4.4881 eV 276.25 nm f=0.0388 <S**2>=0.000 Singlet-A 119 -> 131 0.45501 120 -> 131 0.24800 121 -> 131 0.19587 122 -> 131 0.37472 123 -> 131 -0.12611 Excited State 11: Singlet-A 4.5556 eV 272.16 nm f=0.0292 <S**2>=0.000 130 -> 132 0.67857 4.6023 eV 269.40 nm f=0.0524 <S**2>=0.000 Excited State 12: Singlet-A 119 -> 131 -0.31667 120 -> 131 0.43086 121 -> 131 0.38567 121 -> 133 -0.11132 4.6879 eV 264.48 nm f=0.1908 <S**2>=0.000 Excited State 13: Singlet-A 120 -> 131 -0.41435 121 -> 131 0.50393 130 -> 133 -0.16274 Excited State 14: Singlet-A 4.8405 eV 256.14 nm f=0.0249 <S**2>=0.000 120 -> 131 -0.12436 121 -> 131 0.10248 $130 \rightarrow 133$ 0.60099 130 -> 134 0.18957 130 -> 135 -0.17651 Excited State 15: 4.8821 eV 253.96 nm f=0.0239 <S**2>=0.000 Singlet-A 129 -> 132 0.66577 130 -> 135 -0.12053 4.8912 eV 253.48 nm f=0.0281 <S**2>=0.000 Excited State 16: Singlet-A 130 -> 133-0.22581 130 -> 134 0.63687 4.9336 eV 251.31 nm f=0.0062 <S**2>=0.000 Excited State 17: Singlet-A $129 \rightarrow 132$ 0.17875 130 -> 133 0.11990 130 -> 134 0.13146 130 -> 135 0.59545 5.0048 eV 247.73 nm f=0.0159 <S**2>=0.000 Excited State 18: Singlet-A $128 \rightarrow 132$ 0.68829

Excited State	19: Singlet-A	5.0295 eV	246.51 nm	f=0.0179	<s**2>=0.000</s**2>
126 -> 132	-0.39739				
127 -> 132	0.53627				
Excited State	20: Singlet-A	5.0931 eV	243.43 nm	f=0.0047	<s**2>=0.000</s**2>
125 -> 132	-0.12296				
126 -> 132	0.48645				
127 -> 132	0.44794				
130 -> 135	-0.10561				

14b E_{tot} =-1967.0893804 au (NIMAG = 0)

Symbol	Х	Y	Ζ	С	2.827856	4.548813	-0.823218
В	0.415773	-0.958492	0.848299	Н	2.575096	5.468571	-1.337752
Ν	-1.010939	-0.425934	0.297836	С	4.090881	4.409015	-0.249235
С	-1.138658	0.899092	0.204914	С	4.377652	3.213463	0.415215
Ν	-0.086896	1.729933	0.287110	Н	5.344252	3.084403	0.888668
С	1.145766	1.279710	0.056757	С	3.448121	2.189568	0.485378
Ν	1.442913	-0.025937	0.013214	Н	3.694608	1.280314	1.015037
С	-2.012628	-1.304289	-0.264837	С	5.115316	5.508665	-0.329236
С	-2.736147	-2.196425	0.546650	Н	5.418203	5.838275	0.667682
С	-3.655946	-3.050409	-0.055023	Н	4.728494	6.374966	-0.865953
Н	-4.213408	-3.732581	0.577445	Н	6.018299	5.170089	-0.843557
С	-3.884439	-3.058017	-1.427508	С	2.559435	-0.478795	-0.754424
С	-3.154286	-2.169186	-2.204740	С	2.728762	-0.032455	-2.065637
Н	-3.303257	-2.158252	-3.278913	Н	2.012195	0.658040	-2.490759
С	-2.217673	-1.295005	-1.655398	С	3.801123	-0.465497	-2.833937
С	-2.600169	-2.230890	2.044688	Н	3.903885	-0.100193	-3.849176
Н	-1.564732	-2.303010	2.365935	С	4.734702	-1.367878	-2.328897
Н	-3.141688	-3.084865	2.450701	С	4.545360	-1.827375	-1.024165
Н	-3.010791	-1.330799	2.510031	Н	5.243743	-2.541778	-0.603351
С	-4.863320	-4.020482	-2.045968	С	3.479651	-1.397754	-0.249140
Н	-5.764303	-4.118140	-1.437416	Н	3.360677	-1.786121	0.749994
Н	-4.425825	-5.018737	-2.138620	С	5.906175	-1.833367	-3.152128
Н	-5.161560	-3.697852	-3.044085	Н	6.845140	-1.422777	-2.770246
С	-1.457055	-0.385105	-2.584841	Н	5.808809	-1.522361	-4.192606
Н	-1.518462	-0.756927	-3.607477	Н	5.999131	-2.921364	-3.132303
Н	-0.404036	-0.312537	-2.315488	С	0.610295	-0.552378	2.428309
Н	-1.864545	0.628864	-2.578950	С	1.818235	-0.843677	3.083852
С	-2.443132	1.584605	0.007036	Н	2.600383	-1.373206	2.554688
С	-3.650249	1.109828	0.540050	С	2.060420	-0.492877	4.406628
Н	-3.671254	0.189082	1.100427	Н	3.008721	-0.746554	4.866082
С	-4.827811	1.812692	0.386405	С	1.088607	0.180168	5.138263
Н	-5.752727	1.448597	0.813386	Н	1.269405	0.459098	6.169137
С	-4.843865	3.017506	-0.322737	С	-0.116182	0.490044	4.523210
С	-3.653123	3.512497	-0.855272	Н	-0.885110	1.021013	5.072212
Н	-3.630441	4.445413	-1.398970	С	-0.341657	0.127890	3.197704
С	-2.474080	2.802929	-0.674299	Н	-1.294249	0.394650	2.760828
Н	-1.550149	3.203359	-1.064056	С	0.611949	-2.536870	0.520907
0	-6.049387	3.628924	-0.430801	С	0.650364	-3.022635	-0.795731
С	-6.130999	4.864989	-1.124633	Н	0.571486	-2.331708	-1.625293
Н	-5.515602	5.631890	-0.646073	С	0.798149	-4.372177	-1.087831
Н	-7.175910	5.162541	-1.081147	Н	0.822471	-4.700280	-2.120306
Н	-5.828695	4.756229	-2.170006	С	0.915667	-5.300027	-0.058540
С	2.184342	2.333627	-0.095443	Н	1.032130	-6.354067	-0.280072
C	1.883839	3.535108	-0.736020	С	0.879543	-4.855702	1.255955
Н	0.901517	3.671224	-1.165455	Н	0.967143	-5.563707	2.071800

14a TD-DFT Output

С

Excited State 1: Singlet-A 3.2448 eV 382.10 nm f=0.1929 <S**2>=0.000 170 -> 171 0.70095 This state for optimization and/or second-order correction. Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 169 -> 171	2:	Singlet-A 0.69784	3.4467 eV	359.71 nm	f=0.0662	<s**2>=0.000</s**2>
Excited State 168 -> 171	3:	Singlet-A 0.69867	3.5018 eV	354.06 nm	f=0.0320	<s**2>=0.000</s**2>
Excited State 165 -> 171 166 -> 171 167 -> 171	4:	Singlet-A -0.13879 -0.14117 0.65559	3.6246 eV	342.06 nm	f=0.0314	<s**2>=0.000</s**2>
Excited State 162 -> 171 165 -> 171 166 -> 171 167 -> 171	5:	Singlet-A 0.14300 0.12582 0.64059 0.20125	3.6796 eV	336.95 nm	f=0.0316	<s**2>=0.000</s**2>
Excited State 162 -> 171 163 -> 171 164 -> 171 165 -> 171 166 -> 171 167 -> 171	6:	Singlet-A -0.20290 0.15123 0.54062 -0.24738 0.16448 -0.13875	3.7904 eV	327.10 nm	f=0.1210	<s**2>=0.000</s**2>
Excited State 163 -> 171 164 -> 171 165 -> 171	7:	Singlet-A 0.33490 0.14912 0.58239	3.8127 eV	325.18 nm	f=0.0338	<s**2>=0.000</s**2>
Excited State 163 -> 171 164 -> 171 165 -> 171	8:	Singlet-A 0.56359 -0.32896 -0.23375	3.8586 eV	321.32 nm	f=0.0144	<s**2>=0.000</s**2>
Excited State	9:	Singlet-A	3.9842 eV	311.19 nm	f=0.1209	<s**2>=0.000</s**2>

00

$159 \rightarrow 171 \\ 161 \rightarrow 171 \\ 162 \rightarrow 171 \\ 163 \rightarrow 171 \\ 164 \rightarrow 171 \\ 166 $	0.12471 -0.13061 0.57234 0.16854 0.24451 -0.14305			
Excited State 157 -> 171 158 -> 171 159 -> 171 160 -> 171 161 -> 171 162 -> 171	10: Singlet-A 0.30878 -0.15892 -0.23407 0.36663 0.32652 0.22670	4.1495 eV 298	8.79 nm f=0.0670	<s**2>=0.000</s**2>
Excited State 160 -> 171 161 -> 171 162 -> 171	11: Singlet-A 0.47909 -0.47897 -0.10796	4.2954 eV 288	8.65 nm f=0.0090	<s**2>=0.000</s**2>
Excited State 157 -> 171 158 -> 171 159 -> 171 160 -> 171 161 -> 171 170 -> 172	12: Singlet-A -0.20759 0.15989 0.41931 0.30648 0.26601 -0.18898	4.3491 eV 285	5.08 nm f=0.0132	<s**2>=0.000</s**2>
Excited State 158 -> 171 161 -> 171 170 -> 172	13: Singlet-A 0.17844 0.15057 0.63755	4.4575 eV 278	8.14 nm f=0.0519	<s**2>=0.000</s**2>
Excited State 157 -> 171 158 -> 171 159 -> 171 161 -> 171 170 -> 172 170 -> 174	14: Singlet-A 0.35506 -0.34363 0.41326 -0.11034 0.10402 -0.14598	4.5199 eV 274	4.31 nm f=0.0369	<s**2>=0.000</s**2>
Excited State 157 -> 171 158 -> 171 166 -> 173 170 -> 172 170 -> 173	15: Singlet-A 0.38211 0.45806 -0.10822 -0.12757 -0.21282	4.5530 eV 272	2.31 nm f=0.0182	<s**2>=0.000</s**2>

Excited State 169 -> 172	16: Singlet-A 0.65382	4.6871 eV	264.52 nm	f=0.0713	<s**2>=0.000</s**2>
Excited State 168 -> 172 169 -> 172 170 -> 174	17: Singlet-A 0.66133 0.13948 0.11408	4.7937 eV	258.64 nm	f=0.0001	<s**2>=0.000</s**2>
Excited State 159 -> 171 168 -> 172 169 -> 172 169 -> 174 170 -> 173 170 -> 174 170 -> 175	18: Singlet-A 0.15384 -0.20113 0.10001 -0.11354 0.34204 0.45383 -0.13326	4.8172 eV	257.38 nm	f=0.0627	<s**2>=0.000</s**2>
Excited State 157 -> 171 158 -> 171 170 -> 173 170 -> 174 170 -> 175	19: Singlet-A 0.15114 0.11797 0.35990 -0.10274 0.48352	4.8767 eV	254.24 nm	f=0.0271	<s**2>=0.000</s**2>
Excited State 158 -> 171 169 -> 173 170 -> 173 170 -> 174 170 -> 175	20: Singlet-A -0.19916 -0.15260 -0.32610 0.36667 0.34841	4.8800 eV	254.07 nm	f=0.0277	<s**2>=0.000</s**2>

14c $E_{tot} = -3236.7325782$ au (NIMAG = 0)

Symbol	Х	Y	Ζ	В	-5.033077	0.487614	0.319549
С	-1.199183	0.987844	1.147844	С	-3.357374	-3.122975	0.352156
С	-1.158664	1.982901	2.125445	С	-4.189056	-4.028354	1.013636
С	0.061819	2.461849	2.580156	С	-3.902086	-5.386791	0.996824
С	1.247968	1.989441	2.037956	С	-2.794553	-5.859757	0.302454
С	1.224671	0.994625	1.057336	С	-1.957872	-4.963131	-0.353404
С	-0.00377	0.475821	0.648411	С	-2.227121	-3.602133	-0.312256
С	-2.499094	0.383129	0.723711	Н	-5.056529	-3.6738	1.551299
С	2.483123	0.396663	0.519805	Н	-2.580488	-6.921033	0.279268
Н	0.088484	3.209893	3.361844	Н	-4.548639	-6.076228	1.524737
Н	2.190315	2.381624	2.391163	Н	-1.557859	-2.900521	-0.790446
Н	-2.077708	2.36532	2.546258	Н	-1.085554	-5.319674	-0.885877
Н	-0.022515	-0.339566	-0.059078	С	-5.843988	-1.89042	-0.381465
Ν	3.54717	1.128782	0.216786	С	-7.013946	-2.079389	0.346198
Ν	2.435634	-0.929439	0.388866	С	-8.055733	-2.824326	-0.192477
С	3.509593	-1.640082	0.037488	С	-7.966003	-3.387118	-1.464989
Ν	4.722795	-1.123721	-0.102319	С	-6.789813	-3.177736	-2.185939
С	5.883176	-1.977017	-0.082721	С	-5.743935	-2.436145	-1.657702
С	6.141762	-2.750987	1.047089	Н	-7.106308	-1.651116	1.3343
С	6.788599	-2.006362	-1.138432	Н	-8.956121	-2.969704	0.393225
С	7.918519	-2.812677	-1.066071	Н	-4.846323	-2.273848	-2.23902
С	7.270204	-3.553822	1.107129	Н	-6.690488	-3.59527	-3.181178
С	8.183447	-3.600032	0.052859	С	-5.813458	0.976368	-1.023052
Н	6.612357	-1.405664	-2.017976	С	-5.754115	0.758008	1.763993
Н	5.459824	-2.712759	1.886029	С	-6.671844	1.793228	1.999733
Н	7.448008	-4.147694	1.996317	С	-7.219251	2.031611	3.257123
Н	8.606348	-2.827091	-1.903747	С	-6.860982	1.236854	4.33908
С	3.22284	-3.087674	-0.185669	С	-5.946599	0.208197	4.145242
С	2.341289	-3.743035	0.677413	С	-5.410183	-0.019469	2.882147
С	2.022032	-5.078789	0.476004	Н	-7.928206	2.840611	3.389872
С	2.552104	-5.767273	-0.609797	Н	-6.963899	2.442053	1.184456
С	3.404501	-5.112448	-1.492455	Н	-5.648318	-0.417627	4.978233
С	3.746375	-3.784476	-1.277727	Н	-7.285852	1.41747	5.318889
Н	4.413998	-3.2877	-1.966719	Н	-4.700235	-0.830967	2.773683
Н	1.350465	-5.578142	1.162621	С	-5.115258	1.132062	-2.2292
Н	1.908658	-3.193128	1.501173	С	-7.203083	1.139821	-1.095221
Н	2.299051	-6.807844	-0.77105	С	-7.852063	1.468609	-2.282062
Н	3.808071	-5.637303	-2.349011	С	-5.747264	1.460964	-3.422346
Ν	-3.543081	1.127239	0.373809	С	-7.125486	1.639566	-3.452999
Ν	-2.505478	-0.949058	0.768242	Н	-7.625725	1.898211	-4.378365
С	-3.588531	-1.647213	0.409057	Н	-5.164401	1.575745	-4.328855
Ν	-4.765269	-1.099509	0.153668	Н	-7.806978	0.986461	-0.211227

Н	-8.929581	1.58435	-2.290386
Н	-4.042465	0.984208	-2.245148
С	3.418413	2.543278	-0.015182
С	2.596509	2.993159	-1.046197
С	2.48458	4.348405	-1.317193
С	3.195951	5.295705	-0.580614
С	4.0227	4.831294	0.441413
С	4.141546	3.475912	0.722456
Н	4.792408	3.145728	1.518333
Н	4.587728	5.540988	1.03481
Н	1.840671	4.672988	-2.126349
Н	2.053382	2.274318	-1.645246
С	-3.352903	2.520153	0.064467
С	-4.02239	3.518295	0.763128
С	-3.838815	4.854919	0.426326
С	-2.988494	5.237022	-0.60782
С	-2.319488	4.225411	-1.300204
С	-2.499178	2.891339	-0.974908
Н	-4.67502	3.256726	1.581418
Н	-4.36986	5.614241	0.988512
Н	-1.978281	2.1268	-1.535848
Н	-1.654159	4.484298	-2.115916
С	-2.788881	6.68468	-0.970052
Н	-3.431326	7.334272	-0.375459
Н	-3.014056	6.864096	-2.024026
Н	-1.754052	6.995128	-0.803389
С	3.102256	6.763465	-0.903208
Н	2.110148	7.028261	-1.272104
Н	3.822274	7.041038	-1.678726
Н	3.313842	7.377929	-0.027161
С	9.426239	-4.44583	0.13889
Н	9.227034	-5.398537	0.632622
Н	10.206063	-3.938973	0.714804
Н	9.833877	-4.655158	-0.850736
С	-9.110941	-4.165489	-2.057208
Н	-9.753717	-4.580913	-1.280163
Н	-8.753904	-4.98816	-2.678936
Н	-9.73324	-3.526138	-2.690262
В	4.988421	0.467635	-0.083634
С	6.003206	0.752664	1.162497
С	5.432095	0.979551	-1.56798
С	5.514446	0.783739	2.477691
С	6.348687	0.931889	3.580446

С	7.722276	1.049773	3.401059
С	8.241116	1.005989	2.112935
С	7.393055	0.857035	1.0192
Н	7.832194	0.806061	0.031567
Н	4.448451	0.687454	2.653116
Н	5.927418	0.952216	4.578858
Н	8.379194	1.167557	4.254238
Н	9.310845	1.082967	1.957134
С	4.854263	0.406971	-2.711392
С	5.129534	0.864475	-3.99532
С	6.29205	2.063083	-1.788983
С	6.577472	2.532807	-3.068082
С	6.001064	1.932079	-4.18014
Н	4.662384	0.390301	-4.850764
Н	6.222309	2.293916	-5.17686
Η	4.165903	-0.424286	-2.600971
Η	6.743687	2.566897	-0.944421
Н	7.248812	3.3742	-3.19428

14c TD-DFT Output

Excited State 277 -> 280 278 -> 280 279 -> 280 279 -> 281 This state for of Copying the e	1: opti xcit	Singlet-A 0.10952 0.38113 -0.40247 0.41485 imization and/or ted state density	3.2570 eV second-o for this st	v rd	380.66 nm er correction e as the 1-pa	f=0.1500 n. article Rho	<s**2>=0.000 CI density.</s**2>
Excited State 278 -> 280 278 -> 281 279 -> 280	2:	Singlet-A 0.44978 0.24030 0.46231	3.2599 e	V	380.33 nm	f=0.1302	<s**2>=0.000</s**2>
Excited State 275 -> 280 275 -> 281 276 -> 280 276 -> 281 277 -> 280	3:	Singlet-A 0.46679 0.23532 0.36595 0.19634 -0.19675	3.3469 e	V	370.45 nm	f=0.0049	<s**2>=0.000</s**2>
Excited State 274 -> 280 275 -> 280 275 -> 281 277 -> 280 277 -> 281 278 -> 281	4:	Singlet-A -0.10323 0.16448 0.11661 0.50229 -0.35538 0.20249	3.3592 e ³	V	369.09 nm	f=0.0872	<s**2>=0.000</s**2>
Excited State 274 -> 281 275 -> 280 275 -> 281 276 -> 280 276 -> 281 277 -> 281	5:	Singlet-A 0.18663 -0.38073 -0.13072 0.49668 0.15049 -0.14814	3.3843 e	V	366.35 nm	f=0.1552	<s**2>=0.000</s**2>
Excited State 274 -> 280 274 -> 281 275 -> 281 276 -> 281	6:	Singlet-A 0.50555 -0.41702 -0.13702 0.13327	3.3997 e	V	364.70 nm	f=0.0537	<s**2>=0.000</s**2>
Excited State 277 -> 281 278 -> 280	7:	Singlet-A -0.17737 -0.30764	3.4372 e	V	360.71 nm	f=0.0256	<s**2>=0.000</s**2>

279 -> 280 279 -> 281	0.21999 0.52498	
Excited State 272 -> 280 273 -> 280 276 -> 281 277 -> 281 278 -> 280 278 -> 281 279 -> 280	8: Singlet-A -0.10506 0.16576 0.27767 0.12190 -0.10441 0.50930 -0.21364	3.5162 eV 352.61 nm f=0.0222 <s**2>=0.000</s**2>
Excited State 272 -> 280 272 -> 281 273 -> 281 278 -> 281	9: Singlet-A 0.61177 0.26648 -0.12469 0.11742	3.5408 eV 350.16 nm f=0.0064 <s**2>=0.000</s**2>
Excited State 272 -> 281 273 -> 280 273 -> 281 278 -> 281	10: Singlet-A -0.10983 0.49135 -0.42564 -0.16345	3.5589 eV 348.38 nm f=0.0253 <s**2>=0.000</s**2>
Excited State 270 -> 280 270 -> 281 276 -> 280 277 -> 280 277 -> 281 278 -> 280 279 -> 281	11: Singlet-A 0.23330 0.10183 0.11419 0.36653 0.46914 -0.12799 0.11001	3.5955 eV 344.83 nm f=0.0077 <s**2>=0.000</s**2>
Excited State 270 -> 280 270 -> 281 271 -> 281 276 -> 280 276 -> 281 277 -> 281 278 -> 281	12: Singlet-A 0.54102 0.22030 0.14790 -0.11419 0.13409 -0.22311 -0.11399	3.6216 eV 342.35 nm f=0.0169 <s**2>=0.000</s**2>
Excited State 270 -> 280 270 -> 281 276 -> 280 276 -> 281	13: Singlet-A -0.18271 -0.16410 -0.21161 0.51712	3.6283 eV 341.72 nm f=0.0145 <s**2>=0.000</s**2>

277 -> 280 278 -> 280 278 -> 281	0.14928 0.10545 -0.23708				
Excited State 269 -> 280 270 -> 281 271 -> 280 271 -> 281	14: Singlet-A 0.10922 0.11609 0.50856 -0.42727	3.6349 eV	341.09 nm	f=0.0252	<s**2>=0.000</s**2>
Excited State 274 -> 281 275 -> 280 275 -> 281	15: Singlet-A -0.10879 -0.30427 0.60937	3.6778 eV	337.11 nm	f=0.0011	<s**2>=0.000</s**2>
Excited State 274 -> 280 274 -> 281 275 -> 280	16: Singlet-A 0.46440 0.49494 0.10387	3.7186 eV	333.42 nm	f=0.0004	<s**2>=0.000</s**2>
Excited State 268 -> 280 268 -> 281 269 -> 280 269 -> 281	17: Singlet-A 0.60703 0.26017 0.12315 0.12949	3.7527 eV	330.38 nm	f=0.0267	<s**2>=0.000</s**2>
Excited State 268 -> 281 269 -> 280 269 -> 281	18: Singlet-A 0.13894 0.51679 -0.40876	3.7623 eV	329.54 nm	f=0.0287	<s**2>=0.000</s**2>
Excited State 254 -> 280 263 -> 280 266 -> 280 266 -> 281 267 -> 280 267 -> 281 269 -> 281 273 -> 280 273 -> 281	19: Singlet-A 0.14420 -0.12422 0.31549 0.14131 -0.19322 -0.21240 0.12882 -0.25256 -0.29476	3.7908 eV	327.06 nm	f=0.0427	<s**2>=0.000</s**2>
Excited State 255 -> 280 255 -> 281 264 -> 281 265 -> 280	20: Singlet-A 0.11235 -0.14373 -0.10458 0.11664	3.8030 eV	326.01 nm	f=0.0476	<s**2>=0.000</s**2>

265 -> 281	-0.12166
266 -> 280	-0.21560
266 -> 281	0.17795
267 -> 280	-0.35313
267 -> 281	0.36183
272 -> 281	0.12067
273 -> 281	-0.10591

14e: $E_{tot} = -4045.60335017au$ (NIMAG = 0)

Symbol	Х	Y	Ζ	1	4.324665	-4.681346	1.526171
				7	-3.071157	-1.515441	1.366701
6	0.272222	4.780795	1.359475	6	-4.325599	-1.775271	1.746711
6	0.801557	2.774233	0.334189	7	-5.365702	-1.237971	1.151970
7	1.810209	3.279416	-0.373459	5	-5.345009	-0.547465	-0.255960
5	2.418495	4.736806	-0.048060	7	-3.782082	-0.162117	-0.435384
7	1.280079	5.403432	0.800931	6	-5.810255	-1.681816	-1.334207
6	0.389469	1.340623	0.225183	6	-6.274352	0.785902	-0.204641
6	1.320692	0.306135	0.231680	6	-6.467656	1.479021	0.998138
6	0.903902	-1.024047	0.233340	6	-7.235749	2.637764	1.072353
6	-0.456540	-1.314078	0.248190	6	-7.838484	3.145505	-0.072038
6	-1.400955	-0.287441	0.239280	6	-7.662532	2.482851	-1.282225
6	-0.971565	1.035010	0.238625	6	-6.894853	1.325064	-1.340365
6	1.945032	-2.092844	0.356575	6	-4.913026	-2.626230	-1.853381
6	-2.846621	-0.654551	0.366300	6	-5.327290	-3.678101	-2.663535
7	2.000454	-3.132149	-0.465445	6	-6.672958	-3.828833	-2.978076
5	3.125127	-4.285686	-0.302306	6	-7.591346	-2.920420	-2.466164
7	3.713717	-3.987291	1.121079	6	-7.161880	-1.870324	-1.660145
6	3.637786	-2.835179	1.745876	6	-4 506659	-2 672922	2 911181
7	2.785985	-1.874108	1.374493	6	-3 469602	-2 833696	3 833596
6	4.348427	-4.077191	-1.363455	6	-3 628362	-3 659994	4 934601
6	2.447639	-5.763445	-0.295271	6	-4 816506	-4 361952	5 149111
6	2.301223	-6.539756	-1.453542	6	-5 841175	-4 214926	4 212463
6	1.690131	-7.788545	-1.431930	6	-5 693090	-3 383763	3 112560
6	1.201414	-8.307912	-0.237797	6	-0 702901	5 520164	2 197880
6	1.327938	-7.562237	0.927822	6	2 609726	5 592833	-1 420048
6	1.940259	-6.312547	0.890288	6	1 515387	6 235553	-2 016295
6	5.187049	-5.136875	-1.740529	6	1.632705	6 961580	-3 197606
6	6.314883	-4.944425	-2.533044	6	2 865952	7 064350	-3 829532
6	6.647348	-3.670877	-2.977899	6	3 969666	6 432885	-3.267526
6	5.844904	-2.596594	-2.610805	6	3 837393	5 713507	-2 084416
6	4.723010	-2.803370	-1.815606	6	3 731082	4 648137	0.916309
6	4.063668	-1.619636	3.878120	6	4 013738	3 528329	1 710223
6	4.827955	-1.365324	5.003889	6	5 071768	3 507160	2 61/27/
6	6.035649	-2.033458	5.227071	6	5 882575	A 625585	2.014274
6	6.452278	-2.964623	4.276416	6	5 620971	5 758585	2.704401
6	5.687695	-3.230996	3.148803	6	4 565838	5 762126	1 095842
6	6.856736	-1.748248	6.455283	6	-0.857453	6 905668	2 108606
6	4.477691	-2.567341	2.936565	6	-0.837433	7 570011	2.108090
6	1.112496	-3.219777	-1.598960	6	-1.774800	6 878014	2.909432
6	1.315036	-2.419100	-2.717153	0	-2.304900	5 402632	3.027720
6	0.475699	-2.530123	-3.819897	0	-2.407030	J.492032 4 820082	3.912103
6	-0.577291	-3.441508	-3.842195	0	-1.300734	4.820983	3.106296
6	-0.769200	-4.237993	-2.710735	6	-3.3/3/02	1.373702	4.001/03
6	0.061497	-4.135135	-1.605026	6	-4.773008	-3.230383	1 560491
6	-1.481750	-3.569512	-5.039812	6	-3.422/39	0.000398	1 549404
-				U	-3.09/330	2.032813	-1.340490
							335

6	-3.372471	2.820853	-2.642238	1	-8.124924	2.868932	-2.183110
6	-2.774876	2.275500	-3.780771	1	-6.770726	0.832401	-2.296910
6	-2.508241	0.908424	-3.778642	1	-3.859295	-2.552775	-1.611826
6	-2.827184	0.109558	-2.686305	1	-4.600062	-4.385844	-3.044207
6	-2.427388	3.143475	-4.961655	1	-7.001130	-4.645673	-3.609249
6	2.322844	2.589974	-1.524807	1	-8.645145	-3.027152	-2.696021
6	1.487240	2.313724	-2.602334	1	-7.902913	-1.179147	-1.276825
6	1.990220	1.696723	-3.740558	1	-2.543470	-2.301566	3.669364
6	3.335348	1.346818	-3.842415	1	-2.812678	-3.766315	5.640262
6	4.163707	1.639733	-2.757129	1	-6.763688	-4.769204	4.338548
6	3.672504	2.255177	-1.615108	1	-6.496312	-3.327633	2.388208
6	3.883289	0.679060	-5.076202	1	0.537869	6.165129	-1.550796
1	1.384150	6.383661	1.017873	1	0.762044	7.446289	-3.624126
1	-6.267937	-1.424784	1.564286	1	2.966076	7.629262	-4.748405
7	0.064233	3.466762	1.206647	1	4.937173	6.502092	-3.750918
1	2.377936	0.520093	0.268640	1	4.715474	5.235263	-1.668426
1	-0.799133	-2.335797	0.302636	1	3.394438	2.642484	1.628270
1	-1.681274	1.845687	0.282030	1	5.260124	2.616636	3.202398
1	2.667195	-6.157006	-2.398349	1	6.707895	4.614901	3.465869
1	1.594651	-8.358078	-2.348978	1	6.243684	6.639247	2.108563
1	0.727780	-9.281920	-0.216852	1	4.393017	6.656428	0.507634
1	0.948902	-7.951497	1.865573	1	-0.284918	7.481728	1.392059
1	2.012760	-5.746115	1.812731	1	-1.881448	8.644097	2.815221
1	4.956667	-6.141864	-1.408300	1	-3.006023	4.930667	4.619442
1	6.933734	-5.791960	-2.804083	1	-1.390440	3.748361	3.175546
1	7.522012	-3.516376	-3.597917	1	-4.586681	7.454011	4.288392
1	6.097637	-1.594696	-2.937758	1	-3.572123	7.212614	5.704408
1	4.134184	-1.939103	-1.531624	1	-3.381146	8.666012	4.716790
1	3.135392	-1.092990	3.709002	1	-5.402137	-4.662583	7.197282
1	4.483728	-0.632015	5.724259	1	-4.042541	-5.658261	6.689339
1	7.394206	-3.482095	4.412915	1	-5.682073	-6.058536	6.162316
1	6.065248	-3.933497	2.416014	1	-4.161717	2.478330	-0.680773
1	7.089708	-0.683983	6.535665	1	-3.592995	3.881606	-2.608987
1	7.796829	-2.299525	6.443988	1	-2.047103	0.451547	-4.646225
1	6.315022	-2.027691	7.362632	1	-2.606147	-0.947739	-2.712136
1	2.127650	-1.707121	-2.731112	1	-3.289295	3.728293	-5.290446
1	0.653382	-1.896113	-4.680425	1	-1.633422	3.852428	-4.712376
1	-1.578414	-4.958866	-2.693638	1	-2.085744	2.545628	-5.806890
1	-0.102951	-4.767295	-0.744155	1	0.442816	2.592589	-2.555982
1	-2.505959	-3.272768	-4.799504	1	1.322115	1.499091	-4.570478
1	-1.138247	-2.944502	-5.864364	1	5.217136	1.388483	-2.805891
1	-1.521616	-4.601444	-5.396087	1	4.337104	2.477414	-0.792450
1	-5.998737	1.112165	1.905093	1	4.158800	-0.360246	-4.877309
1	-7.362338	3.143271	2.022689	1	4.781171	1.186695	-5.435109
1	-8.438821	4.045846	-0.022167	1	3.152187	0.679671	-5.885043

14e TD-DFT Output

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 3.2829 eV 377.67 nm f=0.0803 < S**2=0.000 $348 \rightarrow 349 \qquad 0.68092$ $348 \rightarrow 351 \qquad -0.15425$ This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -4045.48270684 Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 346 -> 349 346 -> 350 346 -> 351 347 -> 349 347 -> 351	2: Singlet-A 0.27601 0.55754 0.24292 -0.13184 -0.13016	3.4247 eV	362.03 nm	f=0.0698	<s**2>=0.000</s**2>
Excited State 346 -> 349 346 -> 351 347 -> 349 347 -> 350 347 -> 351	3: Singlet-A -0.12545 -0.12479 -0.29729 0.50599 -0.30906	3.4359 eV	360.85 nm	f=0.0551	<s**2>=0.000</s**2>
Excited State 348 -> 350	4: Singlet-A 0.68019	3.5414 eV	350.10 nm	f=0.0057	<s**2>=0.000</s**2>
Excited State 345 -> 349 345 -> 351 346 -> 349 347 -> 349 347 -> 350	5: Singlet-A 0.61820 -0.14530 -0.13601 0.16361 0.10695	3.5639 eV	347.89 nm	f=0.0499	<s**2>=0.000</s**2>
Excited State 345 -> 349 346 -> 349 346 -> 350 347 -> 349	6: Singlet-A 0.18661 0.57834 -0.27900 -0.12675	3.5779 eV	346.53 nm	f=0.0033	<s**2>=0.000</s**2>
Excited State 345 -> 349 346 -> 349 347 -> 349 347 -> 350	7: Singlet-A -0.16507 0.17316 0.54749 0.34107	3.5896 eV	345.39 nm	f=0.0004	<s**2>=0.000</s**2>

Excited State 339 -> 349 341 -> 349 341 -> 351 342 -> 349 344 -> 349 348 -> 351	8: Singlet-A -0.11966 0.54682 -0.13819 -0.26854 -0.12237 -0.12189	3.6874 eV 336.23 nm f=0.0754 <s**2>=0.000</s**2>
Excited State $331 \rightarrow 350$ $337 \rightarrow 350$ $338 \rightarrow 349$ $340 \rightarrow 349$ $340 \rightarrow 350$ $341 \rightarrow 349$ $342 \rightarrow 350$ $343 \rightarrow 349$ $343 \rightarrow 350$ $344 \rightarrow 350$ $344 \rightarrow 351$ $348 \rightarrow 351$	9: Singlet-A -0.11674 -0.10422 0.10550 -0.11060 -0.15347 0.23395 -0.12616 -0.12385 -0.21886 0.25628 -0.13384 0.21179 0.27427	3.6970 eV 335.37 nm f=0.0489 <s**2>=0.000</s**2>
Excited State $338 \rightarrow 350$ $340 \rightarrow 350$ $342 \rightarrow 349$ $342 \rightarrow 350$ $342 \rightarrow 351$ $343 \rightarrow 349$ $343 \rightarrow 350$ $343 \rightarrow 351$ $344 \rightarrow 350$ $344 \rightarrow 351$ $348 \rightarrow 351$	10: Singlet-A 0.11922 -0.13687 -0.12021 0.14878 -0.10406 -0.12099 -0.13124 -0.10616 -0.11457 0.43705 -0.14682 0.23516	3.7037 eV 334.76 nm f=0.0344 <s**2>=0.000</s**2>
Excited State 333 -> 349 336 -> 349 339 -> 349 341 -> 349 343 -> 350 344 -> 349 348 -> 351	 11: Singlet-A -0.20345 -0.19234 0.39998 0.12175 0.22258 -0.21419 0.24497 	3.7200 eV 333.29 nm f=0.0563 <s**2>=0.000</s**2>
Excited State	12: Singlet-A	3.72/1 eV 332.66 nm t=0.0218 <s**2>=0.000</s**2>

$\begin{array}{r} 339 \Rightarrow 349\\ 340 \Rightarrow 350\\ 341 \Rightarrow 350\\ 341 \Rightarrow 351\\ 342 \Rightarrow 349\\ 342 \Rightarrow 350\\ 342 \Rightarrow 351\\ 343 \Rightarrow 350\\ 344 \Rightarrow 349\\ 344 \Rightarrow 350\\ 344 \Rightarrow 350\\ 344 \Rightarrow 351\\ 347 \Rightarrow 350\\ \end{array}$	0.17822 0.11944 0.13961 -0.12450 -0.25533 0.34549 -0.25098 -0.19329 0.15919 -0.17678 0.14675 -0.11004				
Excited State 340 -> 349 340 -> 350 340 -> 351 342 -> 350 343 -> 349 343 -> 350 343 -> 351 344 -> 350 348 -> 351	13: Singlet-A 0.23842 0.43950 0.23007 -0.15527 -0.16268 -0.24107 -0.15266 0.13244 0.11049	3.7335 eV	332.09 nm	f=0.0665	<s**2>=0.000</s**2>
Excited State 339 -> 349 342 -> 350 343 -> 349 343 -> 350 344 -> 350 348 -> 351	14: Singlet-A -0.29297 0.10600 0.20585 0.14396 -0.17687 0.47312	3.7427 eV	331.27 nm	f=0.0447	<s**2>=0.000</s**2>
Excited State 332 -> 349 338 -> 349 340 -> 350 343 -> 350 344 -> 349 345 -> 350 346 -> 351 347 -> 349 347 -> 350 347 -> 351	15: Singlet-A -0.10500 -0.16098 -0.10413 -0.22260 -0.24319 0.21136 0.15367 -0.12040 0.18797 0.35887	3.7685 eV	329.00 nm	f=0.0072	<s**2>=0.000</s**2>
Excited State 333 -> 349 336 -> 349	16: Singlet-A 0.26926 0.24864	3.7824 eV	327.79 nm	f=0.0172	<s**2>=0.000</s**2>

337 -> 349 338 -> 349 339 -> 349 344 -> 349	0.20868 0.17079 0.36524 0.10836	
347 -> 351	0.21198	
Excited State $333 \rightarrow 349$ $334 \rightarrow 349$ $337 \rightarrow 349$ $339 \rightarrow 349$ $339 \rightarrow 349$ $340 \rightarrow 350$ $342 \rightarrow 350$ $343 \rightarrow 349$ $343 \rightarrow 349$ $343 \rightarrow 350$ $344 \rightarrow 349$ $345 \rightarrow 350$ $346 \rightarrow 350$ $347 \rightarrow 351$	17: Singlet-A -0.12586 0.13488 -0.17007 0.10119 -0.14590 0.10543 0.10984 -0.18712 0.13487 0.12047 -0.14078 0.11632 0.17663 0.42145	3.7901 eV 327.12 nm f=0.0019 <s**2>=0.000</s**2>
Excited State 334 -> 350 337 -> 349 337 -> 351 338 -> 349 338 -> 350 338 -> 351 342 -> 350 346 -> 350 346 -> 351	18: Singlet-A 0.10118 -0.13389 -0.10254 -0.14820 0.39614 -0.14846 -0.10586 0.10985 -0.29292	3.8072 eV 325.66 nm f=0.0070 <s**2>=0.000</s**2>
Excited State $331 \rightarrow 350$ $334 \rightarrow 350$ $337 \rightarrow 349$ $337 \rightarrow 350$ $337 \rightarrow 351$ $338 \rightarrow 349$ $338 \rightarrow 351$ $339 \rightarrow 350$ $340 \rightarrow 349$ $340 \rightarrow 349$ $340 \rightarrow 350$ $343 \rightarrow 350$ $345 \rightarrow 350$ $345 \rightarrow 350$ $346 \rightarrow 351$	19: Singlet-A 0.13210 -0.12872 0.17695 0.40567 0.13550 -0.19268 -0.19395 -0.10946 -0.11732 -0.14223 -0.14223 -0.11094 -0.14175 -0.11848	3.8148 eV 325.01 nm f=0.0098 <s**2>=0.000</s**2>

Excited State 338 -> 350 338 -> 351 344 -> 349 345 -> 350 346 -> 350 246 -> 350	20: Singlet-A 0.23467 -0.10533 0.12674 -0.20406 -0.19576 0.51026	3.8258 eV 324.07 nm f=0.0035 <s**2>=0.000</s**2>
346 -> 350 346 -> 351 347 -> 350	-0.19576 0.51036 0.10064	

Def2-TZVP basis set details as obtained from EMSL Basis Set Exchange Library² (<u>https://bse.pnl.gov/bse/portal</u>)

! Def2-TZVP EMSL Basis Set Exchange Library 8/8/12 8:15 AM

! Elements References

! -----

! H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn: F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297-3305.

****			0.18147077798	1.0000000		
Н	0		Р	1 1.00		
S	S 3 1.00			0.64621893904E-01 1.0000000		
	34.0613410	0.60251978E-02	D	1 1.00		
	5.1235746	0.45021094E-01		0.66100000	1.0000000	
	1.1646626	0.20189726	D	1 1.00		
S	1 1.00			0.19900000	1.0000000	
	0.32723041	1.0000000	F	1 1.00		
S	1 1.00			0.49000000	1.0000000	
~	0.10307241	1.0000000	**	***		
Р	1 1.00		С	0		
	0.8000000	1.0000000	S	6 1.00		
**	***		1	3575.3496820	0.22245814352E-03	
В	0			2035.2333680	0.17232738252E-02	
S	6 1.00			463.22562359	0.89255715314E-02	
	8564.8660687	0.22837198155E-03		131.20019598	0.35727984502E-01	
	1284.1516263	0.17682576447E-02		42.853015891	0.11076259931	
	292.27871604	0.91407080516E-02		15.584185766	0.24295627626	
	82.775469176	0.36342638989E-01	S	2 1.00		
	27.017939269	0.11063458441		6.2067138508	0.41440263448	
	9.8149619660	0.23367344321		2.5764896527	0.23744968655	
S	2 1.00		S	1 1.00		
	3.9318559059	0.41818777978		0.57696339419	1.0000000	
	1.6595599712	0.22325473798	S	1 1.00		
S	1 1.00			0.22972831358	1.0000000	
	0.35762965239	1.0000000	S	1 1.00		
S	1 1.00			0.95164440028E-	-01 1.0000000	
	0.14246277496	1.0000000	Р	4 1.00		
S	1 1.00			34.697232244	0.53333657805E-02	
	0.60560594768E-	01 1.0000000		7.9582622826	0.35864109092E-01	
Р	4 1.00			2.3780826883	0.14215873329	
	22.453875803	0.50265575179E-02		0.81433208183	0.34270471845	
	5.1045058330	0.32801738965E-01	Р	1 1.00		
	1.4986081344	0.13151230768		0.28887547253	1.0000000	
	0.50927831315	0.33197167769	Р	1 1.00		
Р	1 1.00			0.10056823671	1.0000000	

D 1 1.00		S 1 1.00	
1.09700000	1.0000000	0.33647133771	1.0000000
D 1 1.00		S 1 1.00	
0.31800000	1.0000000	0.13647653675	1.0000000
F 1 1.00		P 4 1.00	
0.76100000	1.0000000	49.200380510	0.55552416751E-02
****		11.346790537	0.38052379723E-01
N 0		3.4273972411	0.14953671029
S 6 1.00		1.1785525134	0.34949305230
19730.8006470	0.21887984991E-03	P 1 1.00	
2957.8958745	0.16960708803E-02	0.41642204972	1.0000000
673.22133595	0.87954603538E-02	P 1 1.00	
190.68249494	0.35359382605E-01	0.14260826011	1.0000000
62.295441898	0.11095789217	D 1 1.00	
22.654161182	0.24982972552	1.65400000	1.0000000
S 2 1.00		D 1 1.00	
8.9791477428	0.40623896148	0.46900000	1.0000000
3.6863002370	0.24338217176	F 1 1.00	
S 1 1.00		1.09300000	1.0000000
0.84660076805	1.0000000	****	
! Elements	References		
1			

! Y-Cd(ecp-28), Hf-Hg(ecp-46): D. Andrae, U. Haeussermann, M.Dolg, H.Stoll, H.Preuss, Theor.Chim.Acta, 1990, 77, 123?141.

! In-Sb(ecp-28), Tl-Bi(ecp-46): B. Metz, H. Stoll, M. Dolg, J. Chem. Phys., 2000, 113, 2563?2569.

! Te-Xe(ecp-28), Po-Rn(ecp-46): K. A. Peterson, D. Figgen, E. Goll, H. Stoll, M. Dolg, J. Chem. Phys., 2003, 119, 11113?11123.

! Rb(ecp-28), Cs(ecp-46): T.Leininger, A.Nicklass, W.Kuechle, H.Stoll, M.Dolg, A.Bergner, Chem. Phys. Lett., 1996, 255, 274?280.

! Sr(ecp-28), Ba(ecp-46): M. Kaupp, P. V. Schleyer, H. Stoll and H. Preuss, J. Chem. Phys., 1991, 94, 1360?1366.!

X-Ray Crystal Structure Analysis

General Procedures. For **14a-c**, and **14e**: Data sets were collected with a Nonius KappaCCD diffractometer or a Rigaku CCD diffractometer with rotating anode generator. Programs used: data collection, COLLECT (R. W. W. Hooft, Bruker AXS, 2008, Delft, The Netherlands) and CrystalClear (Rigaku Corp., 2000); data reduction Denzo-SMN (Z. Otwinowski, W. Minor, Methods Enzymol. 1997, 276, 307-326); absorption correction, Denzo (Z. Otwinowski, D. Borek, W. Majewski, W. Minor, Acta Crystallogr. 2003, A59, 228-234); structure solution SHELXS-97 (G. M. Sheldrick, Acta Crystallogr. 1990, A46, 467-473); structure refinement SHELXL-97 (G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112-122) and graphics, XP (BrukerAXS, 2000). R-values are given for observed reflections, and wR2 values are given for all reflections.

Exceptions and special features: The hydrogen at N1 atom in compound **14a** was refined freely. For compound **14e** a badly disordered acetonitril molecule was found in the asymmetrical unit and could not be satisfactorily refined. The program SQUEEZE (A. L. Spek J. Appl. Cryst., 2003, 36, 7-13) was therefore used to remove mathematically the effect of the solvent. The quoted formula and derived parameters are not included the squeezed solvent molecule.

X-Ray data for 14a

formula C₃₄H₃₀BN₃, M = 491.42, yellow crystal, 0.30 x 0.15 x 0.15 mm, a = 14.9147(6), b = 10.5759(4), c = 16.7471(8) Å, $\beta = 90.479(2)^{\circ}$, V = 2640.7(2) Å³, $\rho_{calc} = 1.236$ gcm⁻³, $\mu = 0.551$ mm⁻¹, empirical absorption correction (0.852 \leq T \leq 0.921), Z = 4, monoclinic, space group $P2_1/n$ (No. 14), $\lambda = 1.54178$ Å, T = 223(2) K, ω and φ scans, 11940 reflections collected ($\pm h$, $\pm k$, $\pm l$), $[(\sin\theta)/\lambda] = 0.60$ Å⁻¹, 3995 independent ($R_{int} = 0.039$) and 3482 observed reflections [$I > 2\sigma(I)$], 348 refined parameters, R = 0.050, $wR^2 = 0.134$, max. (min.) residual electron density 0.22 (-0.25) e.Å⁻³, the hydrogen at N1 atom was refined freely; others were calculated and refined as riding atoms.

CCDC 1011607 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (internat.) +44(1223)336-033, E-mail: deposit@ccdc.cam.ac.uk].

Figure S 14. Oak Ridge Thermal Ellipsoid Plot (ORTEP) of **14a**. Thermal ellipsoids shown at a 50% probability level.

X-Ray data for 14b

formula C₄₄H₄₂BN₃O, M = 639.62, yellow crystal, 0.35 x 0.30 x 0.02 mm, a = 41.2640(6), b = 10.5501(2), c = 16.9777(3) Å, $\beta = 100.091(1)^{\circ}$, V = 7276.7(2) Å³, $\rho_{calc} = 1.168$ gcm⁻³, $\mu = 0.069$ mm⁻¹, empirical absorption correction (0.976 $\leq T \leq 0.998$), Z = 8, monoclinic, space group C2/c (No. 15), $\lambda = 0.71073$ Å, T = 223(2) K, ω and φ scans, 26763 reflections collected (±h, ±k, ±l), $[(\sin\theta)/\lambda] = 0.62$ Å⁻¹, 7286 independent ($R_{int} = 0.053$) and 4708 observed reflections [$I > 2\sigma(I)$], 448 refined parameters, R = 0.076, $wR^2 = 0.182$, max. (min.) residual electron density 0.24 (-0.19) e.Å⁻³, hydrogen atoms were calculated and refined as riding atoms.

CCDC 1011608 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (internat.) +44(1223)336-033, E-mail: deposit@ccdc.cam.ac.uk].

Figure S 15. Oak Ridge Thermal Ellipsoid Plot (ORTEP) of **14b**. Thermal ellipsoids shown at a 50% probability level.

X-Ray data for 14c

formula $C_{74}H_{62}B_2N_6 \cdot C_2H_3N$, M = 1097.97, yellow crystal, 0.60 x 0.40 x 0.03 mm, a = 19.1756(3), b = 10.4129(2), c = 30.5970(5) Å, $\beta = 96.906(1)^\circ$, V = 6065.1(2) Å³, $\rho_{calc} = 1.202$ gcm⁻³, $\mu = 0.070$ mm⁻¹, empirical absorption correction (0.959 $\leq T \leq 0.997$), Z = 4, monoclinic, space group $P2_1/c$ (No. 14), $\lambda = 0.71073$ Å, T = 223(2) K, ω and φ scans, 80106 reflections collected ($\pm h, \pm k, \pm l$), [(sin θ)/ λ] = 0.67 Å⁻¹, 14872 independent ($R_{int} = 0.083$) and 10287 observed reflections [$I > 2\sigma(I)$], 771 refined parameters, R = 0.062, $wR^2 = 0.153$, max. (min.) residual electron density 0.23 (-0.20) e.Å⁻³, hydrogen atoms were calculated and refined as riding atoms.

CCDC 1011609 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (internat.) +44(1223)336-033, E-mail: deposit@ccdc.cam.ac.uk].

Figure S 16. Oak Ridge Thermal Ellipsoid Plot (ORTEP) of **14c**. Thermal ellipsoids shown at a 50% probability level.

X-Ray data for 14e

formula C₁₁₁H₉₆B₃N₉, M = 1588.40, yellow crystal, 0.10 x 0.06 x 0.02 mm, a = 14.8875(9), b = 20.1518(13), c = 32.0673(8) Å, V = 9620.5(9) Å³, $\rho_{calc} = 1.097$ gcm⁻³, $\mu = 0.487$ mm⁻¹, empirical absorption correction (0.952 \leq T \leq 0.990), Z = 4, orthorhombic, space group $P2_12_12_1$ (No. 19), $\lambda = 1.54178$ Å, T = 223(2) K, ω and φ scans, 46596 reflections collected ($\pm h, \pm k, \pm l$), [($\sin\theta$)/ λ] = 0.60 Å⁻¹, 15310 independent ($R_{int} = 0.173$) and 6941 observed reflections [$I > 2\sigma(I)$], 1117 refined parameters, R = 0.083, $wR^2 = 0.184$, max. (min.) residual electron density 0.16 (-0.19) e.Å⁻³, hydrogen atoms were calculated and refined as riding atoms.

CCDC 1011610 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (internat.) +44(1223)336-033, E-mail: deposit@ccdc.cam.ac.uk].

Figure S 17. Oak Ridge Thermal Ellipsoid Plot (ORTEP) of **14e**. Thermal ellipsoids shown at a 50% probability level.

NMR Spectra

6a: ¹H NMR

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 fl (ppm)

6a: ¹³C NMR

6b: ¹H NMR

6b: ¹³C NMR

12e: ¹H NMR

13e: ¹H NMR

S61

References

¹ Becke, A. D. J. Chem. Phys., 1993, 98, 5648-5652. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785-789.

² Feller, D., *J. Comp. Chem.* **1996**, *17*, 1571-1586; Schuchardt, K.L., Didier, B.T., Elsethagen, T., Sun, L., Gurumoorthi, V., Chase, J., Li, J., and Windus, T.L.J. *Chem. Inf. Model.* **2007**, *47*, 1045-1052, doi:10.1021/ci600510j.

³ Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, M. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.