Supporting Information for:

Structural and Electronic Characterization of Multi-Electron Reduced Naphthalene(BIAN)-Cobaloximes

Owen M. Williams, Alan H. Cowley, and Michael J. Rose*

Department of Chemistry, The University of Texas at Austin

Supporting Information Contents	Page
Figure S1. Scan rate dependence of 1 · (DMF) ₂	2
Figure S2. Connectivity structure of [CoCp ₂][Co(aqdBF ₂) ₂ (MeCN)]	2
Figure S3. Single crystal XRD structure of $aqdH_2$	3
Figure S4. Polycrystalline EPR of 3	3
Figure S4. Spin density plots of 3	4
Figure S5. Determination of overpotential for TsOH	4
Figure S6. Determination of overpotential for PhCO ₂ H	5
Figure S7. CVs of $1 \cdot (DMF)_2$ for varying scan rate with PhCO ₂ H	5
Figure S8. Diagram of H-cell used for bulk electrolysis	6
References	6

Figure S1. Scan rate dependence of $[Co(aqdBF_2)_2]$ in 0.1 M NBu₄PF₆/DMF.

Figure S2. Ball and stick representation of the connectivity structure for the 1-electron reduced complex [CoCp₂][Co(aqdBF₂)₂(MeCN)]. The asymmetric unit is shown, and H-atoms have been omitted for the sake of clarity.

Figure S3. ORTEP diagram (50% thermal ellipsoid plots) of the ligand aqdH₂. Hydrogen atoms have been omitted for clarity.

Figure S4. Poly-crystalline EPR of [K(dibenzo-18-crown-6)]₂[Co(aqdBF₂)₂] (**3**) obtained at 85 K. Parameters: frequency, 9.45 GHz; modulation, 100 kHz; power 10 mW; field modulation, 0.1 G.

Figure S5. DFT calculated spin density plot for the anion of [K(dibenzo-18-crown-6)]₂[Co(aqdBF₂)₂] (3). The spin density surfaces from the *same calculation* are displayed here at two different isosurface values: 0.01 (*left*) and 0.001 (*right*). Note the comparatively small extent of spin density at the cobalt center as compared with the ligand framework.

Figure S6. Catalytic reduction "half-wave" potential determined by the derivative technique plotted vs. ln[TsOH]. Overpotentials were determined by comparison with $E_{\frac{1}{2}}$ (black line). Equations used for the determination of theoretical half wave potential calculation are given below.^{1,2}

Figure S7. Catalytic reduction 'half-wave' potential determined by the derivative technique plotted vs. ln[PhCO₂H]. Overpotentials were determined by comparison with E_{1/2} (black line), with homoconjugation effects taken into account. Equations used for the determination of theoretical half wave potential calculation are given below.^{1,2}

Figure S8. Variation of scan rate (10 - 1,000 mV/s) of [Co(aqdBF₂)₂(DMF)₂] in the presence of (a) 2.5, (b) 5.0, (c) 7.5, and (d) 10 equivalents of benzoic acid.

Figure S9. Custom H-cell used in bulk electrolysis experiments.

References

(1) Fourmond, V.; Jacques, P.-A.; Fontecave, M.; Artero, V. Inorg. Chem. 2010, 49, 10338–10347.

2)
$$E_{\frac{1}{2}}^{T} = E_{H^{+}/H_{2}}^{0} - \frac{2.303 \times RT}{F} pK_{\alpha} + \varepsilon_{D} - \frac{RT}{2F} ln \frac{C_{0}}{C_{H_{2}}^{0}}$$

(2)

$$E_{\frac{1}{2}}^{T} = E_{H^{+}/H_{2}}^{0} - \frac{2.303 \times RT}{F} pK_{\alpha} + \varepsilon_{D} + \frac{RT}{2F} ln^{\frac{1}{100}} (2K_{C}^{2}C_{0}C_{H_{2}}^{0})$$