One-Pot Synthesis of M (M= Ag, Au)@SiO₂ Yolk-Shell Structure via Organosilane-Assisted Method: Preparation, Formation Mechanism and Application in Heterogeneous Catalysis

Yu Chen,^{a,b} Qihua Wang^{*a} Tingmei Wang,^a

^a State Key Laboratory of Solid Lubrication, Lanzhou Institute of

Chemical Physics, Chinese Academy of Sciences, Lanzhou,

730000, P. R. China.

^b University of Chinese Academy of Sciences, Beijing, 100039, P.

R. China.

*E-mail: wangqh@licp.cas.cn.

Figure S1. TEM image of $Ag@SiO_2$ nanorattles when replacing APTMS with APTES.

Figure S2. The FT-IR spectra of (a) as-made yolk-shell $Ag@CTAB/SiO_2$ without the treatment of ethanol/ammonium nitrate and $Ag@mSiO_2$ microspheres after the mild treatment of ethanol/ammonium nitrate. For the $Ag@CTAB/SiO_2$, the bands observed in the region 2800-3000 cm⁻¹ are attributed to the vibrations of $-CH_2$ of CTAB templates. After removing CTAB, almost no adsorption peaks were observed in the range of 2800-3000 cm⁻¹ for the $Ag@mSiO_2$.

Figure S3. The optical properties of Ag@SiO₂ fabricated with different amount of F-TEOS.

Figure S4. The as-synthesized nanorattles show a positive ζ potential.

Figure S5. TEM image of the morphology of the as-synthesized nanocomposites when extending the gel time of F-TEOS to 12 hour.

Figure S6. TEM image of $Ag@SiO_2$ nanorattles obtained by impregnating the as-synthesized $Ag@SiO_2$ nanorattles in different concentration of $HAuCl_4$ aqueous solution, (a) 1.9 mM, (b) 14 Mm and their corresponding UV-vis absorbance. (d) EDS elemental mapping of the as-made Au nanoparticles.