Electronic Supplimentary Information for

Ratiometric Colorimetric "Naked eye" Selective Detection of CN- ions by Electron Deficient Ni(II) Porphyrins and their Reversibility Studies

Ravi Kumar, Nivedita Chaudhri, and Muniappan Sankar*

Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee – 247667, India

Table of Contents

	Page No
Scheme 1. Synthetic route to β -substituted electron deficient porphyrins (4,5)	3
Figure S1. UV-Vis absorption spectra of (a) 1 and 3 as well as (b) 4-5 in CH_2Cl_2	4
Figure S2. ¹ H NMR spectrum of 1 in CDCl ₃ at 298 K	5
Figure S3. ¹ H NMR spectrum of 2 in CDCl ₃ at 298 K	5
Figure S4. ¹ H NMR spectrum of 3 in CDCl ₃ at 298 K	6
Figure S5. ORTEP diagrams showing top and side views of 3 (a-b), 4 (c-d) and 5 (e-f),	7
respectively.	
Figure S6. Colorimetric responses and corresponding absorption spectral changes of 2-5 while	11
adding of excess of anions in toluene at 298 K.	
Figure S7. UV-Vis spectral titrations of 2-5 with TBACN in toluene and insets show their	12
corresponding Hill plots. The stoichiometry of 2-3 was established using Job's plot.	
Figure S8. Ratiometric response of 2-5 on addition of 2 equiv. of cyanide ions in presence of	13
10 equiv. of other interfering anions. Blue bars indicate the references, Black bars indicate only	
with CN ⁻ ions, Green bars indicate various anions and red bar indicate the addition of cyanide	
ion in presence of interfering anions.	
Figure S9. DPV traces of 2-5 in absence and presence of [CN ⁻] in CH ₂ Cl ₂ containing 0.1 M	14
TBAPF ₆ at 298 K	
Figure S10. UV-Vis spectra of 2-5 for complexation with 2CN ⁻ and reversibility test in toluene	15
at 298 K, insets show corresponding colorimetric response for reversibility and reusability test.	
Figure S11. Colorimetric response by coated paper strips of 2 and 3 (1 mM) with various	16
anions in toluene (a, c) and neutral aqueous solution (b, d) at 298 K.	
Figure S12. Colorimetric response by coated paper strips of 4 and 5 (1 mM) with various	17
anions in toluene (a, c) and neutral aqueous solution (b, d) at 298 K.	
Figure S13. B3LYP/LANL2DZ optimized geometry showing top (a) as well as side views (b)	18
of NiTPP(NO ₂)Cl ₇ •2CN ⁻ , Hydrogens are omitted in both top and side views for clarity.	
Figure S14. Pictorial representation of frontier molecular orbitals of $NiTPP(CN)_4$ (1) obtained	19
by DFT calculations using B3LYP as density functional with LANL2DZ basis sets in gas	
phase.	

Figure S15. Pictorial representation of frontier molecular orbitals of NiTPP(CN) ₄ •2CN ⁻ (1•2CN ⁻) obtained by DFT calculations using B3LYP as density functional with LANL2DZ basis sets in gas phase.	19
Figure S16. Pictorial representation of FMOs of NiTPP(NO_2)Cl ₇ (4) obtained by DFT calculations using B3LYP as density functional with LANL2DZ basis sets in gas phase.	20
Figure S17 . Pictorial representation of FMOs of NiTPP(NO_2)Cl ₇ •2CN ⁻ (4•2CN ⁻) obtained by DET calculations using P2LVP as density functional with LANL 2DZ basis sets in gas phase	20
Figure S18 . Theoretical UV-Visible spectra of (a) 1 and (b) 1•2CN ⁻ obtained by TD-DFT	21
calculations in gas phase.	
Figure S19 . Theoretical UV-Visible spectra of (a) 4 and (b) 4 •2CN ⁻ obtained by TD-DFT calculations in gas phase	21
Figure S20 . Single crystal X-ray structure of 3 with axial coordination of CN^{-} . The counter cation (tetrabutylammonium ion) was not shown for clarity.	22
Figure S21. The time-dependent absorption changes of 1-5 after addition cyanide ions for 4	23
hours in toluene at 298 K.	
Figure S22. MALDI-TOF negative ion mode mass spectrum of 1 in presence cyanide ions	24
using HABA matrix.	
Figure S23. UV-Visible spectra of (a) <i>meso</i> -tetraphenylporphyrinato nickel(II) (NiTPP); (b) <i>meso-tetrakis</i> (2,6-dichlorophenyl)porphyrinato nickel(II) (NiT(2,6-DCP)P); (c) 2,3,5,7,8,10, 12,13,15,17,18,20-dodecaphenylporphyrinato nickel(II) (NiDPP); (d) 2,3,5,10,15,17,18,20-octaphenyl- porphyrinato nickel(II) (NiOPP); (e) <i>Meso-tetrakis</i> (<i>p</i> -'butylphenyl)porphyrinato nickel(II) (NiT(<i>p</i> -'bu-ph)P) in toluene (black lines) at 298 K and then excess addition of $[CN^-]$	25
in toluene (red lines).	
Figure S24. CVs of various planar and nonplanar Ni(II) porphyrins in CH ₂ Cl ₂ at 298 K.	26
Table S1. UV-Visible spectral data of 1-5 in CH_2Cl_2 at 298 K.	4
Table S2 . Crystal structure data of $1(Py)_2$ (NiTPP(CN) ₄)(Py) ₂), 3 (NiT(<i>p</i> -OMe-Ph)P(CN) ₄), 4 (NiTPP(NO ₂)Cl ₂) 5 (NiTPPCl ₂) and 3 · CN ⁻ (NiT(<i>p</i> -OMe-Ph)P(CN) ₄ (CN ⁻)	8
Table S3 Table S3 Selected average bond lengths and bond angles of 1(Pv)	9
(NiTPP(CN) ₄)(Py) ₂ , 3 (NiT(p -OMe-Ph)P(CN) ₄ , 4 (NiTPP(NO ₂)Cl ₇ , 5 (NiTPPCl ₈) and 3 •CN ⁻ (NiT(p -OMe-Ph)P(CN) ₄ (CN ⁻)	,
Table S4 Electrochemical redox data of $1-5$ in CH ₂ Cl ₂ at 298 K	10
	10
Table S5. Electrochemical redox data of various planar and nonplanar porphyrins in CH_2Cl_2 at 298 K.	24

Scheme 1. Synthetic route to β -substituted electron deficient Ni(II) perhaloporphyrins (4-5).

Figure S1. UV-Vis absorption spectra of (a) 1 and 3 as well as (b) 4-5 in CH₂Cl₂ at 298 K.

Porphyrin	B band, nm	Q band(s), nm
1	440(5.10)	630(4.50)
2	445(5.13)	632(4.47)
3	450(5.07)	636(4.54)
4	448(5.12)	562(4.04), 604(3.80)
5	439(5.28)	554(4.18), 591(sh)

Table S1. UV-Visible spectral data of 1-5 in CH₂Cl₂ at 298 K.

The values in parentheses refer to loge.

Figure S2. ¹H NMR spectrum of 1 in CDCl₃ at 298 K.

Figure S3. ¹H NMR spectrum of 2 in CDCl₃ at 298 K.

Figure S4. ¹H NMR spectrum of 3 in CDCl₃ at 298 K.

Figure S5. ORTEP diagrams showing top and side views of 3 (a-b), 4 (c-d) and 5 (e-f), respectively. Hydrogens are not shown for clarity, and in side views, the β -substituents and *meso*-phenyl groups are not shown for clarity.

	1 (Py) ₂	3	4	5	3 •CN ⁻
Empirical Formula	C ₅₈ H ₃₄ N ₁₀ Ni	$C_{52}H_{32}N_8NiO_4$	C ₄₄ H ₂₀ Cl ₇ N ₆ NiO _{0.5}	$C_{44}H_{20}Cl_8N_4Ni$	$C_{69}H_{68}N_{10}NiO_4$
Formula wt.	929.66	891.56	947.52	946.95	1160.04
Crystal system	Triclinic	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space group	P -1	C 2/c	P 21/c	P 21/c	P -1
<i>a</i> (Å)	9.340(5)	20.844(5)	14.4707(9)	14.5050(10)	14.154(5)
<i>b</i> (Å)	11.856(5)	10.732(5)	27.1087(15)	27.0592(17)	15.514(5)
<i>c</i> (Å)	13.471(5)	23.220(5)	10.8020(6)	10.7278(7)	16.154(5)
α (°)	87.223(5)	90.000(5)	90.00	90.00	61.669(5)
β (°)	70.308(5)	114.682(5)	110.527(2)	111.70	78.484(5)
γ (°)	68.356(5)	90.000(5)	90.00	90.00	86.358(5)
Volume (Å ³)	1300.5(10)	4720(3)	3968.4(4)	3912.1(4)	3057.4(17)
Ζ	1	4	4	4	2
$\rho_{calc} \left(g/cm^3\right)$	1.187	1.415	1.586	1.608	1.260
λ (Å)	0.71073	0.71073	0.71073	0.71073	0.71073
T (°C)	293 K	293 K	293 K	296 K	293 K
No. of total reflns.	6639	3699	9684	34311	25054
No. of indepnt. reflns.	6639	3699	9684	5467	4230
R	0.0418	0.0642	0.0534	0.0421	0.0437
R _w	0.1178	0.1952	0.1498	0.0910	0.1058
GOOF	1.024	1.074	1.046	0.896	1.043
CCDC No	1043611	1043609	1043615	1044025	1043610

Table S2. Crystal structure data of $1(Py)_2$ (NiTPP(CN)₄)(Py)₂), **3** (NiT(*p*-OMe-Ph)P(CN)₄), **4** (NiTPP(NO₂)Cl₇), **5** (NiTPPCl₈) and **3**•CN⁻ (NiT(*p*-OMe-Ph)P(CN)₄(CN⁻).

Table S3. Selected average bond lengths and bond angles of $1(Py)_2$ (NiTPP(CN)₄)(Py)₂, **3** (NiT(*p*-OMe-Ph)P(CN)₄, **4** (NiTPP(NO₂)Cl₇, **5** (NiTPPCl₈) and **3**•CN⁻ (NiT(*p*-OMe-Ph)P(CN)₄(CN⁻).

R	$\begin{array}{c} NC & CN \\ C_{\beta} \\ C_{\beta} \\ \end{array}$	R	R C _β ,		
Į			$C_m C_{\alpha'}$	C_{α} , C_{m}	
Ca	C_{α} N N'		$C_{\beta} C_{\alpha}$	$C_{\alpha} C_{\beta}$	CI
ο _ρ	N—Ni—N		N N	i—N T	
C _β			$C_{\beta}C_{\alpha}$	C_{α}	CI
		C _m		C _m	
	C_{α}'		C_{α}		
R		R			
R =	H, NiTPP(CN) ₄ , 1		R = NO ₂ , NiTPF	CI P(NO ₂)Cl ₇ , 4	
R =	OMe, NiT(p-OMe-Ph))P(CN) ₄ , 3	R = CI, NITPPC	Cl ₈ , 5 (C'= C, N'=N)	
	1 (Py) ₂	3	4	5	3 .CN ⁻
		Bond Leng	gths (A°)		
Ni -N	2.035(16)	1.949(3)	1.906(2)	1.907(3)	2.039(4)
Ni -N'	2.074(16)	1.971(3)	1.912(2)	-	2.062(4)
N - C_{α}	1.370(2)	1.381(5)	1.382(4)	1.383(5)	1.373(6)
$N'-C_{\alpha}$	1.373(2)	1.390(5)	1.376(4)	-	1.374(6)
C_{α} - C_{β}	1.452(2)	1.430(6)	1.447(4)	1.445(6)	1.439(7)
$C_{\alpha} - C_{\beta}$	1.450(2)	1.429(5)	1.447(4)	-	1.434(7)
$C_{\beta} - C_{\beta}$	1.337(3)	1.323(6)	1.347(8)	1.354(5)	1.328(7)
$C_{\beta} - C_{\beta}$	1.378(2)	1.362(5)	1.346(5)	-	1.366(7)
$C_{\alpha}-C_{m}$	1.398(2)	1.384(5)	1.393(4)	1.393(6)	1.383(7)
$C_{\alpha} - C_{m}$	1.409(3)	1.387(6)	1.395(4)	-	1.409(7)
ΔC_{β}^{a}	0.0721	0.059	0.871	0.898	0.184
Δ24 ⁵	0.0604	0.0473	0.525	0.535	0.113
ΔΙΝΙ	0.000	Bond An	0.004	0.001	0.309
N- Ni-N	180(0)	180 0(1)	172.3(10)	171 4(13)	160 9(15)
N'- Ni -N'	180(0)	180.0(1)	172.5(10) 171 5(10)	-	164 8(15)
Ni -N-C _a	126.7(12)	128.1(2)	125.6(11)	125.5(3)	126.5(4)
Ni -N'- C_{α}	125.8(12)	127.3(2)	125.4(10)	-	125.7(4)
N- C_{a} - C_{m}	126.6(15)	126.4(3)	123.9(4)	123.8(6)	126.5(7)
$N'-C_{\alpha}'-C_{m}$	125.6(16)	125.8(3)	124.1(4)	-	125.3(6)
$N-C_{\alpha}-C_{\beta}$	109.4(15)	110.8(3)	108.4(3)	108.4(4)	109.3(5)
$N'-C_{\alpha}'-C_{\beta}'$	109.0(15)	110.0(3)	108.3(3)	-	109.2(5)
$C_{\beta} - C_{\alpha} - C_{m}$	123.9(16)	122.8(4)	127.0(3)	127.0(4)	124.2(6)
$C_{\beta}^{\prime}-C_{\alpha}^{\prime}-C_{m}$	125.4(16)	124.2(4)	126.8(3)	-	125.5(7)
C_{α} - C_{β} - C_{β}	107.3(2)	107.3(4)	107.6(3)	107.5(4)	107.6(5)
C_{α} - C_{β} - C_{β}	106.9(15)	107.2(3)	107.5(3)	-	107.2(5)
C_{α} -N- C_{α}	106.6(13)	103.8(3)	107.1(2)	107.3(4)	106.3(4)
C_{α} - N - C_{α}	108.1(14)	105.3(3)	107.6(2)	-	107.2(4)
C_{α} - C_m - C_{α}	124.9(16)	122.3(4)	120.0(3)	120.1(4)	124.5(5)

 $^{a}\Delta C_{\beta}$ refers mean plane deviation of β -carbon atoms, $^{b}\Delta 24$ refers mean plane deviation of 24 core atoms

Porphyrin	Oxidation(volts)	Reductio	on(volts)	$\Delta E_{1/2} (I_{ox}-I_{red})$
				(Volts)
	Ι	Ι	II	
1	1.44	-0.38	-0.81	1.82
2	1.40	-0.44	-0.84	1.84
3	1.32	-0.43	-0.85	1.75
4	1.33	-0.64	-0.88	1.97
5	1.26	-0.82	-1.14	2.08
	^a v,	s Ag/AgCl		

Table S4. Electrochemical redox potentials^a of 1-5 in CH_2Cl_2 at 298 K.

Figure S6. Colorimetric responses and corresponding absorption spectral changes of **2-5** while adding of excess of anions in toluene at 298 K.

Figure S7. UV-Vis spectral titrations of **2-5** with TBACN in toluene and insets show their corresponding Hill plots. The stoichiometry of **2-3** was established using Job's plot.

Figure S8. Ratiometric response of **2-5** on addition of 2 equiv. of cyanide ions in presence of 10 equiv. of other interfering anions. Blue bars indicate the references, Black bars indicate only with CN⁻ ions, Green bars indicate various anions and red bar indicate the addition of cyanide ion in presence of interfering anions.

Figure S9. DPV traces of **2-5** in absence and presence of [CN-] in CH_2Cl_2 containing 0.1 M TBAPF₆ at 298 K.

Figure S10. UV-Vis spectra of **2-5** for complexation with 2CN⁻ and reversibility test in toluene at 298 K, insets show corresponding colorimetric response for reversibility and reusability test.

Figure S11. Colorimetric response by coated paper strips of 2 and 3 (1 mM) with various anions in toluene (a and c) and neutral aqueous solution (b and d) at 298 K.

Figure S12. Colorimetric response by coated paper strips of 4 and 5 (1 mM) with various anions in toluene (a,c) and neutral aqueous solution (b,d) at 298 K.

Figure S13. B3LYP/LANL2DZ optimized geometry showing top (a) as well as side views (b) of NiTPP(NO₂)Cl₇•2CN⁻, hydrogens are omitted in both top and side views for clarity.

Figure S14. Pictorial representation of frontier molecular orbitals of NiTPP(CN)₄ (1) obtained by DFT calculations using B3LYP as density functional with LANL2DZ basis sets in gas phase.

Figure S15. Pictorial representation of frontier molecular orbitals of $NiTPP(CN)_4 \cdot 2CN^-$ (1 $\cdot 2CN^-$) obtained by DFT calculations using B3LYP as density functional with LANL2DZ basis sets in gas phase.

Figure S16. Pictorial representation of frontier molecular orbitals of NiTPP(NO₂)Cl₇ (**4**) obtained by DFT calculations using B3LYP as density functional with LANL2DZ basis sets in gas phase.

Figure S17. Pictorial representation of frontier molecular orbitals of NiTPP(NO₂)Cl₇•2CN⁻ (4•2CN⁻) obtained by DFT calculations using B3LYP as density functional with LANL2DZ basis sets in gas phase.

Figure S18. Theoretical UV-Visible spectra of (a) **1** and (b) **1**•2CN⁻ obtained by TD-DFT calculations in gas phase.

Figure S19. Theoretical UV-Visible spectra of (a) **4** and (b) **4**•2CN⁻ obtained by TD-DFT calculations in gas phase.

Figure S20. Single crystal X-ray structure of 3 with axial coordination of CN^{-} ion. The counter cation (tetrabutylammonium ion) was not shown for clarity.

Figure S21. The time-dependent absorption changes of **1-5** after addition cyanide ions for 4 hours in toluene at 298 K.

Figure S22. MALDI-TOF negative ion mode mass spectrum of 1 in presence cyanide ions using HABA matrix.

Figure S23. UV-Visible spectra of (a) *meso*-tetraphenylporphyrinato nickel(II) (NiTPP); (b) *meso*-*tetrakis*(2,6-dichlorophenyl)porphyrinato nickel(II) (NiT(2,6-DCP)P); (c) 2,3,5,7,8,10,12,13,15,17, 18,20-dodecaphenylporphyrinato nickel(II) (NiDPP); (d) 2,3,5,10,15,17,18,20-octaphenyl-porphyrinato nickel(II) (NiOPP); (e) *Meso-tetrakis*(*p*-'butylphenyl)porphyrinato nickel(II) (NiT(*p*-'bu-ph)P) in toluene (black lines) at 298 K and then excess addition of [CN-] in toluene (red lines).

Figure S24. CVs of various planar and nonplanar Ni(II) porphyrins in CH₂Cl₂ at 298 K.

Porphyrin	Oxidation (V)		Reduction (V)	
	Ι	II	Ι	
NiTPP	1.009	1.280	-1.314	
NiOPP	0.877	1.189	-1.428	
NiDPP	0.723	1.024	-1.427	
NiT(2,6-DCP)P	1.017	1.231	-1.323	
NiT(p- ^t BuPh)PBr ₄	1.101	-	-1.049	

Table S5. Electrochemical redox data of various planar and nonplanar porphyrins in CH₂Cl₂ at 298 K.