Electronic Supplementary Information for:

Zn^{II} and Hg^{II} binding to a designed peptide that accommodates different coordination geometries

Dániel Szunyogh, Béla Gyurcsik, Flemming H. Larsen, Monika Stachura, Peter W. Thulstrup, Lars Hemmingsen, Attila Jancsó

Fig. S1A-B.: UV-spectra recorded for Hg^{II} – **HS** 0.5:1 (A) and 1:1 (B). $(c_{\text{HS}} = 1.0 \times 10^{-4} \text{ M}$ (A,B), $I = 0.1 \text{ M} \text{ NaClO}_4$, T = 298 K, l = 1.0 cm)

Fig. S2.: UV-spectra recorded for **HS** in the absence of metal ions. ($c_{\text{HS}} = 1.0 \times 10^{-4}$ M, I = 0.1 M NaClO₄, T = 298 K, l = 1.0 cm)

Fig. S3.: Difference of the UV-spectra recorded for Hg^{II}-HS 1:1 and HS at pH = 4.0. Note that the position of the maximum (λ_{max}) of the observed band has a significant uncertainty due to the large absorbances recorded between 210-220 nm ($c_{HS} = 1.0 \times 10^{-4}$ M, I = 0.1 M NaClO₄, T = 298 K, l = 1.0 cm)

Fig. S4A-B.: UV-spectra recorded for $\text{Zn}^{\text{II}} - \text{HS} 0.5$:1 (A) and 1:1 (B) ($c_{\text{HS}} = 1.0 \times 10^{-4} \text{ M}$ (A,B), $I = 0.1 \text{ M} \text{ NaClO}_4$, T = 298 K, l = 1.0 cm)

Fig. S5.: SRCD spectra of **HS** as a function of metal ion to ligand ratio in the range of 0:1 to 2:1 at pH = 10.5 ($c_{\text{HS}} = 2.0 \times 10^{-4}$ M, I = 0.1 M NaClO₄, T = 298 K, l = 1 mm). The insert shows the trace of ellipticities at $\lambda = 227$ nm.

Fig. S6A-B.: Species distribution diagram and for the Zn^{II} : **HS** 1:1 (A) and 0.5:1 (B) systems $(c_{HS} = 1.0 \times 10^{-4} \text{ M})$. The full squares represent the measured absorbances at 230 nm.

Fig. S7.: Aliphatic region of the ¹H NMR spectra of **HS** recorded in the absence of Zn^{II} and in the Zn^{II} :**HS** 0.5:1 and 1:1 systems at pH = 4.4 (H₂O/D₂O = 90:10 %v/v, $c_{HS} = 1.3 \times 10^{-3}$ M, T = 298 K). C_βH₂ resonances of the residues with potential donor groups are indicated by the following symbols: His C_βH₂: \blacktriangle ; Cys C_βH₂: \bigcirc ; Asp C_βH₂: \blacksquare .