Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Supporting information

IR- spectra.

Table S1	IR-spectra	(cm ⁻¹ in KB	r) of starting	compounds and	complexes 1-4.
----------	------------	-------------------------	----------------	---------------	----------------

	{CpMo (CO) ₃ } ₂	{Cp*Mo (CO) ₂ } ₂	PPN·Cl	C ₆₀	C ₇₀	(PPN ⁺) {CpMo(CO) ₂	(PPN ⁺) {CpMo(CO) ₂	(PPN^{+}) $\{Cp*Mo(CO)_{2}$	(PPN ⁺) {CpMo(CO) ₃ } ⁻
						$(\eta^2 - C_{60})\}^-$ (1)	$(\eta^2 - C_{70})^{-} \cdot C_6 H_{14}$ (2)	$(\eta^2 - C_{60})\}^-$ ·C ₆ H ₅ CN ·C ₆ H ₄ Cl ₂ (3)	(4)
$Cp(*)$ $Mo(CO)_x,$ $x = 2, 3$	417w 451m 477w 501m 547m 824s 1016w 1264w 1419w 1427w C=O 1886s 1899s	448w 482w 495m 531s 1027m 1384s 1416w 1450w 1478w C=O 1825s 1870s				437w 495m* 546m* - 1026w* 1282s* - C=O 1798s 1819s	438w 454w* 497m* 540m 580w* - - - - - - - - - - - - - - - - - - -	438w 484w 503s* 522s* 1025w* - - 1281s* 1454m* 1481w* C=O 1787s 1878s	447w 461w 502s* 542m* 616m - 1272s* - C=O 1768s 1786s
	C-H 3095w 3115w	C-H 2861w 2908w 2970w				1888s C-H 3088w	C-H 3091w	C-H 2853w 2924w 2961w	1895s C-H 3088w
PPN ⁺		2710	500s 531s 550s 694m 724m 746m 754m 997m 1024w 1075w 1115s 1262s - 1439s 1483m 1587m 3046w			495m* 531s* 546m* 690s 722s 752w - 998m 1026w 1074w 1074w 1074w 1113s 1282s* 1300m 1319m 1436s 1479w 1587w 3057w	497m* 533s 545m 691s 721s* 743w* - - 998w 1026w 1089w* 1114s 1283s* 1298m 1318m 1438m 1438m 1438m 1482w 1588w 3056w	503s* 532s* 546m 689s 722s 744w 753w 998m 1025w* 1070w 1114s 1261s 1281s* 1300m 1436s 1481w* 1587w 3054w	502s* 535s 542m* 693s 723s 752m 758m 998m 1027w 1072w 1072w 1117s 1272s* 1289s 1303s 1438s 1438s 1438s 1482m 1586w 3055w
Fullerene				C ₆₀ 526s - 576m - 1182m 1429s	C ₇₀ 457w 534s 564m 576s - 642m 673m 794m 1132w - 1413w	Coord. C_{60} 531s* 566w 576w 582w 1182m 1402w 1416s	Coord. C_{70} 454w* 530s 567w 580w* 607w 639w 672w 791m 1406m 1414m*	Coord. C ₆₀ - 532m* 576m 1183m 1392s 1412w	
Solvent					1429s		1426s* C ₆ H ₁₄ 721s* 743w* 1089w* 1462w 2926w 29251w	C ₆ H ₄ Cl ₂ 740w 1025w* 1454m*	

Fig. S1 IR-spectrum of (PPN^+) {CpMo(CO)₂(η^2 -C₆₀)}⁻ (1) in KBr pellet prepared in anaerobic conditions. Absorption bands of C₆₀ are marked by asterisks.

Fig. S2 IR-spectrum of (PPN^+) {CpMo(CO)₂(η^2 -C₇₀)}⁻·C₆H₁₄ (**2**) in KBr pellet prepared in anaerobic conditions. Absorption bands of C₇₀ are marked by asterisks.

Fig. S3 IR-spectrum of (PPN^+) {Cp*Mo(CO)₂(η^2 -C₆₀)}^{-·}C₆H₄Cl₂·C₆H₅CN (**3**) in KBr pellet prepared in anaerobic conditions. Absorption bands of C₆₀ are marked by asterisks.

Fig. S4 IR-spectrum of (PPN^+) {CpMo(CO)₃}⁻ (4) in KBr pellet prepared in anaerobic conditions.

Fig. S5 View on zigzag fullerene chains in complex 3 arranged along the *c* axis and formed by closely packed $\{Cp*Mo(CO)_2(\eta^2-C_{60})\}^-$ anions.

Fig. S6 View on the crystal structure of $(PPN^+){CpMo(CO)_3}^-$ (4) along the *c* axis.

Fig. S7 Temperature dependence of *g*-factor (a) and linewidth (b) of EPR signal from polycrystalline complex **3**. T marks the temperature of splitting of EPR signal.

Theoretical calculations

Table S2. Calculated state, total energies (*E*), relative energies (ΔE), $\langle S^2 \rangle$ values, and number of imaginary frequencies (NImag.) of the singlet and triplet states in {CpMo(CO)₂(η^2 -C₆₀)}⁻ and {Cp*Mo(CO)₂(η^2 -C₆₀)}⁻ at the CAM-B3LYP-D3 and M11/cc-pVTZ-PP/cc-pVDZ levels of theory

Method ^a	State	E / hartree	$\Delta E / \mathrm{eV}$	<s2></s2>	NImag.
$\{CpMo(CO)_2(\eta^2-C_{60})\}^-$					
RCAM-B3LYP-D3	^{1}A	-2773.3329	_	0	0
RM11	^{1}A	-2773.1358	_	0	0
RCAM-B3LYP-D3	^{1}A	-2773.2421	0	0	<i>b</i>
UCAM-B3LYP-D3	^{3}A	-2773.1923	1.35	2.025	<i>b</i>
RM11	^{1}A	-2773.0376	0.00	0	b
UM11	^{3}A	-2772.9910	1.27	2.031	b
${Cp*Mo(CO)_2(\eta^2-C_{60})}^-$					
RCAM-B3LYP-D3	^{1}A	-2969.8076	0	0	0
UCAM-B3LYP-D3	^{3}A	-2969.7809	0.73	2.024	0
RM11	^{1}A	-2969.5867	0	0	0
UM11	^{3}A	-2969.5633	0.63	2.030	0
RCAM-B3LYP-D3	^{1}A	-2969.1740	0	0	b
UCAM-B3LYP-D3	^{3}A	-2969.1367	1.02	2.045	b
RM11	^{1}A	-2968.9446	0	0	b
UM11	^{3}A	-2968.9095	0.95	2.040	b

^{*a*} The cc-pVTZ-PP and cc-pVDZ basis sets were used for molybdenum and the other atoms, respectively.

^bX-ray structure was used without geometry optimization.

Table S3. Observed and calculated bond lengths and Wiberg bond indices of the ¹*A* state in $\{CpMo(CO)_2(\eta^2-C_{60})\}^-$ at the RCAM-B3LYP-D3 and RM11/cc-pVTZ-PP/cc-pVDZ levels of theory

		Bond length, Å			nd index
	Obs	RCAM-	RM11	RCAM-	RM11
		B3LYP-D3		B3LYP-D3	
Mo1-C61	2.368(2)	2.414	2.434	0.281	0.273
Mo1-C62	2.354(3)	2.356	2.371	0.334	0.326
Mo1-C63	2.351(3)	2.330	2.345	0.355	0.342
Mo1-C64	2.369(3)	2.356	2.371	0.334	0.326
Mo1-C65	2.392(3)	2.414	2.434	0.281	0.273
	1.0.42(2)	1.046	1.0.40	1 225	1.010
Mo1-C66	1.943(3)	1.946	1.942	1.325	1.310
Mo1-C67	1.947(3)	1.946	1.942	1.325	1.310
C66-O1	1.157(3)	1.163	1.159	2.013	2.033
C67–O2	1.164(3)	1.163	1.159	2.013	2.033
Mo1-C9	2.252(2)	2.234	2.220	0.572	0.586
Mo1-C1	2.241(2)	2.234	2.220	0.572	0.586
C9-C1	1.497(3)	1.509	1.516	0.976	0.961
C9-C10	1.478(3)	1.484	1.486	1.062	1.058
С9-С8	1.480(3)	1.482	1.484	1.057	1.052
C1-C2	1.475(3)	1.484	1.486	1.062	1.058
C1-C5	1.483(3)	1.482	1.484	1.057	1.052
Total of Mo				6.035	5.963

Table S4. Observed and calculated bond lengths and Wiberg bond indices of the ¹*A* state in $\{Cp*Mo(CO)_2(\eta^2-C_{60})\}^-$ at the RCAM-B3LYP-D3 and RM11/cc-pVTZ-PP/cc-pVDZ levels of theory

		Bond length, Å			nd index
	Obs.	RCAM- B3LYP-D3	RM11	RCAM- B3LYP-D3	RM11
Mo1B-C1B	2.306(7)	2.344	2.359	0.329	0.315
Mo1B-C2B	2.450(6)	2.447	2.464	0.258	0.248
Mo1B-C3B	2.513(7)	2.447	2.462	0.258	0.252
Mo1B-C4B	2.415(7)	2.344	2.351	0.329	0.324
Mo1B-C5B	2.284(7)	2.305	2.317	0.346	0.332
Mo1B-C11B	1.815(16)	1.940	1.931	1.329	1.332
Mo1B-C12B	1.943(14)	1.940	1.942	1.329	1.296
C11B-O1B	1.23(2)	1.164	1.162	1.998	2.011
C12B-O2B	1.228(16)	1.164	1.160	1.998	2.028
Mo1B-C302	2.385(13)	2.247	2.236	0.549	0.560
Mo1B-C307	2.205(11)	2.247	2.229	0.549	0.568
C302-C307	1.525(19)	1.511	1.518	0.974	0.959
C302-C301	1.476(17)	1.481	1.482	1.068	1.064
C302-C303	1.421(17)	1.482	1.484	1.059	1.054
C307-C314	1.466(17)	1.481	1.484	1.068	1.062
C307-C315	1.528(17)	1.482	1.483	1.059	1.055
Total of Mo				6.016	5.942

Table S5. Observed and calculated bond lengths and Wiberg bond indices of the ³*A* state in $\{Cp*Mo(CO)_2(\eta^2-C_{60})\}^-$ at the UCAM-B3LYP-D3 and UM11/cc-pVTZ-PP/cc-pVDZ levels of theory

	Bond length, Å			Wiberg bo	nd index
	Obs.	UCAM- B3LYP-D3	UM11	UCAM- B3LYP-D3	UM11
Mo1B-C1B	2.306(7)	2.355	2.359	0.314	0.307
Mo1B-C2B	2.450(6)	2.408	2.410	0.269	0.265
Mo1B-C3B	2.513(7)	2.397	2.397	0.275	0.273
Mo1B-C4B	2.415(7)	2.338	2.340	0.340	0.334
Mo1B-C5B	2.284(7)	2.317	2.323	0.349	0.340
Mo1B-C11B	1.815(16)	1.985	1.998	1.172	1.125
Mo1B-C12B	1.943(14)	1.970	1.973	1.189	1.160
C11B-O1B	1.23(2)	1.153	1.148	2.087	2.128
C12B-O2B	1.228(16)	1.154	1.151	2.078	2.105
Mo1B-C302	2.385(13)	2.306	2.267	0.455	0.485
Mo1B-C307	2.205(11)	2.234	2.209	0.525	0.553
C302-C307	1.525(19)	1.465	1.472	1.103	1.083
C302-C301	1.476(17)	1.486	1.489	1.044	1.032
C302-C303	1.421(17)	1.485	1.489	1.043	1.032
C307-C314	1.466(17)	1.487	1.490	1.039	1.031
C307-C315	1.528(17)	1.489	1.492	1.035	1.028
Total of Mo				5.453	5.381

	^{1}A s	tate	³ A state		
-	Mulliken	NPA ^b	Mulliken	NPA ^b	
${CpMo(CO)_2(\eta^2-C_{60})}^-$					
CAM-B3LYP-D3					
Mol	-0.589	-0.892			
C66-O1	0.121	0.250			
C67–O2	0.121	0.250			
Ср	0.084	0.029			
C_{60}	-0.737	-0.638			
M11					
Mol	-0.469	-0.916			
C66-O1	0.112	0.284			
C67–O2	0.112	0.284			
Ср	0.044	-0.005			
C ₆₀	-0.799	-0.648			
${Cp*Mo(CO)_2(\eta^2-C_{60})}^-$					
CAM-B3LYP-D3					
Mo1B	-0.453	-0.815	-0.411	-0.533	
C11B-O1B	0.113	0.241	0.180	0.300	
C12B-O2B	0.113	0.241	0.182	0.289	
Cp*	0.048	0.018	0.216	0.107	
C_{60}	-0.822	-0.686	-1.166	-1.163	
M11					
Mo1B	-0.373	-0.842	-0.360	-0.542	
C11B-O1B	0.096	0.268	0.178	0.346	
C12B-O2B	0.106	0.286	0.186	0.326	
Cp*	0.042	-0.020	0.223	0.076	
C ₆₀	-0.869	-0.692	-1.227	-1.206	

Table S6. Sum of charge densities for the ¹*A* and ³*A* states in $\{CpMo(CO)_2(\eta^2-C_{60})\}^-$ and $\{Cp^*Mo(CO)_2(\eta^2-C_{60})\}^-$ by Mulliken and natural population analyses at the CAM-B3LYP-D3 and M11/cc-pVTZ-PP/cc-pVDZ levels of theory^{*a*}.

^{*a*} Geometry optimization was carried out.

^b Natural population analysis.

Table S7. Observed and calculated frequencies (cm^{-1}) of CO stretching mode of the ¹*A* states in $\{CpMo(CO)_2(\eta^2-C_{60})\}^-$ and $\{Cp^*Mo(CO)_2(\eta^2-C_{60})\}^-$ at the RCAM-B3LYP-D3 and RM11/cc-pVTZ-PP/cc-pVDZ levels of theory.

	Cale	c. ^a
Obs.	RCAM-	RM11
	B3LYP-D3	
${CpMo(CO)_2(\eta^2-C_{60})}^-$		
1798	1920	1022
1819	1820	1822
1888	1879	1877
${Cp*Mo(CO)_2(\eta^2-C_{60})}^-$		
1787	1807	1808
1878	1868	1866

^{*a*} The calculated frequencies at RCAM-B3LYP-D3 and RM11/cc-pVTZ-PP/cc-pVDZ levels are scaled by 0.9303 and 0.9244, respectively.

Table S8. Sum of spin densities for the ³*A* state^{*a*} in {Cp*Mo(CO)₂(η^2 -C₆₀)}⁻ by Mulliken and natural population analyses at the UCAM-B3LYP-D3 and UM11/cc-pVTZ-PP/cc-pVDZ levels of theory.

	UCAM-B	3LYP-D3	UM	11
	Mulliken	NPA^b	Mulliken	NPA^b
Mo1B	0.813	0.783	0.830	0.805
C11B-O1B	0.118	0.109	0.099	0.093
C12B-O2B	-0.010	-0.004	-0.011	-0.006
Cp*	0.068	0.082	0.067	0.079
C_{60}	1.011	1.030	1.015	1.029

^{*a*} Geometry optimization was carried out. ^{*b*} Natural population analysis.

Fig. S8 Optimized structures: $\{CpMo(CO)_2(\eta^2-C_{60})\}^-$ in the ¹*A* states at the (a) RCAM-B3LYP-D3 and (b) RM11; $\{Cp^*Mo(CO)_2(\eta^2-C_{60})\}^-$ in the ¹*A* states at the (c) RCAM-B3LYP-D3 and (d) RM11, and the ³*A* states at the (e) UCAM-B3LYP-D3 and (f) UM11/cc-pVTZ-PP/cc-pVDZ levels of theory. In the top view, cyclopentadienyl and pentamethylcyclopentadienyl ligands are omitted, and Mo(CO)₂ moiety is highlighted for clarity.

Fig. S9 Energy diagrams for the frontier Kohn-Sham orbitals of the ¹*A* state in $\{CpMo(CO)_2(\eta^2 - C_{60})\}^-$ calculated at the RCAM-B3LYP-D3 levels of theory.

Fig. S10 Energy diagrams for the frontier Kohn-Sham orbitals of the ¹*A* state in $\{Cp*Mo(CO)_2(\eta^2-C_{60})\}^-$ calculated at the (a) RCAM-B3LYP-D3 and (b) RM11/cc-pVTZ-PP/cc-pVDZ levels of theory.

Fig. S11 Electrostatic potential maps on the 0.02 electron/au³ of electron density surface in $\{CpMo(CO)_2(\eta^2-C_{60})\}^-$ for the ¹*A* states at the (a) RCAM-B3LYP-D3 and (b) RM11, and $\{Cp*Mo(CO)_2(\eta^2-C_{60})\}^-$ for the ¹*A* states at the (c) RCAM-B3LYP-D3 and (d) RM11 and the ³*A* states at the (e) UCAM-B3LYP-D3 and (f) UM11/cc-pVTZ-PP/cc- pVDZ levels of theory.

Fig. S12 The isosurface plots on spin density distribution of the ${}^{3}A$ state in {Cp*Mo(CO)₂(η^{2} -C₆₀)}⁻ calculated at the (a) UCAM-B3LYP-D3 and (b) UM11/cc-pVTZ-PP/cc-pVDZ levels of theory. The isosurface value is 0.0009 electron/au³. The isosurfaces in blue and green denote the positive and negative spin density, respectively.