Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Supporting information

Aluminum complexes based on pyridine substituted alcohols: synthesis, structure, catalytic application in ROP

Marina M. Kireenko,^a Ekaterina A. Kuchuk,^a Kirill V. Zaitsev,^{a, *} Viktor A. Tafeenko,^a Yuri F. Oprunenko,^a Andrei V. Churakov,^b Elmira Kh. Lermontova,^b Galina S. Zaitseva^a and Sergey S. Karlov^a

 ^aChemistry Department, Moscow State University, B-234 Leninskie Gory, 119991 Moscow, Russia
^bInstitute of General and Inorganic Chemistry, Russian Acad. Sci., Leninskii pr., 31, 119991 Moscow, Russia

E-mail: zaitsev@org.chem.msu.ru

Table of Contents

Fig. S1 ¹ H NMR spectrum for 3a (CDCl ₃ , rt)	S3
Fig. S2 ¹ H NMR spectrum for 3a (CDCl ₃ + 20 % DMSO-d6, rt)	S3
Fig. S3 DOSY NMR spectrum for $3a$ and calculation of M_w	S4
Fig. S4 Molecular structure of complex 2c	S 6
Fig. S5. MALDI-TOF mass spectrum of a PLA sample prepared with 2a	S6
Fig. S6. ¹ H NMR spectra (CDCl ₃) for BnO-PLLA, prepared with 2a (75 % conversion)	S7
Fig. S7. ¹ H NMR spectra (CDCl ₃) for MeO-PLLA, prepared with 2c (100 % conversion)	S 8
Fig. S8.Homodecoupled ¹ H NMRspectra (CDCl ₃) for BnO-PLLA	S 8
Fig. S9. ln([LA] ₀ /[LA]) versus time plot for <i>L</i> -lactide polymerization with 2a-4a	S9
Fig. S10. M_n versus conversion plot for <i>L</i> -lactide polymerization with 3a	S9

Fig. S11. $Ln([M]_0/[M])$ <i>vs.</i> time plots for the polymerization of <i>L</i> -lactide	
in the presence of catalytic complex 4a	S10
Fig. S12. ¹ H NMR spectrum (CDCl ₃ , rt) for PLLA (the sample contains	
the polymer, [(3)(PLLA)], with ligand fragment)	S10
Figure S13. ¹ H NMR spectrum (CDCl ₃ , rt) of complex 2a	S11
Figure S14. ¹³ C NMR spectrum (CDCl ₃ , rt) of complex 2a	S11
Figure S15. ¹ H NMR spectrum (CDCl ₃ , rt) of complex 3a	S12
Figure S16. ¹³ C NMR spectrum (CDCl ₃ , rt) of complex 3a	S12
Figure S17. ¹ H NMR spectrum (CDCl ₃ , rt) of complex 4a	S13
Figure S18. ¹³ C NMR spectrum (CDCl ₃ , rt) of complex 4a	S13
Figure S19. ¹³ C NMR spectrum (CDCl ₃ , rt) of complex 3b	S14
Figure S20. ¹³ C NMR spectrum (CDCl ₃ , rt) of complex 3b	S14
Figure S21. ¹ H NMR spectrum (CDCl ₃ , rt) of complex 4b	S15
Figure S22. ¹³ C NMR spectrum (CDCl ₃ , rt) of complex 4b	S15
Figure S23. ¹ H NMR spectrum (CDCl ₃ , rt) of complex 2c	S16
Figure S24. ¹³ C NMR spectrum (CDCl ₃ , rt) of complex 2c	S16
Figure S25. ¹ H NMR spectrum (CDCl ₃ , rt) of complex 3c	S17
Figure S26. ¹³ C NMR spectrum (CDCl ₃ , rt) of complex 3c	S17
Figure S27. ¹ H NMR spectrum (CDCl ₃ , rt) of complex 4c	S18
Figure S28. ¹ H NMR spectrum (C_6D_6 , rt) of complex 2d	S18
Figure S29. ¹³ C NMR spectrum (C_6D_6 , rt) of complex 2d	S19

Fig. S1 ¹H NMR spectrum for **3a** (CDCl₃, rt).

Fig. S2 ¹H NMR spectrum for 3a (CDCl₃+ 20 % DMSO-d6, rt).

Fig. S3 DOSY NMR spectrum for **3a** (600 MHz, DMSO-d6, room temperature; the admixture of toluene is present).

The formula of MW calculation [Angew. Chem., Int. Ed. 2013, 52, 3199-3202]

$$D = \frac{k_B T (\frac{3\alpha}{2} + \frac{1}{1 + \alpha})}{6\pi \eta_3 \sqrt{\frac{3MW}{4\pi \rho_{eff} N_A}}}, \text{ where}$$
$$\alpha = \sqrt[3]{\frac{MW_S}{MW}}$$

MW_S – molecular weight of the solvent

MW - molecular weight of the solute

 $\rho_{\rm eff}$ - the effective density of a small molecule

 η -viscosity

- $N_{\scriptscriptstyle A}$ the Avogadro number
- $k_{\rm B}$ Boltzmann constant
- D diffusion coefficient
- T temperature

Using known calculation algorithm the molecular weights of two particles was established:

 M_1 = 820 g/mol, D= 1.74*10⁻¹⁰ m²/s (M₁(theor) = 774.9), what corresponds to dimeric (**3a**)₂;

 M_2 = 497.1 g/mol, D=2.19*10⁻¹⁰ m²/s (M₁(theor)= 465.6), what corresponds to adduct of monomer with DMSO.

Fig. S5. MALDI-TOF mass spectrum of a PLA sample prepared with **2a** (Table 2, entry 1) (solvent THF, HABA matrix, 2,5-dihydroxybenzoic acid).

Fig. S6.¹H NMR spectra (CDCl₃) for BnO-PLLA, prepared with 2a (75 % conversion).

Fig. S7.¹H NMR spectra (CDCl₃) for MeO-PLLA, prepared with 2c (100 % conversion).

Fig. S8.Homodecoupled¹H NMRspectra (CDCl₃) for BnO-PLLA.

Fig. S9. ln([LA]₀/[LA]) versus time plot for *L*-lactide polymerization with **2a-4a**.

Fig. S10. M_n versus conversion plot for *L*-lactide polymerization with 3a.

Fig. S11. $Ln([M]_0/[M])$ *vs.* time plots for the polymerization of *L*-lactide in the presence of catalytic complex **4a** (100:1:1) at 80 °C; [LA]/[initiator]= 100.

Fig. S12. ¹H NMR spectrum (CDCl₃, rt) for PLLA (the sample contains the polymer, [(3)(PLLA)], with ligand fragment).

Figure S13. ¹H NMR spectrum (CDCl₃, rt) of complex 2a.

Figure S14. ¹³C NMR spectrum (CDCl₃, rt) of complex 2a.

Figure S15. ¹H NMR spectrum (CDCl₃, rt) of complex 3a.

Figure S16. ¹³C NMR spectrum (CDCl₃, rt) of complex 3a.

Figure S17. ¹H NMR spectrum (CDCl₃, rt) of complex 4a.

Figure S18. ¹³C NMR spectrum (CDCl₃, rt) of complex 4a.

Figure S19. ¹³C NMR spectrum (CDCl₃, rt) of complex 3b.

Figure S20. ¹³C NMR spectrum (CDCl₃, rt) of complex 3b.

Figure S21. ¹H NMR spectrum (CDCl₃, rt) of complex 4b.

Figure S22. ¹³C NMR spectrum (CDCl₃, rt) of complex 4b.

Figure S23. ¹H NMR spectrum (CDCl₃, rt) of complex **2c**.

Figure S24. ¹³C NMR spectrum (CDCl₃, rt) of complex **2c**.

Figure S25. ¹H NMR spectrum (CDCl₃, rt) of complex **3c**.

Figure S26. ¹³C NMR spectrum (CDCl₃, rt) of complex **3c**.

Figure S27. ¹H NMR spectrum (CDCl₃, rt) of complex **4c**.

Figure S28. ¹H NMR spectrum (C_6D_6 , rt) of complex 2d.

Figure S29. ¹³C NMR spectrum (C_6D_6 , rt) of complex 2d.